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Lecture # 15, Nov. 6

0.1. First-order Proofs and Theorems

A Hilbert-style proof from I' (I'-proof) is exactly as defined in the case of Boolean
Logic. Namely:

% It is a finite sequence of wff
Ay, Ao, Asy AL A,
such that each A; is ONE of
1. Axiom from A; OR a member of I'

OR

2. Is obtained by MP from X — Y and X that appear to the LEFT of A; (A; is
the same string as Y then.)

However, here “wff’ is Ist-order, and A; is a DIFFERENT set of axioms than
the old A. Moreover we have ONLY one rule up in front.

As in Boolean definitions, a lst-order theorem from I' (I'-theorem) is a formula
that occurs in a 1st-order I'-proof.

As before we write “I' = A” to say “A is a I'-theorem” and write “+ A” to say
“A is an absolute theorem”.
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Hilbert proofs in 1st-order logic are written vertically as well, with line
numbers and annotation.

The metatheorems about proofs and theorems

e proof tail removal,

e proof concatenation,

e a wif is a I'-theorem iff it occurs at the end of a proof
e hypothesis strengthening,

e hypothesis splitting,

e usability of derived rules,

e usability of previously proved theorems

hold with the same metaproofs as in the Boolean case.
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0.1. First-order Proofs and Theorems 3
We trivially have Post’s Theorem (the weak form that we proved for Boolean
logic).

0.1.1 Theorem. (Weak Post’s Theorem for 1st-order logic)
[fAla'-->An ):taut B then Ala---yAn =B

Proof. Exactly the same as in Boolean logic. O

Thus WE 111ay USE

Ay,..., A, F B
as a DERIVED rule in any 1st-order proof, if we know that

Alv'--aAn ):taut B
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0.2. Deduction Theorem

This Metatheorem of First-Order Logic says:

0.2.1 Metatheorem. I[fI", A+ B, then alsoI'F A — B
Proof. Induction on the proof length L we used for I'; A - B:

1. L =1 (Basis). There is only one formula in the proof: The proof must be
B

Only two subcases apply:

e BeT. Then '+ B. But B e A — B, thus by 0.1.1 also B A — B.
So
B,A— B
is a [-proof too. That is, ' - A — B.
e B IS A So, A— B is a tautology hence axiom hence I' - A — B.

e Be Ay. Then I' - B. Conclude as above.
2. Assume (I.H.) the claim for all proofs of lengths L < n.

3. I.S.: The proof has length L =n + 1:
n+1
—~
..., B

If B e I'UA; then we are done by the argument in 1.

Assume instead that it is the result of MP on formulas to the left of B:
n+1

.X,....X—>B,...,B
<n

. S/
~
n

-~

(.

By the I.H. we have
THA—X (%)
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0.2. Deduction Theorem 5

and

'-A— (X —B) (xx)

The following Hilbert proof concludes the case and the entire proof:

1) A—-X (thm by (x))
2) A— (X — B) (thm by (xx))
3) A—B (1 + 2 + taut. implication)

The last line proves the metatheorem. O

Comment. In line 3 above, seeing that
A— X, A— (X — B) Fiqu A— B
is trivially verifiable, we used the “RULE”
A-XA—-(X—-BFA—B

that we obtain from the above via 0.1.1.

The annotation said “1 + 2 + taut. implica-
tion”.

It could also have said instead “1 + 2 + Post”.
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0.3. Generalisation and “weak” Leibniz Rule

We learn here HOW exactly to handle the quantifier V.

0.3.1. Adding and Removing “(Vx)”

0.3.1 Metatheorem. (Weak Generalisation) Suppose that for any wff X in I’
X has no free occurrences of x.

Then if we have I' = A, we will also have I' F (Vx)A.
Proof. Induction on the length L of the I'-proof used for A.

1. L =1 (Basis). There is only one formula in the proof: The proof must be
A

Only two subcases apply:

e AcT. Then A has no free x. But - A — (Vx)A by axiom 3. Thus, we
have a Hilbert proof (written horizontally for speed),

I'—proved axiom MP on the previous two
A e e ——
A A (Yx)A, (Vx)A

e A€ Ay. Then then so is (Vx)A € Ay by partial generalisation.

Hence I' - (Vx)A once more. (WHY?)

& AHA! So that’s what “partial generalisation” does for

|
us! %
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0.3. Generalisation and “weak” Leibniz Rule 7

2. Assume (I.H.) the claim for all proofs of lengths L < n.

3. L.S.: The proof has length L =n + 1:
n+1
LA

ey

If A €T'UA; then we are done by the argument in 1.

Assume instead that A is the result of MP on formulas to the left of it:

nil
X, XA LA
<n
By the I.H. we have
'k (vx)X (%)
and
I'F (vx)(X — A) (xx)

The following Hilbert proof concludes the case and the entire proof:

1) (Vx)X (thm by (x))

2) (Vx)(X — A) (thm by (s:x))

3) (x)(X - A) — (Vx)X — (Vx)A (axiom 4)

5) (Vx)X — (¥x)A (2 + 3 + MP)

6) (vx)A (1+5 4 MP)

The last line proves the metatheorem. O
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0.3.2 Corollary. If+ A, then F (Vx)A.
Proof. The condition that no X in I' has free x is met: Vacuously. I' is empty! [

@ 0.3.3 Remark.

1. So, the Metatheorem says that if A is a I'-theorem then so is (Vx)A as long as
the restriction of 0.3.1 is met.

But then, since I can invoke THEOREMS (not only axioms and hypotheses)
in a proof, I can insert (Vx)A anywhere AFTER A in any ['-proof of A where
I' obeys the restriction.

2. Why “weak”? Because I need to know how the A was obtained before I may

use (Vx)A. O @
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0.3. Generalisation and “weak” Leibniz Rule 9

0.3.4 Metatheorem. (Specialisation Rule) (Vx)AF A[x := ]

% Goes without saying that /F' the expression A[x := t]| is undefined, then we have

nothing to prove. @
Proof.

(1) (vx)4 (hyp)

(2) (Vx)A — Alx:=1t] (axiom 2)

(3) Alx:={] (14 2+ MP) O

0.3.5 Corollary. (Vx)AF A

Proof. This is the special case where t is x. O
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10

Really Important! The metatheorems 0.3.5 and 0.3.1 (or 0.3.2) —which we nick-
name “spec” and “gen” respectively— are tools that make our life easy in Hilbert

proofs where handling of V is taking place.

0.3.5 with no restrictions allows us to REMOVE a leading “(¥x)”.

Doing so we might uncover Boolean glue and thus benefit from applications of
“Post” (0.1.1).

If we need to re-INSERT (Vx) before the end of proof, we employ 0.3.1 to do so.

This is a good recipe for success in 1st-order proofs!
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0.3. Generalisation and “weak” Leibniz Rule 11

0.3.2. Examples
& Ping-Pong proofs.

Hilbert proofs are not well-suited to handle equivalences.

However, trivially
A—B,B— Ak A=B

and —by 0.1.1—
A—B,B—+AFA=B (1)

Thus, to prove I' = A = B in Hilbert style it suffices —by (1)— to offer TWO
Hilbert proofs:
FA—-BANDIFB— A

This back and forth motivates the nickname “ping-pong” for this proof technique. ?2
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0.3.6 Theorem. (Distributivity of V over A) - (Vx)(AA B) =

Proof. By Ping-Pong argument.

We will show TWO things:

1. F(Vx)(AAB) — (Vx)A A (Vx)B
and

2. F (Vx)A N (Vx)B — (Vx)(A A B)

(=) (“1.” above)

By DThm, it suffices to prove (Vx)(A A B) F (Vx)A A (Vx)B

(Vx)A A (Vx)B

(1) (v)(AAB)  (hyp)

(2) AAB (1 + spec (0.3.5))

3) A (2 + Post)

(4) B (2 4 Post)

(5) ("x)A (3 + gen; OK: hyp contains no free x)
(6) (vx)B (4 + gen; OK: hyp contains no free x)
(7)  (Vx)AA(Vx)B ((5,6) + Post)

NOTE. We ABSOLUTELY MUST acknowledge for each application of “gen” that

the restriction is met.
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0.3. Generalisation and “weak” Leibniz Rule

Lecture #16, Nov. 11

(«) (“2.” above)

By DThm, it suffices to prove (Vx)A A (Vx)B = (Vx)(A A B).

(1) (¥AA (B (hyp)
(2) (Vx)A (1 + Post)

(3) (vx)B (1 + Post)

(W 4 (2 + spec)

(5) B (3 + spec)

(6) AAB ((4,5) + Post)

(7)  (Vx)(AAB) (6 4+ gen; OK: hyp has no free x)

Easy and Natural! Right?
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0.3.7 Theorem. F (Vx)(Vy)A = (Vy)(Vx)A
Proof. By Ping-Pong. = (Vx)(Vy)A_” (Vy)(Vx)A.

(—) direction.

By DThm it suffices to prove (Vx)(Vy)A F (Vy)(Vx)A

(1) () (vy)A  (hyp)

(2) (Vy)A (1 + spec)

3) A (2 + spec)

(4) (vx)A (3 4+ gen; OK hyp has no free x)
(5)  (Vy)(Vx)A (4 + gen; OK hyp has no free y)

(<)
Exercise! Justify that you can write the above proof backwards!
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0.3. Generalisation and “weak” Leibniz Rule

0.3.8 Metatheorem. (Monotonicity of V) IfI' - A — B, then I' - (Vx)A —

(Vx)B, as long as no wff in I' has a free x.

Proof.
(1) A—B (invoking a I'-thm)
(2) (vx)(A— B) (1 + gen; OK no free x in I')
(3) (vx)(A— B) = (Vx)A — (Vx)B (axiom 4)
(1) ()4 - (VOB (2,3) + MP)

0.3.9 Corollary. If- A — B, then - (Vx)A — (Vx)B.

Proof. Case of I' = (). The restriction is vacuously satisfied.
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0.3.10 Corollary. IfI' = A = B, then also I' - (Vx)A = (Vx)B, as long as [' does
not contain wff with x free.

Proof.
(1) A=B (T-theorem)
(2) A—B (1 + Post)
3) B—A (1 + Post)
(4)  (Vx)A — (Vx)B (2 4 V-mon (0.3.8))
(5) (Vx)B = (Vx)A (3 4+ V-mon (0.3.8))
(6) (vx)A=(Vx)B ((4,5) + Post) O

0.3.11 Corollary. If+ A = B, then also - (Vx)A = (Vx)B.
Proof. Take I" = (). 0
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