Lecture #14, Nov, 4

@ 0.0.1 Remark. We saw that a Boolean wff, is also a 1st-order wff.
We view Boolean formulas as abstractions of 1st-order ones.

How is this Abstraction manifesting itself?

Well, in any given 1Ist-order wif we just “hide” all Ist-order features. That is,
look at any wif like the following three forms as Boolean variables.

1. t=s
2. Ptitats .. .ty

3. (Vx)A

Why so? You see, if you “live” inside Boolean logic ou know these configura-
))
tions are “statements” but you cannot say what they say:

You do not understand the symbols.

So an inhabitant of Boolean logic can USE the above if connected with Boolean
glue.
Examples.

e Yousee this “e =y 2 =yVar=2"as “’xzy‘—ﬂx:y‘\/ x = z[" where
the first a and second box is the same —say variable p— while the last one is
different. You recognize a tautology!

e You see this “o = 2” as “{o = z]|". Just a Boolean variable. Not a tautology.

e The same goes for this “(Va)r =y — & = y” which the Boolean citizen views

as ‘{(Vx)r = y|—[x =y, that is, a Boolean wff p — ¢. Not a tautology.

Basic Logic(© by George Tourlakis

Process of abstraction: we only abstract the expressions 1.-3.
above in order to turn a lst-order wif into a Boolean wiff.
The three forms above are know in logic as Prime Formulas.

Basic Logic(© by George Tourlakis

More Boolean abstraction examples:.

o If Ais
p—x=yV (Vr)pxr Aq (note that ¢ is not in the scope of (Vx))

then we abstract as

p—[z=y|V|(Vz)dr|Ag (1)

so the Boolean citizen sees
p—=p V' Ag

@ If we ask “show all the prime formulas in A by boxing them” then we —who
understand 1st-order language and can see inside scopes— would have also
boxed ¢z above. The Boolean citizen cannot see ¢x in the scope of (Vx) so the
boxing for such a person would be as we gave in (1) @

e First box all prime formulas in (2) below.
(Vz)(z =y — (V2)z=aVq)

Here it is.

(Vo) (z =y] = | (Vz)z=a]|Va)

Now abstract the above for Boolean inhabitants:

(Vz)(zr =y — (V2)z=aVq)

They see no glue at all!

The abstraction is
p

e ©r =y — x =y abstracts as’x:y‘%’x:y‘. That is, p = p —a tautology.

Why bother with abstractions? Well, the last example is a tautology so a Boolean
citizen can prove it.

However z = x and (Vx)r = y — x = y are not tautologies and we need predicate
logic techniques to settle their theoremhood. O @

Basic Logic(©) by George Tourlakis

We can now define:

0.0.2 Definition. (Tautologies and Tautological Implications) We say that a
(Ist-order) wif, A, is a tautology and write =, A, iff its Boolean abstraction is.

In 1st-order Logic T' =iaus A is applied to the Boolean abstraction of A and the
wif in I'.

Goes without saying that ALL the identical occurrences of = in I' U {A} will
stand for the same Boolean variale.
For example, x = y =0 © = y V 2 = v is correct as we see from

p p

—— — /—"q‘\
}:taut rT=y|Viz="v

Basic Logic(©) by George Tourlakis

Substitutions

A substitution is a textual substitution.

In A[x := t] we will replace all occurrences of a free x in A by the term ¢: Find
and replace.

In A[p := B] we will replace all occurrences of a p in A by B: Find and replace.

0.0.3 Example. (What to avoid) Consider the substitution below

() = y)ly =2

If we go ahead with it as a brute force “find and replace” asking no questions, then
we are met by a S€r10uS problem:

The result
(Fz)—x ==z (1)

says something other than what the original formula says!

The latter says “for any choice of y-value there is a fresh (i.e., other than y) new
x-value”.

The above is true in any application of logic where we have infinitely many ob-

jects. For example, it is true of real numbers and natural numbers.

(1) though is NEVER true! It says that there is an object that is different from
itself! O

0.0.4 Definition. (Substitution) Each of

1. In A[x := t] replace all occurrences of a free x in A by the term ¢: Find and
replace.

2. In A[p := B] replace all occurrences of a p in A by B: Find and replace.

Basic Logic(©) by George Tourlakis

dictates that we do a find and replace.

However we abort the substitution 1 or 2 if it so happens that going ahead with
it makes a free variable y of ¢t or B bound because t or B ended up in the scope of

a (Vy) or (3y).

We say that the substitution is undefined and that the reason is that we had a
“free variable capture”.

There is a variant of substution 2, above:

3. In A[p \ B] replace all occurrences of a p in A by B: Find and replace.

For technically justified reasons to be learnt later, we never abort this one, capture or not.

We call the substitutions 1. and 2. COHditiOﬂ&l, while the substitution 3.
unconditional.

There is NO unconditional version of 1.

[x :=t],[p:= BJ,[p\ B] have higher priority that all connectives V,3, =, A, V, —
,=. They associate from LEFT to RIGHT that is A[x := t][p := B] means

(=)o = 51)

Basic Logic(©) by George Tourlakis

0.0.5 Example. Several substitutions based on Definition 0.0.4.

(1) (y =2)[y :== z].

The red brackets are META brackets. I need them to show the substitution applies
to the whole formula.

The result is x = z.

(2) <(Vx)x = y) [y := z]. By 0.0.4, this is undefined because if I go ahead then z
is captured by (Vz).

(3) (Vx)(z = y)[y := z]. According to priorities, this means (‘v’x){(m =y)ly =

x]}

That is, “apply the quantifier (Vz) to 2 = 2”7, which is all right.
Result is (Va)z = .

(4) ((v2) (%) ()) [y == a]. This says
+ Do () ((#)6te0)) =

e This is all right since y is not free in ((‘v’y)gzﬁ(x, y)) —so0 not found; no replace!
Result is the original formula UNCHANGED.

(5) (z =aV (Vo)r = y) [y := x]. Abort: x is captured when we attempt substi-

tution in the subformula (Vz)x = y.

(6) ((Vx)p) [p \ = y| Unconditional substitution. Just find and replace, no

questions asked!

Result: (Vx)z =y.

Basic Logic(©) by George Tourlakis

(7) ((V;I;)p) p =2z =y Undefined. = in » = y will get captured if you go
ahead! O

Basic Logic(©) by George Tourlakis

0.0.6 Definition. (Partial Generalisation) We say that B is a partial generali-
sation of A if B is formed by adding as a PREFIX to A gzero or more strings of the
form (Vx) for any choices whatsoever of the variable x —repetitions allowed. O

0.0.7 Example. Here is a small list of partial generalisations of the formula z = z:
xr =z,
(Vw)z = z,
(V) (Va)z = z,
(Vo) (Vz)x = z,
(V2)(Va)r = 2,

(V2)(Vz2)(Vz) (V) (V2)x = 2. O

Basic Logic(© by George Tourlakis

10

0.1. Axioms and Rules for Predicate Logic

0.1.1 Definition. (1st-Order Axioms) These are all the partial generalisations of
all the instances of the following schemata.

1. All tautologies
2. (Vx)A — Alx =]

@ Note that we get an instance of this schema ONLY IF the substitution is not
aborted.

3. A— (Vx)A —PROVIDED x is not free in A.
4. (Vx)(A — B) — (Vx)A — (Vx)B

2. X=X

6. t=s5— (Ax:=t] = Alx:= 3|

The set of all first-order axioms is named “A;” —“1” for 1st-order. O

Our only INITIAL (or Primary) rule is Modus Ponens:

AA— B

— (MP)

You may think that including all tautologies as axioms is overkill.
However

1. Tt is customary to do so in the literature ([Tou08, Sho67, End72, Tou03])

2. After Post’s Theorem we do know that every tautology is a theorem of Boolean
logic. Adopting axiom one makes every tautology also a theorem of Predicate
Logic outright!

This is the easiest way to incorporate Boolean logic as a sublogic of 1st-order
logic.

Basic Logic(© by George Tourlakis

Bibliography

[End72] Herbert B. Enderton, A mathematical introduction to logic, Academic Press,
New York, 1972.

[Sho67] Joseph R. Shoenfield, Mathematical Logic, Addison-Wesley, Reading, Mas-
sachusetts, 1967.

[Tou03] G. Tourlakis, Lectures in Logic and Set Theory; Volume 1: Mathematical
Logic, Cambridge University Press, Cambridge, 2003.

[Tou08] , Mathematical Logic, John Wiley & Sons, Hoboken, NJ, 2008.

Basic Logic(©) by George Tourlakis

	Axioms and Rules for Predicate Logic

