
Chapter 3

APPENDIX
Arithmetisation
Normal Form Theorems
Semi-Recursiveness and
Unsolvability
S-m-n and Recursion Theorems

This appendix to Chapter 3 of [Tou84] retells in an alternative way the technical details of proving
the Kleene Normal Form Theorem, and the S-m-n Theorem via the important technique of “arith-
metisation”. These lead to basic results in recursive unsolvability and semi-recursiveness. We also
include a proof of Kleene’s recursion theorem with an application to unsolvability (Rice’s Theorem)
and to proving that certain “recursive definitions” have partial recursive “solutions”.

3.1. Computations and their Arithmetisation;
The Kleene Predicate

P has been defined in class as the closure of {λx.0, λx.x+ 1} ∪ {λ~xn.xi : 1 ≤ i ≤ n ∧ n ∈ N} under
composition, primitive recursion and unbounded search. We will assign “program codes” to each
function, using our usual prime-power coding, namely,

〈x0, . . . , xn〉 =
∏
i≤n

pxi+1
i

Kleene Normal Form; Lecture notes for CSE4111/COSC5111: Winter 2006, 2008 c© by George Tourlakis

2 3. APPENDIX Arithmetisation Normal Form Theorems Semi-Recursiveness and Unsolvability S-m-n

and Recursion Theorems

We define in (1) below the “concatenation function”.

x ∗ y def= x ·
∏

i<lh(y)

p
exp(i,y)
i+lh(x) (1)

This yields a primitive recursive function λxy.x ∗ y. It is immediate that “∗” deserves the name,
because

〈~a〉 ∗ 〈~b〉 = 〈~a,~b〉

for all ~a and ~b. We next “arithmetise” P-functions and their “computations”. We will assign
“program codes” to each function. A program code—called a “Gödel number” or a “φ-index”,
or just an “index” in the literature—is, intuitively, a number in N that codes the “instructions”
necessary to compute a P-function.

� If i ∈ N is a† code for f ∈ P, then we write

f = {i} Kleene’s notation

or
f = φi

‡ Rogers’s [Rog67] notation

Thus, either notation, {i} or φi, denotes the function with code i. �

The following table assigns inductively Gödel numbers (middle column) to all functions P. In
the table, f̂ indicates a code of f .

Function Code Comment
λx.0 〈0, 1, 0〉

λx.x+ 1 〈0, 1, 1〉
λ~xn.xi 〈0, n, i, 2〉 1 ≤ i ≤ n

composition: f(g1(~ym), . . . , gn(~ym)) 〈1,m, f̂ , ĝ1, . . . , ĝn〉 f must be n-ary
all gi must be m-ary

primitive recursion from
“basis” h and “iterated” part g 〈2, n+ 1, ĥ, ĝ 〉 h must be n-ary

g must be (n+ 2)-ary
unbounded search: (µy)f(y, ~xn) 〈3, n, f̂ 〉 f must be (n+ 1)-ary

and n > 0

� OK, we have been somewhat loose in our description above. “The following table assigns induc-
tively”, we have said, perhaps leading the reader to think that we are defining the codes by recursion
on P. Not so. After all, each function has infinitely many codes.

What is really involved here—see also below—is defining the set of all φ-indices, here called Φ,
as a subset of {z : Seq(z)}. Φ is the smallest set of “codes” that contains the “initial φ-indices”

I = {〈0, 1, 0〉, 〈0, 1, 1〉} ∪ {〈0, n, i, 2〉 : n > 0 ∧ 1 ≤ i ≤ n}

and is closed under the following three operations:
†The indefinite article is appropriate here. Exactly as in “real life” a “computable” function has infinitely many

different programs that compute it, a partial recursive function f has infinitely many different codes (see 3.1.3 later
on).

‡That’s where the name “φ-index” comes from.

Kleene Normal Form; Lecture notes for CSE4111/COSC5111: Winter 2006, 2008 c© by George Tourlakis

3.1. Computations and their Arithmetisation; The Kleene Predicate 3

(i) Coding composition: Input a and bi (i = 1, . . . , n) causes output

〈1,m, a, b1, . . . , bn〉

provided (a)1 = n and (bi)1 = m, for i = 1, . . . , n.

(ii) Coding primitive recursion: Input a and b causes output

〈2, n+ 1, a, b〉

provided (a)1 = n and (b)1 = n+ 2.

(iii) Coding unbounded search: Input a causes output

〈3, n, a〉

provided (a)1 = n+ 1 and n > 0.†

By the uniqueness of prime number decomposition, the rules defining the set Φ are unambiguous,
hence we may define an interpretation (or semantics) function on Φ by recursion on Φ.

Indeed we define a total function λa.{a} (or λa.φa) for each a ∈ Φ, that is, a function that maps
codes into functions of P:

{〈0, 1, 0〉} = λx.0
{〈0, 1, 1〉} = λx.x+ 1
{〈0, n, i, 2〉} = λ~xn.xi

{〈1,m, a, b1, . . . , bn〉} = λ~ym.{a}({b1}(~ym), . . . , {bn}(~ym))
{〈2, n+ 1, a, b〉} = λx~yn.P rec({a}, {b})

{〈3, n, a〉} = λ~xn.(µy){a}(y, ~xn)

In the above recursive definition we have used the abbreviation Prec({a}, {b}) for the function
given (for all x, ~yn) by the primitive recursive schema with “h-part” {a} and “g-part” {b}. �

We can now make the intentions implied in the above table official:

3.1.1 Theorem. P = {{a} : a ∈ Φ}.

Proof. ⊆-part. Induction on P. The previous table encapsulates the argument diagrammatically.
⊇-part. Induction on Φ. It follows trivially from the recursive definition of {a} and the fact that

P contains the initial functions and is closed under composition, primitive recursion and unbounded
search. �

3.1.2� Remark. (Important) Thus, f ∈ P iff for some a ∈ Φ, f = {a}. � �

3.1.3 Example. Every function f ∈ P has infinitely many φ-indices. Indeed, let f = {f̂}. Since
f = λ~xn.u

1
1(f(~xn)), we obtain f = {〈1, n, 〈0, 1, 1, 2〉, f̂ 〉}. Since 〈1, n, 〈0, 1, 1, 2〉, f̂ 〉 > f̂ , the claim

follows. �
†By an obvious I.H. the other cases can fend for themselves, but, here, reducing the number of arguments must

not result to 0 arguments, as we have decided not to allow 0-ary functions.

Kleene Normal Form; Lecture notes for CSE4111/COSC5111: Winter 2006, 2008 c© by George Tourlakis

4 3. APPENDIX Arithmetisation Normal Form Theorems Semi-Recursiveness and Unsolvability S-m-n

and Recursion Theorems

3.1.4 Theorem. The relation x ∈ Φ is primitive recursive.

Proof. Let χ denote the characteristic function of x ∈ Φ. Then

χ(0) = 1
χ(x+ 1)= 0 if x+ 1 = 〈0, 1, 0〉 ∨ x+ 1 = 〈0, 1, 1〉∨

(∃n, i)≤x

(
n > 0 ∧ 0 < i ≤ n ∧ x+ 1 = 〈0, n, i, 2〉

)
∨

(∃a, b,m, n)≤x

(
χ(a) = 0 ∧ (a)1 = n ∧ Seq(b)∧

lh(b) = n ∧ (∀i)<n

(
χ((b)i) = 0 ∧ ((b)i)1 = m

)
∧

x+ 1 = 〈1,m, a〉 ∗ b
)
∨

(∃a, b, n)≤x

(
χ(a) = 0 ∧ (a)1 = n ∧ χ(b) = 0∧

(b)1 = n+ 2 ∧ x+ 1 = 〈2, n+ 1, a, b〉
)
∨

(∃a, n)≤x

(
χ(a) = 0 ∧ (a)1 = n+ 1 ∧ n > 0 ∧ x+ 1 = 〈3, n, a〉

)
= 1 otherwise

The above can easily be seen to be a course-of-values recursion. For example, ifH(x) = 〈χ(0), . . . , χ(x)〉,
then an occurrence of “χ(a) = 0” above can be replaced by “(H(x))a = 0”, since a ≤ x. �

� How do we compute a yes/no answer to the question “{e}(~a) = b?” for arbitrary e,~a, b? Just as
in the case of the Ackermann function, we think of the question “{e}(~a) = b?” as a “call” to a
function

Eval(e,~a, b)

We can “program” Eval recursively:

(i) If e codes an initial function, that is, (e)0 = 0, then we directly check if said initial function
on input ~a produces b and we answer “yes” or “no” accordingly.

(ii) If (e)0 ∈ {1, 2, 3}, then we have cases shown in tree form below. In each case the root call
is Eval(e,~a, b) and the “children” represent the recursive calls needed —according to the
definition of the φ-indices and their semantics given earlier (pages 2 and 3)— to determine

Kleene Normal Form; Lecture notes for CSE4111/COSC5111: Winter 2006, 2008 c© by George Tourlakis

3.1. Computations and their Arithmetisation; The Kleene Predicate 5

the (yes/no) value of the root.

Kleene Normal Form; Lecture notes for CSE4111/COSC5111: Winter 2006, 2008 c© by George Tourlakis

6 3. APPENDIX Arithmetisation Normal Form Theorems Semi-Recursiveness and Unsolvability S-m-n

and Recursion Theorems

Thus, the computation of Eval(e,~a, b) can be arranged in a tree —a computation tree— with its
root (1st “call”) labelled Eval(e,~a, b) and all the other nodes labelled by the relevant calls.

Clearly, the name “Eval” does not add any information to the call “Eval(e,~a, b)” and we might
as well choose any other name, for example “George”, and still carry out all the calls perfectly well.

That is, all we need to know for each call are the relevant arguments, e,~a, b. We will thus drop
the name “Eval” and label the tree nodes by the call-arguments coded as single numbers, that is,
〈e,~a, b〉. As a matter of fact we can, and will, code the entire computation tree by a single number
via the inductive definition below:

3.1.5 Definition. (Coding Trees) Let T, T0, T1, . . . name trees and T̂ , T̂0, T̂1, . . . name their codes
respectively. We code a tree T as follows:

(1) If T has a single node labelled v, then T̂ = 〈v〉.

(2) Let T be the tree denoted by the ordered tuple v, T0, T1, . . . , Tm−1, where v labels its root and
the Ti, i = 0, . . . ,m − 1, are all the trees hanging from the root (sub-trees) from left to right.
Then T̂ = 〈v, T̂0, T̂1, . . . , T̂m−1〉. �

3.1.6� Remark. A computation tree, of course, is either a single node v (where (v)0 = 0) or is an
ordered sequence v, T0, . . . , Tl−1 where v is one of

(1) v = 〈〈1,m, f,~gk〉,~am, b〉 (l = k + 1 in this case; cf. figure for composition, p.5)

(2) v = 〈〈2, n+ 1, h, g〉, c,~an, b〉 (here l = 1 or l = 2)

(3) v = 〈〈3, n, f〉,~an, b〉 (here n > 0)

and each of the sub-trees Ti is a computation tree with root as indicated in the figures on pp.5–6.
� �

Before proceeding, let us recall that

Seq(z)↔ z > 1 ∧ (∀x)≤z(∀y)≤z(y|z ∧ Pr(y) ∧ Pr(x) ∧ x < y → x|z)

and lh(z) = (µy)≤zrem(z, py) > 0.
We are now ready to show that the predicate “Tree(u)” which holds iff “u codes a computation

tree” is primitive recursive.

Kleene Normal Form; Lecture notes for CSE4111/COSC5111: Winter 2006, 2008 c© by George Tourlakis

3.1. Computations and their Arithmetisation; The Kleene Predicate 7

3.1.7� Remark. We will break the predicate into sub-predicates to enhance readability. Thus, let
u = 〈v, t0, . . . , tm〉, where each ti denotes a tree code, while v codes a call.

(a) The predicate I(u) will be true iff the ti-part is empty, and v is a call to an initial function.

(b) The predicate C(u) will be true iff v is a call to composition, and the roots of each ti are correct
(cf. composition figure, p.5).

(c) The predicate P (u) will be true iff v is a call to primitive recursion (two cases!), and the roots
of each ti are correct (cf. primitive recursion figure, p.5).

(d) The predicate U(u) will be true iff v is a call to unbounded search, and the roots of each ti are
correct (cf. unbounded search figure, p.6).

There is also a common or “factored out” part in all cases: Let us call this F (u). It occurs as a
conjunct “F (u) ∧ ” in the definition of Tree(u) and is not part of the I, C, P, U .

F (u)↔ Seq(u) ∧ (∀i)<lh(u)Seq((u)i)

That is, “u is a code of codes”. � �

We now define each of I, C, P, U . The definitions below, in each case, make it abundantly clear
—by closure properties— that we have a predicate in PR∗. Each case involves a lengthy formula.
In the interest of readability, comments enclosed in { }-brackets may be included on the left margin,
to indicate the sub-case under consideration.
The I(u): u = 〈v〉, thus v = (u)0.

I(u)←→lh(u) = 1 ∧
(

{λx.0} (∃x)≤u(u)0 = 〈〈0, 1, 0〉, x, 0〉 ∨
{λx.x+ 1} (∃x)≤u(u)0 = 〈〈0, 1, 1〉, x, x+ 1〉 ∨
{λ~xn.xi} (∃x, n, i)≤u{Seq(x) ∧ n = lh(x) ∧ i < n ∧

(u)0 = 〈〈0, n, i+ 1, 2〉〉 ∗ x ∗ 〈(x)i〉}
)

The C(u): u = 〈v, t0, . . . , tn〉, where (cf. 3.1.6) v = 〈〈1,m, f,~gn〉,~am, b〉. Thus v = (u)0. We can
represent the vectors ~gn = g0, . . . , gn−1, ~am = a0, . . . , am−1, and t0, . . . , tn by the single numbers
a, g and t respectively, so that v = 〈〈1,m, f〉 ∗ g〉 ∗ a ∗ 〈b〉 and u = 〈v〉 ∗ t.

The “z” in the definition of C(u) below codes the outputs z0, . . . , zn−1 of each recursive call
〈gi,~am, zi〉 = 〈(g)i〉 ∗ a ∗ 〈(z)i〉 (root of ti for i < n —cf. figure on p.5).

C(u)←→(∃a, z, f, g,m, n, b)≤u

{
lh(u) = n+ 2 ∧ Seq(a) ∧ Seq(z) ∧ Seq(f) ∧

Seq(g) ∧ n = lh(z) ∧ n = lh(g) ∧m = lh(a) ∧
(f)1 = n ∧ (∀i)<n(Seq((g)i) ∧ ((g)i)1 = m) ∧

{Root (main) call} (u)0 = 〈〈1,m, f〉 ∗ g〉 ∗ a ∗ 〈b〉 ∧
{Root of tn} ((u)n+1)0 = 〈f〉 ∗ z ∗ 〈b〉 ∧

{Root of ti, i < n} (∀i)<n((u)i+1)0 = 〈(g)i〉 ∗ a ∗ 〈(z)i〉
}

The P (u): There are two cases (see figure regarding primitive recursion on p.5):

Kleene Normal Form; Lecture notes for CSE4111/COSC5111: Winter 2006, 2008 c© by George Tourlakis

8 3. APPENDIX Arithmetisation Normal Form Theorems Semi-Recursiveness and Unsolvability S-m-n

and Recursion Theorems

(A) u = 〈v, t〉, where (cf. 3.1.6) v = 〈〈2, n + 1, h, g〉, 0,~an, b〉. We can represent the vector ~an =
a0, . . . , an−1, by the single number a, so that v = 〈〈2, n+ 1, h, g〉, 0〉 ∗ a ∗ 〈b〉. The single call of
v is the root of t —(t)0 = 〈h〉 ∗ a ∗ 〈b〉.

(B) u = 〈v, t0, t1〉. We will set t = 〈t0, t1〉, hence u = 〈v〉 ∗ t. Here v = 〈〈2, n+ 1, h, g〉, c+ 1〉 ∗a∗ 〈b〉
and the two calls of v are (t)0 = 〈g, c〉 ∗ a ∗ 〈z, b〉 and (t)1 = 〈〈2, n+ 1, h, g〉, c〉 ∗ a ∗ 〈z〉 for some
appropriate z (cf. p.5).

P (u)←→(∃n, h, g, c, a, b, z)≤u

{
Seq(h) ∧ (h)1 = n ∧ Seq(g) ∧ (g)1 = n+ 2 ∧

Seq(a) ∧ lh(a) = n ∧
{Basis Case}

(
lh(u) = 2 ∧ (u)0 = 〈〈2, n+ 1, h, g〉, 0〉 ∗ a ∗ 〈b〉 ∧

{The only call} ((u)1)0 = 〈h〉 ∗ a ∗ 〈b〉 ∨
{Iteration Case} lh(u) = 3 ∧ (u)0 = 〈〈2, n+ 1, h, g〉, c+ 1〉 ∗ a ∗ 〈b〉 ∧

{1st call} ((u)1)0 = 〈g, c〉 ∗ a ∗ 〈z, b〉 ∧

{2nd call} ((u)2)0 = 〈〈2, n+ 1, h, g〉, c〉 ∗ a ∗ 〈z〉
)}

The U(u): u = 〈v, t0, . . . , tb〉, where (cf. 3.1.6) v = 〈〈3, n, f〉,~an, b〉. Thus v = (u)0. We can
represent the vectors ~an = a0, . . . , an−1, and t0, . . . , tb by the single numbers a and t respectively,
so that v = 〈〈3, n, f〉〉 ∗ a ∗ 〈b〉 and u = 〈v〉 ∗ t.

The recursive calls —cf. figure regarding unbounded search on p.6— are, for i < b, ((t)i)0 =
〈f, i,~an, ci + 1〉 and ((t)b)0 = 〈f, b,~an, 0〉.

Coding the ci by the number c, and noting that (t)i = (u)i+1, we have ((u)i+1)0 = 〈f, i〉 ∗ a ∗
〈(c)i + 1〉 and ((u)b+1)0 = 〈f, b〉 ∗ a ∗ 〈0〉. Thus,

U(u)←→(∃n, f, a, b, c)≤u

{
lh(u) = b+ 2 ∧ Seq(f) ∧ (f)1 = n+ 1 ∧ n > 0 ∧

Seq(a) ∧ lh(a) = n ∧ Seq(c) ∧ lh(c) = b ∧
{The root call} (u)0 = 〈〈3, n, f〉〉 ∗ a ∗ 〈b〉 ∧

{The recursive calls} (∀i)<b((u)i+1)0 = 〈f, i〉 ∗ a ∗ 〈(c)i + 1〉 ∧

((u)b+1)0 = 〈f, b〉 ∗ a ∗ 〈0〉
}

3.1.8 Theorem. Tree(u) ∈ PR∗.

Proof.

Tree(u)↔ F (u) ∧
(
I(u) ∨ C(u) ∨ P (u) ∨ U(u)

)
∧ (∀i)<lh(u)

(
i > 0→ Tree((u)i)

)
(1)

Wait a minute! What sort of definition is (1)?
It is a course-of-values recursion, for if λu.χ(u) denotes the characteristic function of Tree(u),

then

χ(0) = 1
χ(u+ 1) = 0 if F (u+ 1) ∧

(
I(u+ 1) ∨ C(u+ 1) ∨ P (u+ 1) ∨ U(u+ 1)

)
∧

Kleene Normal Form; Lecture notes for CSE4111/COSC5111: Winter 2006, 2008 c© by George Tourlakis

3.2. Semi-Recursive Predicates; Unsolvability 9

(∀i)<lh(u+1)

(
i > 0→ χ((u+ 1)i) = 0

)
= 1 otherwise

That this is a course-of-values recursion follows from (y)i < y. �

3.1.9 Definition. (The Kleene T -predicate) For each n ∈ N, T (n)(e, ~xn, z) stands for “there is
a computation tree coded by z such that it has as root 〈e, ~xn, y〉 —and therefore verifies {e}(~xn) =
y— for an appropriate y”. �

3.1.10 Theorem. λe~xny.T
(n)(e, ~xn, z) is primitive recursive.

Proof.
T (n)(e, ~xn, z)↔ Tree(z) ∧ (∃y)<z(z)0 = 〈e, ~xn, y〉 �

3.1.11 Theorem. (Kleene Normal Form Theorem) There is a primitive recursive function
λx.ret(x) (“ret” for retrieve) such that

(1) y = {a}(~xn) ≡ (∃z)(T (n)(a, ~xn, z) ∧ ret(z) = y)
(2) {a}(~xn) = ret

(
(µz)T (n)(a, ~xn, z)

)
(3) {a}(~xn) ↓≡ (∃z)T (n)(a, ~xn, z).

Proof. Use ret = λz.
(
(z)0

)
lh
(
(z)0

) .−1
. �

3.1.12� Remark. (Very important) The right hand side of 3.1.11(2), above, is meaningful for all
a ∈ N, while the left hand side is only meaningful for a ∈ Φ.

We now extend the symbols {a} and φa to be meaningful for all a ∈ N.
In all cases, the meaning is given by the right hand side of (2).
Of course, if a 6∈ Φ, then (µz)T (n)(a, ~xn, z) ↑, for all ~xn, since T (n)(a, ~xn, z) will be false under

the circumstances. Hence also {a}(~xn) ↑, as it should be intuitively. In computer programmer’s
jargon: “If the ‘program’ a is ‘syntactically incorrect’, then it will not compile and hence it will not
‘run’. Thus, it will ‘define’ the everywhere undefined function.” � �

3.2. Semi-Recursive Predicates;
Unsolvability

We can now define a P-counterpart to R∗ and PR∗ and consider its closure properties.

3.2.1 Definition. (Semi-recursive relations) A relation P (~x) is semi-recursive iff for some f ∈
P, the equivalence

P (~x)↔ f(~x) ↓ (1)

holds (for all ~x, of course). Equivalently, we can state that P = dom(f).
The set of all semi-recursive relations is denoted by P∗†

†We are making this symbol up. It is not standard in the literature.

Kleene Normal Form; Lecture notes for CSE4111/COSC5111: Winter 2006, 2008 c© by George Tourlakis

10 3. APPENDIX Arithmetisation Normal Form Theorems Semi-Recursiveness and Unsolvability S-m-n

and Recursion Theorems

If f = {a} in (1) above, then we say that “a is a semi-recursive index of P”.
If P has one argument (i.e., P ⊆ N) and a is one of its semi-recursive indices, then we write

P = Wa ([Rog67]). �

We have at once

3.2.2 Corollary. (Normal Form Theorem for semi-recursive relations) P (~xn) ∈ P∗ iff, for
some a ∈ N,

P (~xn)↔ (∃z)T (n)(a, ~xn, z)

Proof. only if-part. Let P (~xn) ↔ f(~xn) ↓, with f ∈ P. By Theorem 3.1.1 (and 3.1.12), f = {a}
for some a ∈ N. Now invoke 3.1.11(3).

if-part. By 3.1.11(3), P (~xn)↔ {a}(~xn) ↓. But {a} ∈ P. �

Rephrasing the above (hiding the “a”, and remembering that PR∗ ⊆ R∗) we have

3.2.3 Corollary. (Strong Projection Theorem) P (~xn) ∈ P∗ iff, for some Q(~xn, z) ∈ R∗,

P (~xn)↔ (∃z)Q(~xn, z)

Proof. For the only if take Q(~xn, z) to be λ~xnz.T
(n)(a, ~xn, z) for appropriate a ∈ N. For the if take

f = λ~xn.(µz)Q(~xn, z). Then f ∈ P and P (~xn)↔ f(~xn) ↓. �
Here is a characterisation of P∗ that is identical, in form, to the characterisations of PR∗ and

R∗.

3.2.4 Corollary. P (~xn) ∈ P∗ iff, for some f ∈ P,

P (~xn)↔ f(~xn) = 0

Proof. only if-part. Say P (~xn)↔ g(~xn) ↓. Take f = λ~xn.0 · g(~xn).
if-part. Let f = {a}. By 3.1.11(1), f(~xn) = 0↔ (∃z)

(
T (n)(a, ~xn, z) ∧ ret(z) = 0

)
. We are done

by strong projection. �

3.2.5� Remark. The expression “f(~xn) = 0 · g(~xn)” is shorthand for

f(~xn) =

{
0 if g(~xn) ↓
↑ if g(~xn) ↑

(1)

Intuitively, f is computable: Run a program for g with input ~xn. If it ever halts, then stop
everything and return 0.

A formal reason as to why f ∈ P is f(~xn) = z
(
g(~xn)

)
where z is the zero (initial) function. � �

We immediately obtain

3.2.6 Corollary. R∗ ⊆ P∗.

� Intuitively, for a predicate R ∈ R∗ we have an algorithm (one that computes χR) that for any input
~x will halt and answer “yes” (= 0) or “no” (= 1) to the question “~x ∈ R?”

For a predicate Q ∈ P∗ we are only guaranteed the existence of a weaker algorithm (for f ∈ P
such that dom(f) = Q). It will halt iff the answer to the question “~x ∈ Q?” is “yes” (and halting
will amount to “yes”). If the answer is “no” it will never tell, because it will (as we say for non
halting) “loop for ever” (or diverge). Hence the name “semi-recursive” for such predicates. �

Kleene Normal Form; Lecture notes for CSE4111/COSC5111: Winter 2006, 2008 c© by George Tourlakis

3.2. Semi-Recursive Predicates; Unsolvability 11

3.2.7 Theorem. R ∈ R∗ iff both R and ¬R are in P∗.

Proof. only if-part. By 3.2.6 and closure of R∗ under ¬.
if-part. Let i and j be semi-recursive indices of R and ¬R respectively, that is

R(~xn)↔ (∃z)T (n)(i, ~xn, z)

¬R(~xn)↔ (∃z)T (n)(j, ~xn, z)

Define
g = λ~xn.(µz)

(
T (n)(i, ~xn, z) ∨ T (n)(j, ~xn, z)

)
Trivially, g ∈ P. Hence, g ∈ R, since it is total (Why?). We are done by noticing that R(~xn) ↔
T (n)(i, ~xn, g(~xn)). �

� (Unsolvable Problems) A problem is a question “~x ∈ R?” for some predicate R. “The problem
~x ∈ R is recursively unsolvable”, or just unsolvable, means that R 6∈ R∗, that is, intuitively, there
is no algorithmic solution to the problem.

The “halting problem” has central significance in recursion theory. It is the question whether
“program x will ever halt if it starts computing on input x”. That is, we set K = {x : {x}(x) ↓}.
The halting problem is x ∈ K.† We denote the complement of K by K. �

3.2.8 Theorem. (Unsolvability of the halting problem) The halting problem is unsolvable.

Proof. It suffices to show that K is not semi-recursive. Suppose instead that i is a semi-recursive
index of the set. Thus,

x ∈ K ↔ (∃z)T (1)(i, x, z)

or, making the part x ∈ K—that is, {x}(x) ↑—explicit

¬(∃z)T (1)(x, x, z)↔ (∃z)T (1)(i, x, z) (1)

Substituting i into x in (1) we get a contradiction. �

� K ∈ P∗, of course, since {x}(x) ↓↔ (∃z)T (1)(x, x, z). We conclude that the inclusion R∗ ⊆ P∗ is
proper, i.e., R∗ ⊂ P∗. �

3.2.9 Theorem. (Closure properties of P∗) P∗ is closed under ∨,∧, (∃y)<z, (∃y), (∀y)<z. It is
not closed under either ¬ or (∀y).

Proof. We will rely on the normal form theorem for semi-recursive relations and the strong projec-
tion theorem.

Given semi-recursive relations P (~xn), Q(~ym) and R(y, ~uk) of semi-recursive indices p, q, r re-
spectively.
(∨:)

P (~xn) ∨Q(~ym)↔ (∃z)T (n)(p, ~xn, z) ∨ (∃z)T (m)(q, ~ym, z)

↔ (∃z)
(
T (n)(p, ~xn, z) ∨ T (m)(q, ~ym, z)

)
†“K” is a reasonably well reserved symbol for the set {x : {x}(x) ↓}. Unfortunately, K is also used for the “first

projection” of a “pairing function”, but the context easily decides which is which.

Kleene Normal Form; Lecture notes for CSE4111/COSC5111: Winter 2006, 2008 c© by George Tourlakis

12 3. APPENDIX Arithmetisation Normal Form Theorems Semi-Recursiveness and Unsolvability S-m-n

and Recursion Theorems

(∧:)

P (~xn) ∧Q(~ym)↔ (∃z)T (n)(p, ~xn, z) ∧ (∃z)T (m)(q, ~ym, z)

↔ (∃w)
(
(∃z)<wT

(n)(p, ~xn, z) ∧ (∃z)<wT
(m)(q, ~ym, z)

)
� Breaking the pattern established by the proof for ∨ we may suggest a simpler proof: P (~xn) ∧

Q(~ym) ↔
(

(µz)T (n)(p, ~xn, z) + (µz)T (m)(q, ~ym, z)
)
↓. Yet another proof, involving the decoding

function λiz.(z)i is

P (~xn) ∧Q(~ym)↔ (∃z)T (n)(p, ~xn, z) ∧ (∃z)T (m)(q, ~ym, z)

↔ (∃z)
(
T (n)(p, ~xn, (z)0) ∧ T (m)(q, ~ym, (z)1)

)
There is a technical reason (soon to manifest itself) that we want to avoid “complicated” functions
like λiz.(z)i in the proof. �

((∃y)<z:)

(∃y)<zR(y, ~uk)↔ (∃y)<z(∃w)T (k+1)(r, y, ~uk, w)

↔ (∃w)(∃y)<zT
(k+1)(r, y, ~uk, w)

((∃y):)

(∃y)R(y, ~uk)↔ (∃y)(∃w)T (k+1)(r, y, ~uk, w)

↔ (∃z)(∃y)<z(∃w)<zT
(k+1)(r, y, ~uk, w)

� Both of the ∃-cases can be handled by the decoding function λiz.(z)i. For example,

(∃y)R(y, ~uk)↔ (∃y)(∃w)T (k+1)(r, y, ~uk, w)

↔ (∃z)T (k+1)(r, (z)0, ~uk, (z)1)

�

((∀y)<z:)

(∀y)<zR(y, ~uk)↔ (∀y)<z(∃w)T (k+1)(r, y, ~uk, w)

↔ (∃v)(∀y)<z(∃w)<vT
(k+1)(r, y, ~uk, w)

� Think of v above as the successor (+ 1) of the maximum of some set of w-values, w0, . . . , wz−1,
that “work” for y = 0, . . . , z− 1 respectively. The usual overkill proof of the above involves (z)i (or
some such decoding scheme) as follows:

(∀y)<zR(y, ~uk)↔ (∀y)<z(∃w)T (k+1)(r, y, ~uk, w)

↔ (∃w)(∀y)<zT
(k+1)(r, y, ~uk, (w)y)

�

Regarding closure under ¬ and ∀y, K provides a counterexample to ¬, and ¬T (1)(x, x, y) pro-
vides a counterexample to ∀y. �

Kleene Normal Form; Lecture notes for CSE4111/COSC5111: Winter 2006, 2008 c© by George Tourlakis

3.3. Recursively Enumerable (r.e.) Predicates 13

3.3. Recursively Enumerable (r.e.) Predicates

� (Recursively enumerable predicates) A predicate R(~xn) is recursively enumerable, or r.e., iff R = ∅
or, for some f ∈ R of one variable, R = {~xn : (∃m)f(m) = 〈~xn〉}, or, equivalently

R(~xn)↔ (∃m)f(m) = 〈~xn〉 (1)

By (1), every r.e. relation R is semi-recursive. The converse is also true.

3.3.1 Theorem. Every semi-recursive R is r.e.

Proof. Let a be a semi-recursive index of R. If R = ∅ then we are done. Suppose then R(~an) for
some ~an. We define a function f by cases

f(m) =

{
〈(m)0, . . . , (m)n−1〉 if T (n)(a, (m)0, . . . , (m)n−1, (m)n)
〈~an〉 otherwise

It is trivial that f is recursive and satisfies (1) above. Indeed, our f is in PR. �
�

3.4. The S-m-n and Recursion Theorems

Suppose that i codes a “program” that acts on input variables x and y to compute a function
λxy.f(x, y). It is certainly trivial to modify the program to compute λx.f(x, a) instead. In computer
programming terms, we replace a “command” such as “read y” by one that says “y := a” (copy the
value of a into y). From the original code, a new code (depending on i and a) ought to be trivially
calculated.

This is the essence of Kleene’s iteration or “S-m-n” theorem below.

3.4.1 Theorem. (Kleene’s S-m-n or Iteration theorem) There is a primitive recursive func-
tion λxy.σ(x, y) such that for all i, x, y,

{i}(〈x, y〉) = {σ(i, y)}(x)

Proof. Let a be a φ-index of λx.〈x, 0〉 and b a φ-index of λx.3x. Next we find a primitive recursive
λy.h(y) such that for all x and y

{h(y)}(x) = 〈x, y〉 (∗)

To achieve this observe that

〈x, 0〉 = {a}(x)
and

〈x, y + 1〉 = 3〈x, y〉 = {b}(〈x, y〉)

Kleene Normal Form; Lecture notes for CSE4111/COSC5111: Winter 2006, 2008 c© by George Tourlakis

14 3. APPENDIX Arithmetisation Normal Form Theorems Semi-Recursiveness and Unsolvability S-m-n

and Recursion Theorems

Thus, it suffices to take

h(0) = a

h(y + 1) = 〈1, 1, b, h(y)〉

Now that we have an h satisfying (∗), we note that

σ(i, y) def= 〈1, 1, i, h(y)〉

will do. �

3.4.2 Corollary. There is a primitive recursive function λiy.k(i, y) such that, for all i, x, y,

{i}(x, y) = {k(i, y)}(x)

Proof. Let a0 and a1 be φ-indices of λz.(z)0 and λz.(z)1 respectively. Then {i}((z)0, (z)1) =
{〈1, 1, i, a0, a1〉}(z) for all z, i. Take k(i, y) = σ(〈1, 1, i, a0, a1〉, y). �

3.4.3 Corollary. There is for each m > 0 and n > 0 a primitive recursive function λi~yn.S
m
n (i, ~yn)

such that, for all i, ~xm, ~yn,
{i}(~xm, ~yn) = {Sm

n (i, ~yn)}(~xm)

Proof. Let ar (r = 0, . . . ,m − 1) and br (r = 0, . . . , n − 1) be φ-indices so that {ar} = λxy.(x)r

(r = 0, . . . ,m− 1) and {br} = λxy.(y)r (r = 0, . . . , n− 1).
Set c(i) = 〈1, 2, i, a0, . . . , am−1, b0, . . . , bn−1〉, for all i ∈ N. This is a code for

λxy.{i}((x)0, . . . , (x)m−1, (y)0, . . . , (y)n−1)

Let d be a φ-index of λ~xm.〈~xm〉.
Then,

{i}(~xm, ~yn) = {c(i)}(〈~xm〉, 〈~yn〉)
= {k(c(i), 〈~yn〉)}(〈~xm〉) by 3.4.2
= {〈1,m, k(c(i), 〈~yn〉), d〉}(~xm)

Take λi~yn.S
m
n = 〈1,m, k(c(i), 〈~yn〉), d〉. �

3.4.4 Corollary. (Kleene’s recursion theorem) If λz~x.f(z, ~xn) ∈ P, then for some e,

{e}(~xn) = f(e, ~xn) for all ~xn

Proof. Let {a} = λz~xn.f(Sn
1 (z, z), ~xn). Then

f(Sn
1 (a, a), ~xn) = {a}(a, ~xn)

= {Sn
1 (a, a)}(~xn) by 3.4.3

Take e = Sn
1 (a, a). �

3.4.5 Definition. A complete index set is a set A = {x : {x} ∈ Q} for some Q ⊆ P.
A is trivial iff A = ∅ or A = N (correspondingly, Q = ∅ or Q = P). Otherwise it is non

trivial. �

Kleene Normal Form; Lecture notes for CSE4111/COSC5111: Winter 2006, 2008 c© by George Tourlakis

3.5. Two Applications of the Recursion Theorem 15

3.5. Two Applications of the Recursion Theorem

3.5.1 Theorem. (Rice) A complete index set is recursive iff it is trivial.

� Thus, “algorithmically” we can only “decide” trivial properties of “programs”. �

Proof. (The idea of this proof is attributed in [Rog67] to G.C. Wolpin.)

if-part. Immediate, since χ∅ = λx.1 and χN = λx.0.
only if-part. By contradiction, suppose that A = {x : {x} ∈ Q} is non trivial, yet A ∈ R∗. So,

let a ∈ A and b /∈ A. Define f by

f(x) =

{
b if x ∈ A
a if x /∈ A

Clearly,
x ∈ A iff f(x) /∈ A, for all x (1)

By the recursion theorem, there is an e such that {f(e)} = {e} (apply 3.4.4 to λxy.{f(x)}(y)).
Thus, e ∈ A iff f(e) ∈ A, contradicting (1). �

The second application is about self-referential (recursive) definitions of functions F such as the
one below

F (~xn) = f

(
. . . F

(
. . . F (. . .) . . .

)
. . . F

(
. . . F

(
. . . F (. . .) . . .

)
. . .
)
. . .

)
(1)

where nesting of occurrences of F can be anything.
We are interested in just those cases that, as we say, the right hand side of (1) —as a function

of ~xn— is partial recursive in F .

3.5.2 Definition. We say that a function is partial recursive in F iff it is in the closure of I ∪
{F} under composition, primitive recursion and (µy). Here I denoted by “I” the standard initial
functions of P.

For short, a function is partial recursive in F iff is obtained by a finite number of partial recursive
operations using as initial functions F and those in I. �

3.5.3� Remark. It follows from 3.5.2 that if F ∈ P, then a function that is partial recursive in F
is just partial recursive.

In particular, if we replace F throughout the right hand side of (1) by a partial recursive function
{e} of the same arity as F , then we end up with a partial recursive function. � �

In (1) F acts as a “function variable” to solve for. A solution h for F is a specific function that
makes (1) true for all ~xn if we replace all occurrences of F by h.

We show that if the right hand side of (1) is partial recursive in F , then (1) always has a partial
recursive solution for F . That is,

(∃e)
(

if we replace F in (1) by λ~xn.{e}(~xn), then the resulting relation is true for all ~xn

)
(2)

Kleene Normal Form; Lecture notes for CSE4111/COSC5111: Winter 2006, 2008 c© by George Tourlakis

16 3. APPENDIX Arithmetisation Normal Form Theorems Semi-Recursiveness and Unsolvability S-m-n

and Recursion Theorems

Indeed, the function λz~xn.G(z, ~xn) given below is partial recursive by 3.5.3.

G(z, ~xn) = f

(
. . . {z}

(
. . . {z}(. . .) . . .

)
. . . {z}

(
. . . {z}

(
. . . {z}(. . .) . . .

)
. . .
)
. . .

)
(3)

By the recursion theorem there is an e such that

G(e, ~xn) = {e}(~xn), for all ~xn

Thus, (3) yields

{e}(~xn) = G(e, ~xn) = f

(
. . . {e}

(
. . . {e}(. . .) . . .

)
. . . {e}

(
. . . {e}

(
. . . {e}(. . .) . . .

)
. . .
)
. . .

)
(4)

That is, setting the “function variable F” equal to {e} we have solved (1), and with a P-solution
at that!

3.5.4 Example. Here is a second solution to the question “λnx.An(x) ∈ R?”.
An(x) is given by

An(x) =


x+ 2 if n = 0
2 else if x = 0
An

.−1

(
An(x .− 1)

)
otherwise

We re-write the above using F as a function variable and setting F (n, x) = An(x).
Thus, F is “given” by

F (n, x) =


x+ 2 if n = 0
2 else if x = 0
F
(
n .− 1, F (n, x .− 1)

)
otherwise

(5)

(5) has the form (1) and all assumptions are met. Thus, for some e, F = {e} works. But is this {e}
the same as An(x)? Yes, provided (5) has a unique solution! That (5) indeed does have a unique
total solution is an easy (double) induction exercise that shows F (n, x) = F ′(n, x) for all n, x if

F ′(n, x) =


x+ 2 if n = 0
2 else if x = 0
F ′
(
n
.− 1, F ′(n, x .− 1)

)
otherwise

(5′)

�

Kleene Normal Form; Lecture notes for CSE4111/COSC5111: Winter 2006, 2008 c© by George Tourlakis

Bibliography

[Rog67] H. Rogers. Theory of Recursive Functions and Effective Computability. McGraw-Hill, New
York, 1967.

[Tou84] G. Tourlakis. Computability. Reston Publishing Company, Inc., Reston, Virginia, 1984.

Kleene Normal Form; Lecture notes for CSE4111/COSC5111: Winter 2006, 2008 c© by George Tourlakis

	APPENDIX Arithmetisation Normal Form Theorems Semi-Recursiveness and Unsolvability S-m-n and Recursion Theorems
	Computations and their Arithmetisation; The Kleene Predicate
	Semi-Recursive Predicates; Unsolvability
	Recursively Enumerable (r.e.) Predicates
	The S-m-n and Recursion Theorems
	Two Applications of the Recursion Theorem

