
42

by the definition of “b. . .c”. Thus, z is smallest such that x/y < z + 1, or
such that x < y(z + 1). J

It follows that, for y > 0, the search in (⇤) yields the “normal math” value
for bx/yc, while it re-defines bx/0c as = x+ 1.

(2) �xy.rem(x, y) (the remainder of the division x/y). rem(x, y) = x .
� ybx/yc.

(3) �xy.x|y (x divides y). x|y ⌘ rem(y, x) = 0; now apply 2.2.2. Note that
if y > 0, we cannot have 0|y —a good thing!— since rem(y, 0) = y. Our
redefinition of bx/yc yields, however, 0|0, but we can live with this in prac-
tice.

(4) Pr(x) (x is a prime). Pr(x) ⌘ x > 1 ^ (8y)x(y|x! y = 1 _ y = x).

(5) ⇡(x) (the number of primes  x).† The following primitive recursion
certifies the claim: ⇡(0) = 0, and ⇡(x + 1) = if Pr(x + 1) then ⇡(x) +
1 else ⇡(x).

(6) �n.pn (the nth prime). First note that the graph y = pn is primitive
recursive: y = pn ⌘ Pr(y) ^ ⇡(y) = n + 1. Next note that, for all n,
pn  22

n

(see Exercise 2.4.1 below), thus pn = (µy)22
n (y = pn), which

settles the claim.

(7) �nx. exp(n, x) (the exponent of pn in the prime factorization of x). exp(n, x) =
(µy)x¬(py+1

n |x).

Pause. Is x a good bound? Yes! x = . . . pyn . . . � pyn � 2y > y. J

(8) Seq(x) (says that x’s prime number factorization contains 2, and has no
gaps; no prime, between 2 and the largest in the factorisation, is missing.)

Seq(x) ⌘ x > 1 ^ (8y)x(8z)x(Pr(y) ^ Pr(z) ^ y < z ^ z|x! y|x). ⇤

2.3.12� Remark. What makes exp(n, x) “the exponent of pn in the prime fac-
torization of x”, rather than an exponent, is Euclid’s prime number factorization
theorem: Every number x > 1 has a unique factorization —within permutation
of factors— as a product of primes. ⇤ �
2.4 Coding sequences; special recursions

2.4.1 Exercise. Prove by induction on n, that for all n we have pn  22
n

.
Hint. Consider, as Euclid did,† p0p1 · · · pn+1. If this number is prime, then

it is greater than or equal to pn+1 (Why?). If it is composite, then none of the
primes up to pn divide it. So any prime factor of it is greater than or equal to
pn+1 (Why?). ⇤

†The ⇡-function plays a central role in number theory, figuring in the so-called prime
number theorem. See, for example, [LeV56].

†In his proof that there are infinitely many primes.

Notes on Computability via URMs. c� George Tourlakis, 2011 and 2019.

43

2.4.2 Definition. (Coding Sequences) Any sequence of numbers, a0, . . . , an,
n � 0, is coded by the number denoted by the symbol ha0, . . . , ani and defined
as Y

in

pai+1

i ⇤

For coding to be useful, we need a simple decoding scheme. By Remark 2.3.12
there is no way to have z = ha0, . . . , ani = hb0, . . . , bmi, unless

(i) n = m

and

(ii) for i = 0, . . . , n, ai = bi.

Thus, it makes sense to correspondingly define the decoding expressions :

(i) lh(z) (pronounced “length of z”) as shorthand for (µy)z¬(py|z)

A comment and a question:

• The comment: If py is the first prime not in the decomposition of
z, and Seq(z) holds, then since numbering of primes starts at 0, the
length of the coded sequence z is indeed y.

• Is the bound z su�cient? Yes!

z = 2a+13b+1 . . . pexp(y
.�1,z)

y
.�1

� 2 · 2 · · · 2| {z }
y times

= 2y > y

(ii) (z)i is shorthand for exp(i, z) .
� 1

Note that

(a) �iz.(z)i and �z.lh(z) are in PR.

(b) If Seq(z), then z = ha0, . . . , ani for some a0, . . . , an. In this case, lh(z)
equals the number of distinct primes in the decomposition of z, that is, the
length n + 1 of the coded sequence. Then (z)i, for i < lh(z), equals ai.
For larger i, (z)i = 0. Note that if ¬Seq(z) then lh(z) need not equal the
number of distinct primes in the decomposition of z. For example, 10 has
2 primes, but lh(10) = 1.

� The tools lh, Seq(z), and �iz.(z)i are su�cient to perform decoding, primi-
tive recursively, once the truth of Seq(z) is established. This coding/decoding
scheme is essentially that of [Göd31], and will be the one we use throughout
these notes. �
Notes on Computability via URMs. c� George Tourlakis, 2011 and 2019.

44

2.4.1 Concatenating (coded) sequences; stacks

Consider the two sequences a0, . . . , am and b0, . . . , bn. Is there an easy (e.g.,
primitive recursive) computational way to obtain ha0, . . . , am, b0, . . . , bni from
ha0, . . . , ami and hb0, . . . , bni? Yes, there is: Note that by 2.4.2 we have

ha0, . . . , ami =
Y

im

pai+1

i (1)

and
hb0, . . . , bni =

Y

in

pbi+1

i

Thus, let us write z = ha0, . . . , ami and w = hb0, . . . , bni. Then we have

ha0, . . . , am, b0, . . . , bni=
⇣Q

im pai+1

i

⌘Q
in p

bi+1

i+m+1

= ha0, . . . , ami
Q

in p
bi+1

i+m+1
using (1)

= z
Q

i<lh(w)
pexp(i,w)

i+lh(z) using notation from 2.3.11

The last right hand side expression above is meaningful regardless of whether z
and w code sequences —i.e., even if one or both of Seq(z) and Seq(w) are false.

Thus we define

2.4.3 Definition. The function �zw.z ⇤w given for all z, w in N is defined by

z ⇤ w
Def
= z

Y

i<lh(w)

pexp(i,w)

i+lh(z)

We call it the concatenation of natural numbers function. ⇤
Our discussion above yields at once

2.4.4 Proposition. If x = ha0, . . . , ami and y = hb0, . . . , bni, then x ⇤ y =
ha0, . . . , am, b0, . . . , bni.

But is �xy.x ⇤ y easily computable? Well, yes, it is if the qualifier “easily”
means primitive recursively.

This will need a simple lemma:

2.4.5 Lemma. If �x~y.f(x, ~y) 2 PR then so is �z~y.
Q

x<z f(x, ~y).

Proof. Set g = �z~y.
Q

x<z f(x, ~y) for convenience.
Then the following primitive recursion settles it.

g(0, ~y) = 1
g(z + 1, ~y)= g(z, ~y)f(z, ~y)

⇤

Notes on Computability via URMs. c� George Tourlakis, 2011 and 2019.

45

2.4.6 Corollary. If �x~y.f(x, ~y) 2 R then so is �z~y.
Q

x<z f(x, ~y).

2.4.7 Corollary. �xy.x ⇤ y 2 PR.

Proof. Simply use 2.4.5, the discussion and notation following 2.4.2, and the

results of 2.1.16 and 2.3.11 to see that �w.
Q

i<lh(w)
pexp(i,w)

i+lh(z) 2 PR. ⇤

2.4.8 Example. lh(1) = 0. Thus even though Seq(1) is false, 1 is a good
candidate to code the empty sequence. More evidence that this is so is the fact
that 1 ⇤ z = z ⇤ 1 = z for all z (Exercise, using 2.4.3). ⇤
The reader most likely is familiar with the stack data structure from elementary
programming.

2.4.9 Definition. (Stacks) A stack is an ordered list of natural numbers, where
we may access (that is, read) its data only on one end of the list, called the top
of the stack. We can also add to or delete from, one item of data at a time, but
only at the top.

The terminology for adding to the stack is to push on the stack; that of
deleting is to pop from the stack.

Adding creates a new top (the old top is “below” the new one after the
addition. Deletion, if the stack is not empty, will remove the current top item.
The new top is the item that was below the item we deleted, before the deletion.

⇤

2.4.10� Remark. In a course in programming a stack may contain elements of
any data type that the programming language in hand allows. But we only use
natural numbers in this volume.

In our computability theory it is easy to implement a stack using prime
power coding. If the elements of the stack s are in the sequence a0, a1, . . . , an,
with an being at the top, then

s = ha0, a1, . . . , ani

The top, expressed as a function of s, is (s)lh(s) .�1
if the stack is not empty

(6= 1), else it is undefined.
The three operations —in C-like pseudo-code— are implemented as follows:

• read the top and assign to x: if s > 1 (s non-empty), then x (s)lh(s) .�1

• push b 2 N to the stack : s s ⇤ hbi

• pop the stack : If s > 1, then s
j
s/pexp(lh(s)

.�1,s)

lh(s)
.�1

k
.

If we want to save into the variable x what we popped, then we do:

If s > 1, then
n

Notes on Computability via URMs. c� George Tourlakis, 2011 and 2019.

46

1. x (s)lh(s) .�1

2. pop s

o

⇤ �
2.4.2 Course-of-values recursion

Primitive recursion defines a function “at n + 1” in terms of its value “at n”.
However we also have examples of “recursions” (or “recurrences”), one of the
best known perhaps being the Fibonacci sequence, 0, 1, 1, 2, 3, 5, 8, . . . , that is
given by F0 = 0, F1 = 1 and (for n � 1) Fn+1 = Fn + Fn�1, where the value at
n+ 1 depends on both the values at n and n� 1.

We may also have recursions where the value at n + 1 depends, in gen-
eral, on the entire history, or course-of-values, of the function values at in-
puts n, n� 1, n � 2, . . . , 1, 0. The easiest way to represent the entire history of
values of a total number-theoretic function f “at (input) x”, namely, the set
{f(0, ~y), f(1, ~y), . . . , f(x, ~y)}, is to code it by a single number!

2.4.11 Definition. (Course-of-Values Recursion) We say that f , of n+ 1
arguments, is defined from two total functions —namely, the basis function
�~yn.b(~yn) and the iterator �x~ynz.g(x, ~yn, z)— by course-of-values recursion if,
for all x, ~yn, the following equations hold:

(
f(0, ~yn) = b(~yn)

f(x+ 1, ~yn) = g(x, ~yn, H(x, ~yn))
(1)

where �x~yn.H(x, ~yn) is the history function, which is given “at x” (for all ~yn)
by

hf(0, ~y), f(1, ~y), . . . , f(x, ~y)i ⇤

2.4.12 Exercise. Prove that f given by (1) is total.
Hint. Use strong induction on x. ⇤
The major result in this subsection is that both PR and R are closed under

course-of-values recursion.

2.4.13 Theorem. PR is closed under course-of-values recursion.

Proof. So, let b and g be in PR. We will show that f 2 PR. It su�ces to prove
that the history functionH is primitive recursive, for then f = �x~yn.

�
H(x, ~yn)

�
x

and we are done by Grzegorczyk substitution. To this end, the following equa-
tions —true for all x, ~yn— settle the case:

H(0, ~yn) = hb(~yn)i

Notes on Computability via URMs. c� George Tourlakis, 2011 and 2019.

47

H(x+ 1, ~yn) = H(x, ~yn)p
g(x,~yn,H(x,~yn))+1

x+1
⇤

The same proof with trivial adjustments yields:

2.4.14 Corollary. R is closed under course-of-values recursion.

2.4.15 Example. The Fibonacci sequence, (Fn)n�0, is given by

F0 = 0

F1 = 1

otherwise, for n > 0,

Fn+1 = Fn + Fn�1

The sequence can be viewed as the function �n.Fn. As such it is in PR.
Indeed, lettingHn be the history of the sequence at n—that is, hF0, . . . , Fni—

we have the following course-of-values recursion for �n.Fn in terms of functions
known to be in PR.

F0 = 0

Fn+1 = if n = 0 then 1

else
�
Hn

�
n
+

�
Hn

�
n
.�1

⇤

2.4.3 Simultaneous primitive recursion

This recursion is instrumental toward the study of URM program and loop
program computation. Loop programs are introduced in a later chapter.

2.4.16 Definition. Given total functions hi, gi, for i = 0, 1, . . . , k. We say that
the following equations-schema defines —for all x, ~y— the new functions fi from
the given functions by a simultaneous primitive recursion.

8
>>>>>>>>>>><

>>>>>>>>>>>:

f0(0, ~y) = h1(~y)
...

fk(0, ~y) = hk(~y)

f0(x+ 1, ~y) = g0(x, ~y, f0(x, ~y), . . . , fk(x, ~y))
...

fk(x+ 1, ~y) = gk(x, ~y, f0(x, ~y), . . . , fk(x, ~y))

(2)

⇤
Hilbert and Bernays [HB68] proved the following:

2.4.17 Theorem. If all the hi and gi are in PR (resp. R), then so are all the
fi obtained by the schema (2) of simultaneous recursion.

Notes on Computability via URMs. c� George Tourlakis, 2011 and 2019.

48

Proof. Define, for all x and ~y,

F (x, ~y)
Def
= hf0(x, ~y), . . . , fk(x, ~y)i

H(~yn)
Def
= hh0(~y), . . . , hk(~y)i

G(x, ~y, z)
Def
= hg0(x, ~y, (z)0, . . . , (z)k), . . . , gk(x, ~y, (z)0, . . . , (z)k)i

We readily have that H 2 PR (resp. 2 R) and G 2 PR (resp. 2 R) depending
on where we assumed the hi and gi to be. We can now rewrite schema (2) as

8
<

:

F (0, ~y) = H(~y)

F (x+ 1, ~y) = G
⇣
x, ~y, F

⇣
x, ~y

⌘⌘ (3)

I The 2nd line of (3) is condenced from

F (x+ 1, ~y) = hf0(x+ 1, ~y), . . . , fk(x+ 1, ~y)i

=
D
g0
⇣
x, ~y, f0(x, ~y), . . . , fk(x, ~y)

⌘
, . . . , gk

⇣
. . .

⌘E

=
D
g0
⇣
x, ~y,

�
F (x, ~y)

�
0
, . . . ,

�
F (x, ~y)

�
k

⌘
, . . . , gk

⇣
. . .

⌘E

By the above remarks, F 2 PR (resp. 2 R) depending on where we assumed
the hi and gi to be. In particular, this holds for each fi since, for all x, ~y,
fi(x, ~y) =

�
F (x, ~y)

�
i
(Grzegorczyk operations). ⇤

2.4.18 Example. We saw one way to justify that �x.rem(x, 2) 2 PR in 2.3.11.
A direct way is the following. Setting f(x) = rem(x, 2), for all x, we notice that
the sequence of outputs (for x = 0, 1, 2, . . .) of f is

0, 1, 0, 1, 0, 1 . . .

Thus, ignoring the result from 2.3.11, the following primitive recursion shows
that f 2 PR: (

f(0) = 0

f(x+ 1) = 1 .
� f(x)

Here is a way, via simultaneous recursion, to obtain a proof that f 2 PR,
without using any arithmetic! Notice the infinite “matrix”

0 1 0 1 0 1 . . .
1 0 1 0 1 0 . . .

Let us call g the function that has as its sequence of outputs the entries of the
second row —obtained by shifting the first row by one position to the left. The

Notes on Computability via URMs. c� George Tourlakis, 2011 and 2019.

49

first row still represents our f . Now

8
>>><

>>>:

f(0) = 0

g(0) = 1

f(x+ 1) = g(x)

g(x+ 1) = f(x)

(1)

⇤

2.4.19 Example. We saw one way to justify that �x. bx/2c 2 PR in 2.3.11.
A direct way is the following.

8
>>><

>>>:

�
0

2

⌫
= 0

�
x+ 1

2

⌫
=

jx
2

k
+ rem(x, 2)

where rem is in PR by 2.4.18.
Alternatively, here is a way that can do it —via simultaneous recursion—

and with only the knowledge of how to add 1. Consider the matrix

0 0 1 1 2 2 3 3 . . .
0 1 1 2 2 3 3 4 . . .

The top row represents �x. bx/2c, let us call it “f”. The bottom row we call g
and is, again, the result of shifting row one to the left by one position. Thus,
we have a simultaneous recursion

8
>>><

>>>:

f(0) = 0

g(0) = 0

f(x+ 1) = g(x)

g(x+ 1) = f(x) + 1

(2)

⇤

2.4.4 Simulating a URM computation

We have defined in 1.1.2 what a URM computation is. This subsection will deal
with mathematically simulating a computation.

We can do so by pencil and paper if we are su�ciently patient to engage in
a potentially infinite task.

What we need to do is keep track of the values of all the variables of the
given URM as the computation process reaches each instruction. As we saw in
1.1.2, at most one variable changes at each instruction execution (instructions of

Notes on Computability via URMs. c� George Tourlakis, 2011 and 2019.

50

types 1–3), while the if-statement and stop change no variable. Moreover, the
stop instruction practically ends the computation, even if the latter, in theory,
continues forever: All variable contents have converged to final values once the
execution reaches stop.

In this subsection we will see good justification for allowing all computations
to go forever, even after they reached the instruction stop.

The simulation simply requires us to record what each variable’s value is
when we reach an instruction “L : . . .”

Thus we record an array of values for said instruction,

L; a1, a2, . . .

where L is the label or instruction counter and the ai are the values of all the
(finitely many!) xi, the latter variables of the given URM being ordered in an
arbitrary manner, but fixed for the length of the simulation.

This array is a snapshot of the computation, or an instantaneous description,
for short ID.� One way to order the variables in the head row of the table below is lexico-
graphically, seeing that each is a string X1n, for n � 0. �

The semantics in 1.1.2 allow us to build the next snapshot, since we know
which instruction of M is labelled L.

A sequence of discrete events —such as reaching and recording an instruction
in the course of a computation of a URM M— when arranged in a sequence are
implicitly associated with their position-numbers in the sequence, 0, 1, 2, . . .

The event in position i we say occurred in step or time i. The very first
event occurs in time 0, it is the event at which instruction 1 is reached.� In the table below, for each instruction reached, we record the full ID. �

Our main tool for the simulation is a growing matrix like this:

Table 2.1: Simulation Table

y IC . . . x . . . Comment

0 1 . . . a . . . a = 0 if x noninput
.
i L . . . b . . . use 1.1.2 to add the (i+ 1)st row (L0, c, etc)

i+ 1 L0 . . . c . . .
.

� Deliberately, the bottom bounding line is missing to convey that this matrix is
growing —one row at a time— downwards forever. �
Notes on Computability via URMs. c� George Tourlakis, 2011 and 2019.

51

The very first entry is the ID corresponding to reaching instruction 1 for the
very first time. It is the initial ID :

1; a1, a2, . . .

where each ai corresponding to an input variable xi is some input number, while
all the other aj equal 0.

So, at each time, or step, y = 0, 1, 2, . . ., row y contains (a pointer “L” to)
the instruction we need to do next, and what values each variable of M holds,
before we execute said (next) instruction.

Let us fix a URM M . Say, xi, for i = 1, . . .m, are all its variables, of
which, without loss of generality, the first n are input (n  m). We define
�y~an.Xi(y,~an), for i = 1, . . .m, by

For all y,~an, Xi(y,~an) = xi contents at time y, if ~an was the input. (1)

Similarly, we define �y~an.IC(y,~an) by

For all y,~an, IC(y,~an) = the current label at time y, if ~an was the input. (2)

It turns out that these functions are definitionally very simple; enough so to be
primitive recursive. To ensure that we can prove this, first o↵ we must ensure
they are total. This explains our choice to trivially continue a computation for-
ever, even though it has reached stop . This convention causes all computations
to have infinite length, but the convergent ones —that is, those that do reach
stop— have all contents of variables converge to final values.

Thus �y~an.Xi(y,~an) and �y~an.IC(y,~an) are total.

2.4.20 Simulation Theorem.
Let M be a URM with variables x1,x2, . . .xn+1,xn+2, . . . ,xm, of which xi,

for i = 1, . . . , n, are input variables while x1 is also the output variable.
With reference to 1.1.2 and the above discussion, the simulating functions

�y~an.Xi(y,~an), for i = 1, . . .m, and �y~an.IC(y,~an) are in PR.

Proof. We have the following simultaneous recursion that defines the simulating
functions:

Xi(0,~an) = ai, for i = 1, . . . , n

Xi(0,~an) = 0, for i = n+ 1, . . . ,m

IC(0,~an) = 1

For y � 0 and i = 1, . . . ,m,

Xi(y+1,~an) =

8
>>><

>>>:

c if IC(y,~an) = L and “L : xi c” is in M

Xi(y,~an) + 1 if IC(y,~an) = L and “L : xi xi + 1” is in M

Xi(y,~an)
.
� 1 if IC(y,~an) = L and “L : xi xi

.
� 1” is in M

Xi(y,~an) othw

Notes on Computability via URMs. c� George Tourlakis, 2011 and 2019.

52

The above if-parts are of necessity wordy and indirect, as we can only give
descriptive conditions because we have not “looked inside” M to be able to
discuss a specific instruction set. We will do so in two examples below.

In general, su�ce it to say that for each xi we scan the program M from
top to bottom and write a case for each instruction of types 1–3 that involves
xi (1.1.1):

Thus, e.g., if the kj : xi = xi +1 (for j = 1, . . . , r) are the only instructions
in M that involve the “+1” instruction with xi, and if there are no “ .

� 1”
instructions for this variable, but we have exactly two of these:

R : xi 2

Q : xi 5

then we will add the cases below (two for the above two instructions and r for
the “+1” instructions):

Xi(y + 1,~an) =

8
>>>>>>>>>><

>>>>>>>>>>:

2 if IC(y,~an) = R

5 if IC(y,~an) = Q
...

...

Xi(y,~an) + 1 if IC(y,~an) = kj
...

...

Xi(y,~an) othw

The descriptive text

“and ‘L : xi xi + 1’ is in M”

has been replaced by the precise r cases “if IC(y,~an) = kj”, one for each
j = 1, . . . , r.

The recurrence for IC is

IC(y+1,~an) =

8
>>>>>>>><

>>>>>>>>:

L0 if IC(y,~an) = L and “L : if xi = 0 goto L0 else

goto L00” is in M and Xi(y,~an) = 0

L00 if IC(y,~an) = L and “L : if xi = 0 goto L0 else

goto L00” is in M and Xi(y,~an) > 0

k if IC(y,~an) = k and “k : stop” is in M

IC(y,~an) + 1 othw

Again to remove the descriptive inexact nature of the conditions above, in gen-
eral we will write two conditions for each if-statement in the program. Say we
have only two if-statments in our M as shown below. Moreover, let us assume
that stop has label k.

Notes on Computability via URMs. c� George Tourlakis, 2011 and 2019.

53

...
...

L : if x5 = 0 goto L0 else goto L00

...
...

R : if x45 = 0 goto R0 else goto R00

...
...

Then we can make the definition of IC precise:

IC(y + 1,~an) =

8
>>>>>>>><

>>>>>>>>:

L0 if IC(y,~an) = L ^X5(y,~an) = 0

L00 if IC(y,~an) = L ^X5(y,~an) > 0

R0 if IC(y,~an) = R ^X45(y,~an) = 0

R00 if IC(y,~an) = R ^X45(y,~an) > 0

k if IC(y,~an) = k

IC(y,~an) + 1 othw

Since the iterator functions only utilize the functions �z.a, �z.z + 1, �z.z .
� 1,

�z.z, and predicates �z.z = 0, and �z.z > 0 —all in PR and PR⇤— it follows
that all the simulating functions are in PR, as claimed. ⇤

2.4.21 Example. Let M be the program below

1 : if x2 = 0 goto 5 else goto 2
2 : x1 x1 + 1
3 : x2 x2

.
� 1

4 : if x1 = 0 goto 1 else goto 1
5 : stop

Let us assume that x2 is the input variable. The simulating equations take the
concrete form below, where a denotes the input value:

X1(0, a) = 0

X2(0, a) = a

IC(0, a) = 1

For y � 0 we have

X1(y + 1, a) =

(
X1(y, a) + 1 if IC(y, a) = 2

X1(y, a) otherwise

X2(y + 1, a) =

(
X2(y, a)

.
� 1 if I(y, a) = 3

X2(y, a) otherwise

Notes on Computability via URMs. c� George Tourlakis, 2011 and 2019.

54

IC(y + 1, a) =

8
>>>>>>>><

>>>>>>>>:

5 if IC(y, a) = 1 ^X2(y, a) = 0

2 if IC(y, a) = 1 ^X2(y, a) > 0

1 if IC(y, a) = 4 ^X1(y, a) = 0

1 if IC(y, a) = 4 ^X1(y, a) > 0

5 if I(y, a) = 5

IC(y, a) + 1 otherwise

⇤

2.4.22 Example. Let M be the program below

1 : x1 x1 + 1
2 : x1 x1

.
� 1

3 : x1 a
4 : if x1 = 0 goto 1 else goto 1
5 : stop

where x1 is the input variable. As of necessity, x1 is the output variable as well.
The simulation equations are

X1(0, a) = 0

IC(0, a) = 1

For y � 0 we have

X1(y + 1, a) =

8
>>><

>>>:

X1(y, a) + 1 if IC(y, a) = 1

X1(y, a)
.
� 1 if IC(y, a) = 2

a if IC(y, a) = 3

X1(y, a) otherwise

IC(y + 1, a) =

8
>>><

>>>:

1 if IC(y, a) = 4 ^X1(y, a) = 0

1 if IC(y, a) = 4 ^X1(y, a) > 0

5 if I(y, a) = 5

IC(y, a) + 1 otherwise

⇤
Here is ubiquitous application:

2.4.23 Theorem. For every URM M~xn
x1

—where the input / output choice has
been indicated— there is a primitive recursive predicate TM (~an, y) —depending
on M— and a primitive recursive “output function” �y~an.outM (y,~an) —also
depending on M— that behave as follows

TM (~an, y) ⌘ the URM M~xn
x1

has reached stop in y steps

and
M~xn

x1
= �~an.outM

⇣
(µy)TM (~an, y),~an

⌘
(1)

Notes on Computability via URMs. c� George Tourlakis, 2011 and 2019.

55

Proof. Let Xi be the simulating functions for the variables of M and IC as
above. Let stop be the k-th instruction of M . Then

TM (~an, y) ⌘ IC(y,~an) = k

and

outM (y,~an) = X1(y,~an), for all y,~an

Now, if (9y)TM (~an, y), then (µy)TM (~an, y) finds the smallest such y.

Of course, �~an.(µy)TM (~an, y) 2 P . The validity of (1) is now obvious if we
take outM = X1. ⇤

2.4.24� Remark. The predicates below are all in PR⇤ by closure operations
(2.2.5 and 2.2.14)

• ¬TM (~an, y); says “URM M~xn
x1

with input ~an did not yet reach stop in y
steps”. Could it not be that TM (z,~an), for z < y? No, because of the
stop semantics (1.1.2).

•

TM (~an, y) ^ (8z)<y¬TM (~an, z)

says; “URM M~xn
x1

with input ~an first reached stop in y steps”.

• (9z)<yTM (~an, z); says “URM M~xn
x1

with input ~an reached stop before y
steps”.

For short, the three bullets above can be rephrased in plainer English (in order):

• The URM M~xn
x1

with input ~an requires > y steps to converge (if it does
converge).

• The URM M~xn
x1

with input ~an converges in a minimum of y steps.

• The URM M~xn
x1

with input ~an converges in < y steps. ⇤ �
2.4.25 Corollary. Let M~xn

x1
be as above and let �~an.f(~an) = M~xn

x1
. Then with

TM as in 2.4.23 we have, for all ~an,

f(~an) #⌘ (9y)TM (~an, y)

and

f(~an) = outM
⇣
(µy)TM (~an, y),~an

⌘

Notes on Computability via URMs. c� George Tourlakis, 2011 and 2019.

56

2.4.5 Pairing functions

Coding of sequences a0, a1, . . . , an, for n � 1, has a special case; pairing func-
tions, that is, the case of n = 2. This special case is important in various
theoretical considerations, especially when one wants to distance oneself from
prime-power coding due to the latter’s ine�ciency, as compared to coding pairs
with polynomial functions (rather than exponential).

2.4.26 Definition. A total, 1-1 function J : N ⇥ N ! N is called a pairing
function. ⇤

2.4.27� Remark. A decoder is a pair of total functions K,L from N! N such
that, for any z that is equal to J(x, y) for some x and y, they “compute” said
x and y:

K(z) = x

and

L(z) = y

That is, K and L decode appropriate z values.
On a non-code z, K and L give some nonsense answer —but answer they

will; they are total!— just as the decoder �zi.(z)i does when Seq(z) is false.

One usually encounters the (capital) lettersK,L in the literature as (generic)
names for projection functions of some (generic) pairing function. In turn, the
generic symbol for the latter is J rather than “f”. We will conform to this
notational convention in what follows. ⇤ �

The set of “tools” consisting of a pairing function J and its two projections
K and L is a coding/decoding scheme for sequences of length two. We want to
have computable such schemes and indeed there is an abundance of primitive
recursive pairing functions that also have primitive recursive projections.

Some of those we will indicate in the examples below and others we will let
the reader to discover in the exercises section.

2.4.28 Example. The function J = �xy. hx, yi is pairing. Good decoders/proje-
ctions are K = �z.(z)0 and L = �z.(z)1. All three are already known to us as
members of PR.

This J is not onto. For example, 5 /2 ran(J). Nevertheless, K and L are
total —because �iz.(z)i is; indeed is in PR. ⇤

2.4.29 Example. The function J = �xy.2x3y is pairing. As its projections we
normally take K = �z. exp(0, z) and L = �z. exp(1, z) (cf. 2.3.11). All three are
already known to us as members of PR.

This J is not onto either. Again, 5 /2 ran(J). Nevertheless, K and L are
total —because �iz. exp(i, z) is; indeed is in PR. ⇤

Notes on Computability via URMs. c� George Tourlakis, 2011 and 2019.

57

2.4.30 Example. The function J = �xy.2x(2y + 1) due to Grzegorczyk is
pairing. Indeed, since 2 is the only even prime, “2x(2y + 1)” is a forgetful
depiction of a number’s prime-number decomposition, where all powers of odd
primes are lumped together in “2y + 1”. Clearly it is in PR since we have
addition, multiplication, successor and �x.2x in PR.

K = �z. exp(0, z) works: If z = 2x(2y + 1), then Kz = x.† What is L in
closed form? (Hint. You may use functions from 2.3.11.) ⇤

2.4.31� Example. In 2.4.29 and 2.4.30 we note that J(x, y) � x and J(x, y) �
y, for all x, y. Thus an alternative way to prove that the related K and L are
in PR is to compute as follows:

Kz = (µx)z(9y)z(J(x, y) = z) (1)

and
Lz = (µy)z(9x)z(J(x, y) = z) (2)

Equipped with theorems 2.2.14 and 2.3.2, and Definition 2.3.9, we see that (1)
and (2) establish that K and L are in PR. ⇤ �
2.4.32 Example. Here is a pairing function that does not require exponentia-
tion. Let J(x, y) = (x+ y)2 + x. Clearly, J 2 PR.

So let us set z = (x+y)2+x and solve this “equation” for x and y (uniquely,
hopefully). Well, (x + y)2  z < (x + y + 1)2. Thus x + y 

p
z < x + y + 1,

hence
x+ y =

⌅p
z
⇧

(1)

Then, z = b
p
zc

2
+x and therefore Kz = z .

� b
p
zc

2
. By (1), Lz = b

p
zc .
� Kz.

As in 2.4.31, the J here satisfies J(x, y) � x and J(x, y) � y.
The primitive recursiveness of K,L also follows from the calculations Kz =

(µx)z(9y)z(J(x, y) = z) and Lz = (µy)z(9x)z(J(x, y) = z). ⇤
Why bother about pairing functions when we have the coding of sequences

scheme of the previous subsection? Because prime-power coding is computa-
tionally very ine�cient, while quadratic schemes such as that of the previous
example allow us to significantly reduce the “computational complexity” of cod-
ing/decoding. But can we code arbitrary length sequences e�ciently?

Yes, because any J , K, L scheme can lead to a coding/decoding scheme for
sequences a1, . . . , an, n � 2, for both the cases of a fixed or variable n.

2.4.33 Definition. Given a primitive recursive pairing scheme J , K, L.
For any fixed n � 2 we define by recursion on n the symbol [[a1, . . . , an]]

(n):

[[x, y]](2) = J(x, y); and [[x, y1, . . . , yn]]
(n+1) = J(x, [[y1, . . . , yn]]

(n)). ⇤

2.4.34 Exercise. Prove by induction on n � 2 that,

†In 2.1.8 we agreed to omit brackets whenever we can get away with it, as in SSx and
here as in Kx.

Notes on Computability via URMs. c� George Tourlakis, 2011 and 2019.

58

• The function �~xn. [[a1, . . . , an]]
(n) is total

• The function �~xn. [[a1, . . . , an]]
(n) is 1-1

• The function �~xn. [[a1, . . . , an]]
(n) is primitive recursive.

Therefore it codes n-tuples into numbers. ⇤

2.4.35 Example. By the second and third bullets above, we can define ⇧n
i , for

i = 1, . . . , n —the projections— to satisfy

If z = [[a1, . . . , an]]
(n), then ⇧n

i (z) = ai, for i = 1, . . . , n (1)

We may use a recursive definition with n as the recursion variable:

⇧2

1
= K

⇧2

2
= L

and, for n � 2
⇧n+1

1
= K

⇧n+1

i+1
= ⇧n

i L, for i = 1, . . . , n

⇤

2.4.36 Exercise. By induction on n, show that

• ⇧n
i

⇣
[[a1, . . . , an]]

(n)
⌘
= ai, for i = 1, . . . , n.

• The ⇧n
i are total.

• The ⇧n
i are onto.

• The ⇧n
i are in PR. ⇤

Notes on Computability via URMs. c� George Tourlakis, 2011 and 2019.

