
A user-friendly
Introduction to
(un)Computability
and Unprovability
via “Church’s Thesis”

Computability is the part of logic that gives a mathematically precise formula-
tion to the concepts algorithm, mechanical procedure, and calculable function (or
relation). Its advent was strongly motivated, in the 1930s, by Hilbert’s program,
in particular by his belief that the Entscheidungsproblem, or decision problem,
for axiomatic theories, that is, the problem “Is this formula a theorem of that
theory?” was solvable by a mechanical procedure that was yet to be discovered.

Now, since antiquity, mathematicians have invented “mechanical procedures”,
e.g., Euclid’s algorithm for the “greatest common divisor”,† and had no prob-
lem recognising such procedures when they encountered them. But how do you
mathematically prove the nonexistence of such a mechanical procedure for a par-
ticular problem? You need a mathematical formulation of what is a “mechanical
procedure” in order to do that!

Intensive activity by many (Post [11, 12], Kleene [8], Church [2], Turing [17],
Markov [9]) led in the 1930s to several alternative formulations, each purporting
to mathematically characterise the concepts algorithm, mechanical procedure,
and calculable function. All these formulations were quickly proved to be equiv-
alent; that is, the calculable functions admitted by any one of them were the
same as those that were admitted by any other. This led Alonzo Church to
formulate his conjecture, famously known as “Church’s Thesis”, that any intu-
itively calculable function is also calculable within any of these mathematical
frameworks of calculability or computability.‡

†That is, the largest positive integer that is a common divisor of two given integers.
‡I stress that even if this sounds like a “completeness theorem” in the realm of computabil-

ity, it is not. It is just an empirical belief, rather than a provable result. For example, Péter
[10] and Kalmár [7], have argued that it is conceivable that the intuitive concept of calcu-

Intro to (un)Computability and Unprovability via TMs and Church’s Thesis c© by George
Tourlakis, 2011



2

By the way, Church proved ([1, 2]) that Hilbert’s Entscheidungsproblem
admits no solution by functions that are calculable within any of the known
mathematical frameworks of computability. Thus, if we accept his “thesis”, the
Entscheidungsproblem admits no algorithmic solution, period!

The eventual introduction of computers further fueled the study of and re-
search on the various mathematical frameworks of computation, “models of
computation” as we often say, and “computability” is nowadays a vibrant and
very extensive field.

1.1. Turing machines

We will very briefly describe a formal (not “real” as in “commercially available”)
programming language, the so-called Turing machine. It is one of the earliest
formalisations of the concept of “algorithm” and “computation” and is due to
Alan Turing [17].

� One way to think of a Turing machine, or “TM” for short, is as an abstract
model of a “computer program”; indeed the Turing formalism is a programming
language, and any specific TM is a program written in said language—a very
primitive one, more about which shortly. �

Like a computer, this “machine” can faithfully carry out simple instructions.
To avoid technology-dependent limitations, it is defined so that it has unbounded
“memory” (or storage space). Thus, it never runs out of storage during a
computation.

OK. Temporarily thinking of a TM, M , as a “machine” we can describe
it—informally at first—as follows:

M consists of

(a) An infinite two-way tape.

(b) A read/write tape-head.

(c) A “black-box”, the finite control, which can be at any one of a (fixed) finite
set of internal states (or just, states). Pictorially, a TM is often represented
as in the figure below:

lability may in the future be extended so much as to transcend the power of the various
mathematical models of computation that we currently know.

Intro to (un)Computability and Unprovability via TMs and Church’s Thesis c© by George
Tourlakis, 2011



1.1. Turing machines 3

Finite control

Tape

Tape head

The tape is subdivided into squares, each of which can hold a single symbol
out of a finite set of admissible symbols associated with the TM—the tape-
alphabet, Γ.

The tape-head can scan only one square at a time. The TM tape corresponds,
as we will see, to a variable of string type in an actual programming language.
In one move, the tape-head can move to scan the next square, to the left or
to the right of the present square, but it has the option to stay on the current
square.

The tape-head can read or write a symbol on the scanned square. Writing
a symbol is assumed to erase first what was on the square previously.

There is a distinguished alphabet symbol, the blank—
denoted by B—which appears everywhere except in a finite
set of tape squares. This symbol is not used as “an input
symbol”.

The machine moves, at each computation step, as follows:

Depending on

(a) The currently scanned symbol

and

(b) The current state

the machine will:

(i) Write a symbol or leave the symbol unchanged on the scanned square

(ii) Enter a (possibly) new state

(iii) Move the head to the left or right or leave it stationary.

Intro to (un)Computability and Unprovability via TMs and Church’s Thesis c© by George
Tourlakis, 2011



4

We shall require our TMs in this Note to be deterministic, i.e., that they
behave as follows: Given the current symbol/state pair, they have a uniquely
defined response.

A TM computation begins by positioning the tape-head on the left-most
non blank symbol on the tape (that is, the first symbol of the input string),
“initialising” the machine (by putting it in a distinguished state, q0), and then
letting it go.

Our convention for stopping the machine is: The machine will stop (or “halt”,
as we prefer to say) iff at some instance it is not specified how to proceed, given
the current symbol/state pair. At that time (when the machine has halted),
whatever is on the tape (that is, the largest string of symbols that starts and ends
with some non blank symbol), is the result or output of the TM computation
for the given input.

A question might now naturally arise in the reader’s mind: How will the
“TM operator” (a human) ever be sure that she/he has seen “the largest string
on tape that starts and ends with some non blank symbol”, when the tape is
infinite? Is she or he doomed to search the tape forever and never be sure of
the output?

This “problem” is not real. It arises here (now that I asked) due to the
informality of our discussion above, which included talk about an “infinitely
long tape medium”. Mathematically—as we will shortly see—the “tape” is just
a string-type variable and the TM, which is just a program, manipulates the
contents of its single variable, allowed to do so one symbol per step.

All the “operator” has to do is to “print” the contents of the variable once
(and if) the computation of the “machine” halted!

1.2. Definitions

Now the formalities:

1.2.1 Definition. (TM—static description) A Turing Machine (TM), M ,
is a 4-tuple M = (Γ, Q, q0, I), where Γ = {s0, s1, . . . , sn} is a finite set of tape
symbols called the tape-alphabet, and s0 = B (the distinguished blank symbol).

Q = {q0, q1, . . . , qr} is a finite set of states of which q0 is distinguished: It
is the start-state. States are really program labels.

I is the program. Its instructions are of three types:

• q : abq′S, meaning that, when performing instruction labelled q, the pro-
gram modifies the currently scanned symbol a into b (these are just names;
the symbol might have stayed the same!). The symbol in the same position
of the string (“tape”) will be considered next—will become “current”—
and the next instruction is the one labelled q′. The labels q and q′ may
well be the same!

• q : abq′L, meaning that, when performing instruction labelled q, the pro-
gram modifies the currently scanned symbol a into b. The symbol imme-

Intro to (un)Computability and Unprovability via TMs and Church’s Thesis c© by George
Tourlakis, 2011



1.2. Definitions 5

diately to the left of b will be considered next, and the next instruction
is the one labelled q′. If the contents of the string variable—the “tape”
as we say—immediately before performing this instruction was au, where
u is a string, then it will be Bbu after the instruction was executed. A
blank symbol just appeared so that we never overshoot the string at the
left end.

� This makes mathematically precise the earlier barbarism according to
which we have infinitely many Bs all over the “tape” at all times. We
don’t. �

• q : abq′R, meaning that, when performing instruction labelled q, the pro-
gram modifies the currently scanned symbol a into b. The symbol imme-
diately to the right of b will be considered next, and the next instruction
is the one labelled q′. If the contents of the string variable immediately
before performing this instruction was ua, where u is a string, then it will
be ubB after the instruction. A blank symbol just appeared so that we
never overshoot the string at the right end either.

In using a TM one sometimes chooses a subset, Σ, of Γ that never includes
the blank symbol. Σ is the alphabet used to form input strings; the input
alphabet.

The very first instruction that will execute must be labelled q0. By definition,
the execution of the program halts while at label q iff a is the current symbol
and the program has no instruction that starts with this pair q : a.

If the pair q : a always uniquely determines the instruction, then the TM is
deterministic; otherwise it is nondeterministic.

We will only deal with deterministic TMs in this Note. �

� It is clear now that a TM is a program that processes a single string variable. It
is also clear that we can say “a TM is a finite set of quintuples q : abq′T”, where
T ∈ {S,L,R} as described above. The “active” alphabets Γ and Q—that is,
the set of the corresponding symbols that are referenced by instructions—can
be recovered from the set of quintuples by collecting all the “a, b” and all the
“q, q′”, respectively, that occur in the instructions. It is clear that “set” rather
than “ordered sequence” is fine since the TM programs are goto-driven; as long
as we remember to start computing at label q0. �

So how do we compute with a TM? By following the snapshots or instanta-
neous descriptions (ID) of its computation. A snapshot at any given computa-
tion step is determined if we know the string variable contents (“tape” contents),
the position of the current symbol, and the instruction label of the instruction
the program is about to perform. This snapshot we can capture by a string
tqau, where a ∈ Γ, t and u are strings over Γ and q is the current state, while
a is the current symbol.

� There is always an a-part since the TM never overshoots the string it is manip-
ulating! �

Intro to (un)Computability and Unprovability via TMs and Church’s Thesis c© by George
Tourlakis, 2011



6

Thus, a computation is a finite sequence of IDs, α0, . . . , αn.

1. α0 is the initial ID, of the form q0x—where x is the input string; the
initial contents of the string variable. Note that this is a theoretical model
so we do not have a read instruction!

2. αn is a terminal or halting ID. That is, it has the form tqau such that
no instruction starts with “q : a”. Thus tau is the result or output of the
computation. Note that this is a theoretical model so we do not have a
write/print instruction!

3. For all i = 0, . . . , n − 1, ID αi yields, as we say, ID αi+1—in symbols
αi ` αi+1—as we explained in 1.2.1.

� A “computation” is by definition halting or terminating. But what if the TM
is in an “infinite loop” as in the example below? Well, if we have an infinite
sequence of IDs α0, α1, . . . that satisfies 1 above and also αi ` αi+1 for all i,
then we say that we have an infinite or non terminating computation. Lack of
a qualifier always defaults to a terminating computation. �

Here are some examples.

1.2.2 Example. The following is a TM over Γ = {1, B} that never halts,
regardless of what string in {1}+ is presented as input.

The above is a “flowchart” or a “flow diagram” that depicts the two-quintuple
TM

{q0 : aaq0R}, for a ∈ {1, B} �

1.2.3 Example. The following is a TM over Γ = {0, 1, B} that computes x+1
if the number x is presented in binary notation.

Intro to (un)Computability and Unprovability via TMs and Church’s Thesis c© by George
Tourlakis, 2011



1.2. Definitions 7

�

In Computability one studies exclusively number theoretic functions and re-
lations.

“Number theoretic” means that both the inputs and the outputs are mem-
bers of the set of natural numbers, N = {0, 1, 2, 3, . . .}.†

This choice of “what to attempt computing” presents no loss of
generality, because all finite objects with which we may want to compute—
e.g., negative integers, rational numbers, strings, matrices, graphs,
etc.—can be coded by natural numbers (indeed, by “binary strings”‡

which in turn we may think of as natural number representations,
“base-2”.).

Having fixed the “game” to be a theory of number theoretic (computable)
functions and relations, the next issue is:

What is a convenient input/output convention for Turing machines, when
these are used to “do Computability”?

The custom is to adopt the following input/output (“I/O”) con-
ventions for TMs (see [5, 13, 14]):

1.2.4 Definition. (I/O) A number x is presented as input in unary nota-
tion, that is, it is represented as a string of length x+ 1 over {1}.

Note the length which allows to code 0 as “1”!

More generally, a “vector input” x1, x2, . . . , xn, often abbreviated as ~xn—or
simply ~x if the length n is unimportant, or understood—is represented as

1x1+101x2+10 . . . 01xn+1

where, as always, for a string v and a positive integer i

vi
def
= vv · · · v︸ ︷︷ ︸

i copies

†A relation returns “yes” or “no”, or equivalently, “true” or “false”. Traditionally, we code
“yes” by 0 and “no” by 1—this is opposite to the convention of the C-language!—thus making
relations a special case of (number theoretic) functions.

‡That is, strings over {0, 1}. Such strings we may also call bit strings.

Intro to (un)Computability and Unprovability via TMs and Church’s Thesis c© by George
Tourlakis, 2011



8

If, on a given input, the TM halts, and β is its (unique) terminal ID, then the
integer-valued output is the total number of occurrences of the symbol
“1” in the string β.

Since in case of termination, the initial ID q0t uniquely determines β, we
write Res(q0t)—or ResM (q0t) if we must be clear which TM M we are talking
about—for the count of 1s in the terminal ID of the computation that starts
with q0t. �

� We have no guarantee that the output ResM (q0t) is defined for all inputs t since
some inputs may cause a nonterminating computation. E.g., no q01x+1 leads
to a computation in the machine of Example 1.2.2. �

1.2.5 Example. The following TM computes the function.

input: x, y

output: x+ y

We indulged above in a bit of “obscure programming” to avoid a 4th state:
The last “loop” is not a loop at all. Once a 1 is replaced by a B and the head
does not move, q2 has no moves hence the machine halts.

It is easy to check that the computations (for any choices of values for x, y)
here are

q01x+101y+1 ` · · · ` B1x0q2B1y

It is customary to write “`∗” rather than “` · · · `”. Thus the number theoretic
output is as claimed: x+ y �

1.2.6 Example. The following TM computes the function.

input: x

output: x+ 1

This time we do it in unary, as our “Computability conventions” dictate.

Intro to (un)Computability and Unprovability via TMs and Church’s Thesis c© by George
Tourlakis, 2011



1.2. Definitions 9

Here

q01x+1 ` q11x+1

Another solution is

Here

q01x+1 ` q0B1x+1

�

1.2.7� Example. A TM does not determine its number of arguments (1-vector,
2-vector, etc.), unlike “practical” programming languages where “read” state-
ments and/or procedure parameters leave no doubt as to what is the correct
number of inputs.
I There is no “correct” or predetermined number of inputs for

a TM.
As long as we stick to the conventions of Definition 1.2.4, we can

supply vectors of any length whatsoever, as input, to any given TM. J

For example, since the last TM above also has the computation

q01x+101y+101x+1 `∗ q0B1x+101y+101x+1

Intro to (un)Computability and Unprovability via TMs and Church’s Thesis c© by George
Tourlakis, 2011



10

it also computes the function
input: x, y, z
output: x+ y + z + 3
As another example, looking back to Example 1.2.2 we have, for all x

Res(q01x+1) ↑

that is, that TM computes the (unary, or one-argument) empty function,
denoted by ∅ just like the empty set.

� Incidentally, “· · · ↑” means “· · · is undefined” while “· · · ↓” means “· · · is de-
fined” �

Thus, the TM of Example 1.2.2 satisfies:
input: x
output: UNDEFINED

However, give it two (or more) inputs, and it computes something altogether
different!

For example, it computes
input: x, y
output: x+ y + 2
since

q01x+101y+1 `∗ 1x+1q001y+1

�
�

We witnessed some “neat” things above. There is one thing that (purposely)
stuck out throughout, to motivate the following definition. That was the cum-
bersome designation of functions by writing

input: bla-bla
output: bla-bla

1.2.8 Definition. (λ notation) There is a compact notation due to Church,
called λ notation, that denotes a function given as

input: x1, x2, . . . , xn
output: E
where “E” is an expression, or a “rule” on how to obtain a value.

We write simply “λx1x2 . . . xn.E”.
Thus “λ”–“.” is a “begin”–“end” block that delimits the arguments, and

immediately after the “.” follows the “output rule, or expression”. �

1.2.9� Example. Thus, the first function discussed in Example 1.2.7 is

λxyz.x+ y + z + 3

the 2nd is
λx. ↑

Intro to (un)Computability and Unprovability via TMs and Church’s Thesis c© by George
Tourlakis, 2011



1.2. Definitions 11

NOTE. “↑” is not a value or number so, strictly speaking, writing λx. ↑ is abuse
of notation, treating “↑” as an “undefined number”! We will (reluctantly) allow
such (ab)uses of ↑.

Since we gave a name to the empty function (or totally undefined function)
in 1.2.7, we may write

∅ = λx. ↑

Careful! Do not write
∅(x) = λx. ↑

The left hand side is (an undefined) value, the right hand side is a function.
The types of these two objects don’t match; “value” vs. “table”. They cannot
possibly be equal!

You may write
∅(x) =↑

but, better still,
∅(x) ↑

The final function in 1.2.7 is

λxy.x+ y + 2

� �

1.2.10 Definition. (Partial functions) A partial (number theoretic) function
f is one that perhaps is not defined on all values of the input(s). Thus, all func-
tions that our theory studies are partial.

A function is total iff it is defined for all possible values of the input(s).
In the opposite case we say we have a nontotal function. �

� Thus, if we put all total and all nontotal functions together, we obtain all the
partial functions.

We see that “partial” is just a wishy-washy term (unlike the terms “to-
tal”/“nontotal”), that does not in itself tell us whether a function is total or
nontotal.

It just says, “Caution! This function may, for some inputs, be undefined”. �

At long last!

1.2.11 Definition. (Computable (partial) function) A function λ~xn.f(~xn)
is a “Turing computable partial function”—but (following the literature) we
rather say partial (Turing) computable function—iff there is a TM M
such that

For all ai (i = 1, . . . , n) in N, f(~an) ' ResM (q01a1+101a2+10 · · · 01an+1)

� where the symbol “'” here extends “=”. It means that either both
sides are undefined (i.e., “equal” each to “↑”) or both are defined and
equal in the standard sense of equality of numbers. �

Intro to (un)Computability and Unprovability via TMs and Church’s Thesis c© by George
Tourlakis, 2011



12

A partial computable function is also called partial recursive. �

� Why being so fancy? We said: “A function λ~xn.f(~xn)”.
Well, I cannot say “A function f(~xn)”, because this object is not a function—

not a table of input output pairs—it is rather a number (which I do not happen
to know) or is undefined.

The alternatives
“A function f of arguments ~xn”
or
“A function f with
input: ~xn
output: f(~xn)”

are correct, but rather ugly. �

1.2.12 Definition. (P and R) The set of all partial computable (partial re-
cursive) functions is denoted by the (calligraphic) letter P.

The set of all total computable (total recursive) functions is denoted by the
(calligraphic) letter R.

Indeed, people say just recursive (or computable) function, and they mean
total (computable). [We have to get used to this! ] �

1.2.13 Theorem. R ⊂ P .

Proof. That R ⊆ P is a direct consequence of definition 1.2.12. That the subset
relation is proper follows from examples 1.2.2 and 1.2.7: The function ∅ is in P,
but it is not in R. �

1.3. A leap of faith: Church’s Thesis

The aim of Computability is to formalise (for example, via Turing Machines)
the informal notions of “algorithm” and “computable function” (or “computable
relation”).

We will not do any more programming with TMs.
A lot of models of computation, that were very different in their syntactic

details and semantics, have been proposed in the 1930s by many people (Post,
Church, Kleene, Markov, Turing). They were all proved to compute exactly the
same number theoretic functions—those in the set P. The various models, and
the gory details of why they all do the same job precisely, can be found in [14].

This prompted Church to state his belief, famously known as “Church’s
Thesis”, that

Every informal algorithm (pseudo-program) that we propose for the
computation of a function can be implemented (formalised, in other
words) in each of the known models of computation. In particular,
it can be “programmed” as a Turing machine.

Intro to (un)Computability and Unprovability via TMs and Church’s Thesis c© by George
Tourlakis, 2011



1.3. A leap of faith: Church’s Thesis 13

� We note that at the present state of our understanding the concept of “al-
gorithm” or “algorithmic process”, there is no known way to define an
“intuitively computable” function—via a pseudo-program of sorts—which is
outside of P.

Thus, as far as we know, P appears to be the largest—i.e., most inclusive—
set of “intuitively computable” functions known.

This “empirical” evidence supports Church’s Thesis. �

Church’s Thesis is not a theorem. It can never be, as it “connects” precise
concepts (TM, P) with imprecise ones (“algorithm”, “computable function”).

It is simply a belief that has overwhelming empirical backing, and should
be only read as an encouragement to present algorithms in “pseudo-
code”—that is, informally. Thus, Church’s Thesis (indirectly) suggests
that we concentrate in the essence of things, that is, perform only the high-level
design of algorithms, and leave the actual “coding” to TM-programmers.†

Since we are interested in the essence of things in this note, and also promised
to make it user-friendly, we will heavily rely on Church’s Thesis here—which
will refer to for short as “CT”—to “validate” our “high-level programs”.

In the literature, Rogers ([13], a very advanced book) heavily relies on CT.
On the other hand, [3, 14] never use CT, and give all the necessary constructions
(implementations) in their full gory details—that is the price to pay, if you avoid
CT.

� Here is the template of our use of CT: We present an algorithm in pseudo-code.
IBTW, “pseudo-code” does not mean “sloppy-code”!J

We then say: By CT, there is a TM that implements our algorithm. �

It turns out, as we will observe in the next section, that the development of
Computability theory benefits from an “arithmetisation” of Turing machines.

� By the term arithmetisation we simply understand an algorithmic process by
which we can

(a) assign a natural number to a Turing machine,
and conversely,
(b) recover, from any given number, a unique Turing machine that the num-

ber represents or “names”—in other words, assign a TM to a number. �

To this end,

• First, we will argue that we can algorithmically list all Turing machines.
To this end, let us have a finite alphabet that can generate all possible
“tape”-symbols (for Γ—see 1.2.1) and all possible state symbols (for Q—
see 1.2.1):

{s, q, ′}
Thus, we have an infinite supply of tape symbols

{s, s′, s′′, s′′′, s′′′′, . . .}
†If ever in doubt about the legitimacy of a piece of “high-level pseudo-code”, then you

ought to try to implement it in detail, as a TM, or, at least, as a “real” C-program!

Intro to (un)Computability and Unprovability via TMs and Church’s Thesis c© by George
Tourlakis, 2011



14

that we denote—metatheoretically—by writing s0 for s and sn for sn primes.
We will always have s0 = B, s1 = 0 and s2 = 1. We also have an infinite
supply of instruction labels (states)

{q, q′, q′′, q′′′, q′′′′, . . .}

that we denote, metatheoretically, as q0, q1, q2, q3, q4, etc. All our TMs
will have their start state actually called “q” (that is, q0).

We can now code any TM, over the alphabet

{s, q, ′, $,#, L,R, S} (1)

starting with the TM’s instructions. An instruction qi : sjskqmT , where
T ∈ {S,L,R}, is coded as

#qi#sj#sk#qm#T# (2)

A TM is coded by gluing into a string all its instructions, in any order,
using $ as inter-instruction glue.

Thus, a TM of n instructions can be coded according to the above scheme
in n! ways.

• Next, let us note that given a string over the alphabet (1) we can “parse
it” to see if it is a TM or not: We look for

(a) It is a string that is a single string of type (2), or several such inter-
glued by the symbol $.

(b) q0 occurs as the first symbol, after the leading #, in at least one
participating instruction (2).

(c) No two distinct participating instructions have identical starts: #qi#sj#

• It is now easy to enumerate algorithmically all TMs: Since, as coded, they
are strings over the finite alphabet (1), enumerate all TMs into a “List2”
simultaneously with enumerating all strings over (1) in a list “List1”. We
do the latter by enumerating by string length, and within the set of all
strings of the same length we enumerate lexicographically, taking the order
of symbols as displayed in (1) as fixed. Now, every time we put a string
in List1 we parse it to see if it is a TM (code). We place it in List2 iff it
is.

• By virtue of the previous bullet, the algorithm that lists the TMs also
assigns one or more position-numbers to each, namely, the machine’s posi-
tion in List2. Note that since we can have several ways to glue instructions
together for a given TM, it will appear in several places.

� Thus we have obtained an algorithmic enumeration of all TMs as

M0,M1,M2, . . . (3)

�

Intro to (un)Computability and Unprovability via TMs and Church’s Thesis c© by George
Tourlakis, 2011



1.4. Unsolvable “Problems” The Halting Problem 15

It is immediate that given a TM N we can find it in the enumeration (3),
and we can compute an i such that Mi is N : Indeed, as a first step, code
N as described above. Now generate List2 as described, looking for N (as
coded). There is a first (and only) time at which we will match N with a
TM, Mi, that was listed. But this Mi is N .

We found N ’s location in the list: It is i.†

Now recall the comment that TMs do not determine the number of inputs of
the functions they compute (1.2.7). Thus, for every n > 0, we can define

Important: φ
(n)
i is the function of n inputs computed by Mi (4)

that is, for all ~xn, we have φ
(n)
i (~xn) ' ResMi(q01x101x20 · · · 01xn).

� We write φi rather than φ
(1)
i in the one-argument case. The φ-notation is due

to Rogers [13]. �

We say that φ
(n)
i is computed by “TM i” rather than “TM Mi” since if we

know i then we know Mi and vice versa.

1.3.1 Theorem. A function f of n > 0 arguments is in P iff, for some i ∈ N,

it is φ
(n)
i = f .

Proof. The if is just (4) above. For the only if we are given that f is com-
putable, say, by a TM N . Let i be such that N = Mi in the manner we showed

above (actually we can compute this i). Then f = φ
(n)
i by (4) above. �

1.4. Unsolvable “Problems”
The Halting Problem

A number-theoretic relation is some set of n-tuples from N. A relation’s
outputs are t or f (or “yes” and “no”). However, a number-theoretic relation
must have values (“outputs”) also in N.

� Thus we re-code t and f as 0 and 1 respectively. This convention is preferred
by Recursion Theorists (as people who do research in Computability like to
call themselves) and is the opposite of the re-coding that, say, the C language
employs. �

We often write
R(~an)

as “short” for
〈a1, . . . , an〉 ∈ R

†Since N can be coded in n! different ways if it has n quintuples, it is clear the while N
appears n! times in the List2, every given coding of it appears just once.

Intro to (un)Computability and Unprovability via TMs and Church’s Thesis c© by George
Tourlakis, 2011



16

Relations with n = 2 are called binary, and rather than, say,

< (a, b)

we write, in “infix”,
a < b (1)

1.4.1 Definition. (Computable or Decidable relations) “A relation Q(~xn)
is computable, or decidable” means that the function

cQ = λ~xn.

{
0 if Q(~xn)

1 otherwise

is in R.
The collection (set) of all computable relations we denote by R∗. Com-

putable relations are also called recursive.
By the way, the function λ~xn.cQ(~xn) we call the characteristic function of

the relation Q (“c” for “characteristic”). �

� Thus, “a relation Q(~xn) is computable or decidable” means that some TM
computes cQ. But that means that some TM behaves as follows:

On input ~xn, it halts and outputs 0 iff ~xn satisfies Q (i.e., iff Q(~xn)), it halts
and outputs 1 iff ~xn does not satisfy Q (i.e., iff ¬Q(~xn)).

We say that the relation has a decider, i.e., the TM that decides membership
of any tuple ~xn in the relation. �

1.4.2 Definition. (Problems) A “Problem” is a formula of the type “~xn ∈
Q” or, equivalently, “Q(~xn)”.

Thus, by definition, a “problem” is a membership question. �

1.4.3 Definition. (Unsolvable Problems) A problem “~xn ∈ Q” is called
any of the following:

Undecidable
Recursively unsolvable
or just
Unsolvable
iff Q /∈ R∗—in words, iff Q is not a computable relation. �

Here is the most famous undecidable problem:

φx(x) ↓ (1)

A different formulation uses the set

H = {x : φx(x) ↓}† (2)

†Both [13, 14] use K instead of H, but this notation is by no means standard. Thus, I felt
free to use “H” here for Halting.

Intro to (un)Computability and Unprovability via TMs and Church’s Thesis c© by George
Tourlakis, 2011



1.4. Unsolvable “Problems” The Halting Problem 17

that is, the set of all numbers x, such that machine Mx on input x has a (halt-
ing!) computation.

H we shall call the “halting set”, and (1) we shall the “halting problem”.
Clearly, (1) is equivalent to

x ∈ H

1.4.4 Theorem. The halting problem is unsolvable.

Proof. We show, by contradiction, that H /∈ R∗.
Thus we start by assuming the opposite.

Let H ∈ R∗ (3)

that is, we can decide membership in H via a TM:

cH ∈ R (4)

Define the function d below:

d(x) =

{
φx(x) + 1 if φx(x) ↓
0 if φx(x) ↑

(5)

Here is why it is computable:

Given x, do:

• Use the decider of H to test in which condition we are in (5); top or
bottom.

• If we are in the top condition, then we fetch Mx and call it on input x.
We add 1 to its output and halt everything. Because the top condition
is true, the call will terminate!

• If the bottom condition holds, then print 0 and exit.

By CT, the 3-bullet program has a TM realisation, so d is computable. Say,

d = φi (6)

What can we say about φi(i)? Well, we have two cases:

Case 1. φi(i) ↓. Then we are in the top case of (5). Thus, d(i) = φi(i) + 1.
But we also have d(i) = φi(i) by (6). This yields φi(i) + 1 = φi(i).
Since φi(i) is a number due to the case we are in, we got 1 = 0; a
contradiction.

Case 2. φi(i) ↑. This leads to a contradiction too, since d(i) = 0 in this case,
but is also d(i) ↑ by virtue of d(i) = φi(i).

Intro to (un)Computability and Unprovability via TMs and Church’s Thesis c© by George
Tourlakis, 2011



18

Thus, (4) (and hence (3)) is false. We are done. �

In terms of theoretical significance, the above is the most significant unsolv-
able problem.

Its import lies in the fact that we can use it to discover more unsolvable prob-
lems, some of which have great application interest. Example: The “program
correctness problem” (see below).

But how does “x ∈ H” help? Through the following technique of reduction:

� Let P be a new problem (relation!) for which we want to see whether ~y ∈ P can
be solved by a TM. We build a reduction that goes like this:

(1) Suppose that we have a TM M that decides ~y ∈ P , for any ~y. (2) Then
we show how to use M as a subroutine to also solve x ∈ H, for any x. (3) Since
the latter is unsolvable, no such TM M exists! �

The equivalence problem is

Given two programs M and N can we test to see whether they
compute the same function?

� Of course, “testing” for such a question cannot be done by experiment : We
cannot just run M and N for all inputs to see if they get the same output,
because, for one thing, “all inputs” are infinitely many, and, for another, there
may be inputs that cause one or the other program to run forever (infinite loop). �

By the way, the equivalence problem is the general case of the “program
correctness” problem which asks

Given a program P and a program specification S, does the program
fit the specification for all inputs?

since we can view a specification as just another formalism to express a function-
computation. By CT, all such formalisms, programs or specifications, boil down
to TMs, and hence the above asks whether two given TMs compute the same
function—program equivalence.

Let us show now that the program equivalence problem cannot be solved by
any TM.

1.4.5 Theorem. (Equivalence problem) The equivalence problem of TMs
is the problem “given i and j; is φi = φj?”†

This problem is undecidable.

Proof. The proof is by a reduction (see above), hence by contradiction. We will
show that if we have a TM that solves it, “yes”/“no”, then we have a TM that
solves the halting problem too!

So assume we have an algorithm (TM) M for the equivalence problem (1)

†If we set P = {〈i, j〉 : φi = φj}, then this problem is the question “〈i, j〉 ∈ P?” or
“P (i, j)?”.

Intro to (un)Computability and Unprovability via TMs and Church’s Thesis c© by George
Tourlakis, 2011



1.5. Godel’s Incompleteness Theorem 19

Let us use it to answer the question “a ∈ H”—that is, “φa(a) ↓”, for any a.

So, fix an a (2)

Consider these two functions, for all x:

Z(x) = 0

and

Z̃(x) '

{
0 if x = 0 ∧ φa(a) ↓
0 if x 6= 0

Both functions are intuitively computable: For Z and input x just print 0 and
stop. For Z̃ and input x, just print 0 and stop provided x 6= 0. On the other
hand, if x = 0 then fetch Ma—where a is that in (2) above—from list (3) on
p.14, and run it on input a. If this ever halts just print 0 and halt; otherwise
let it loop forever.

By CT, both have TM programs, N and Ñ . We can compute i and j by
going down the aforementioned list (3), such that N = Mi and Ñ = Mj . Thus

Z = φi and Z̃ = φj .
On the assumption (1), we feed i and j to M . This machine will halt

and answer “yes” (0) precisely when φi = φj ; will halt and answer “no” (1)
otherwise. But note that φi = φj iff φa(a) ↓. We have thus solved the halting
problem! �

1.5. Gödel’s Incompleteness Theorem

It is rather surprising that Unprovability and Uncomputability are intimately
connected. Gödel’s original proof of his Incompleteness theorem did not use
methods of Computability—indeed Computability theory was not yet devel-
oped. He used instead a variant of the liar’s paradox,† namely, he devised
within Peano arithmetic a formula D with no free variables, which said: “I am
not a theorem.” He then proceeded to prove (essentially) that this formula is
true, but has no syntactic proof within Peano arithmetic—it is not a theorem!

Gödel’s Incompleteness theorem speaks to the inability of formal mathe-
matical theories, such as Peano arithmetic and set theory, to totally capture the
concept of truth. This does not contradict Gödel’s own Completeness theorem
that says “if |= A, then ` A”.

You see, Completeness talks about absolute truth,

that is, |=D A, for all interpretations D

while Incompleteness speaks about truth relative to the “standard” model only.
For Peano arithmetic, the standard model, N = (N,M) is the one that assigns
to the nonlogical symbols—via M—the expected, or “standard”, interpretations
as in the table below

†“I am lying”. Is this true? Is it false?

Intro to (un)Computability and Unprovability via TMs and Church’s Thesis c© by George
Tourlakis, 2011



20

Abstract (language) symbol Concrete interpretation

0 0 (zero)
S λx.x+ 1
+ λxy.x+ y
× λxy.x× y
< λxy.x < y

Before we turn to a Computability-based proof of Gödel’s Incompleteness,
here, in outline, is how he did it: Suppose D at the top of this section is
provable (a theorem) in Peano arithmetic. Then, since the rules of inference
preserve truth and the axioms are true in N, we have that D is true in this
interpretation. But note what it says! “I am not a theorem”. This makes it
also false (since we assumed it is a theorem!)

So, it is not a theorem after all. This automatically makes it true, for this
is precisely what it says!

His proof was quite complicated, in particular in exhibiting a formula D
that says what it says.

Here is a “modern” proof of Incompleteness, via a simple reduction proof
within Computability:

1.5.1 Theorem. (Gödel’s First Incompleteness Theorem) † There is a
true but not (syntactically) provable formula of Peano arithmetic.

Proof. This all hinges on the fact that the set of theorems of Peano arithmetic
can be algorithmically listed—by a TM.

Indeed, the alphabet of Peano arithmetic is finite

⊥,>, p, x, ′, (, ),=,¬,∧,∨,→,≡,∀, 0, S,+,×, <

where p and ′ are used to build the infinite supply of Boolean variables

p, p′, p′′, . . .

and x and ′ are used to build the infinite supply of object variables

x, x′, x′′, . . .

But then we can add a new symbol # to the alphabet to form

⊥,>, p, x, ′, (, ),=,¬,∧,∨,→,≡,∀, 0, S,+,×, <,# (1)

We use # to make a single string out of a proof

F1, . . . , Fn

†The Second Incompleteness Theorem of Gödel shows that another true but unprovable
formula of arithmetic is rather startling and significant: It says that “Peano arithmetic is free
of contradiction—that is, it cannot prove ⊥”. In plain English: Arithmetic cannot prove its
own freedom of contradiction; such a proof must come from the “outside”.

The 2nd Incompleteness Theorem is much harder to prove, and actually Gödel never gave a
complete proof. The first complete proof was published in [6]; the second, different complete
proof, was published in [15].

Intro to (un)Computability and Unprovability via TMs and Church’s Thesis c© by George
Tourlakis, 2011



1.5. Godel’s Incompleteness Theorem 21

namely,
#F1#F2# . . .#Fn#

Here’s our listing algorithm:
Form three lists of strings over the alphabet (1).

• The first list, List1, contains all strings over (1), generated by size, and
within each size-group generated lexicographically.

• The second, List2, is a list of all proofs—coded as above into single strings:
Add a string to List2 every time that we place a string in List1 and find
that it is a proof: We can check algorithmically for proof status, since we
can recognise the axioms, and also can recognise when MP was used.

• Every time we place a proof in List2, we place its last formula in List3.

By CT, we have a TM enumerator, E, for List3, i.e., a machine that will have
no input but will keep generating all of Peano arithmetic’s theorems (with rep-
etitions, to be sure, since every theorem appears in many proofs; how “many”?)

Let now an a be given, and let us show that I can solve “φa(a) ↓?” provided
Gödel’s theorem is false, and therefore

Every true formula of Peano arithmetic has a proof. (2)

We take on faith (cf. [16, 15]) that φã(ã) ↓ and φã(ã) ↑ are expressible as
formulae of arithmetic—where you will recall from class that ã is the number a
written in the language of Peano arithmetic, (1), as

a S’s︷ ︸︸ ︷
SS · · ·S 0

OK, here it goes:

• Fetch machine Ma from the list (3) on p.14.

• Simultaneously run two machines: Ma on input a and also the enumerator
E that lists all theorems of Peano arithmetic (List3).

• For Ma, keep an eye for whether it halts on input a; if so, halt everything
and proclaim a ∈ H.

• For E, keep an eye for whether it ever prints the formula “φã(ã) ↑”; if so,
halt everything and proclaim a /∈ H.

We solved the halting problem!
Hold on: Let me explain. What the assumption of falsehood of Gödel’s

theorem—(2) above—gives us is a means to verify φa(a) ↑:

1. If φa(a) ↑ is true, then by (2), φã(ã) ↑ is a theorem, thus it appears in the
enumeration that E cranks out.

Intro to (un)Computability and Unprovability via TMs and Church’s Thesis c© by George
Tourlakis, 2011



22

On the other hand,

2. If φa(a) ↓ is true, then Ma will verify so for us, by halting.

So we will have computed the answer to a ∈ H either way, having solved
the halting problem, which is impossible!

Hence (2) is false!

� Wait a minute! What if both things happen? That is, Ma halts, and
φã(ã) ↑ shows up in the enumeration of theorems?

This would be disastrous because, depending on what happens first, we
may end up with the wrong answer.

But it cannot happen, for if φa(a) ↓ is true, then φa(a) ↑ is false, hence
its formal version, φã(ã) ↑, cannot appear as a theorem (all theorems are
true in N). �

�

Intro to (un)Computability and Unprovability via TMs and Church’s Thesis c© by George
Tourlakis, 2011



Bibliography

[1] Alonzo Church. A note on the Entscheidungsproblem. J. Symbolic Logic,
1:40–41, 101–102, 1936.

[2] Alonzo Church. An unsolvable problem of elementary number theory.
Amer. Journal of Math., 58:345–363, 1936. (Also in Davis [4, 89–107]).

[3] M. Davis. Computability and Unsolvability. McGraw-Hill, New York, 1958.

[4] M. Davis. The Undecidable. Raven Press, Hewlett, NY, 1965.

[5] Martin Davis. Computability and Unsolvability. McGraw-Hill, New York,
1958.

[6] D. Hilbert and P. Bernays. Grundlagen der Mathematik I and II. Sprin-
ger-Verlag, New York, 1968.

[7] L. Kalmár. An argument against the plausibility of Church’s thesis. In
Constructivity in Mathematics, pages 72–80. Proc. of the Colloquium, Am-
sterdam, 1957.

[8] S.C. Kleene. Recursive predicates and quantifiers. Transactions of the
Amer. Math. Soc., 53:41–73, 1943. (Also in Davis [4, 255–287]).

[9] A. A. Markov. Theory of algorithms. Transl. Amer. Math. Soc., 2(15),
1960.

[10] Rózsa Péter. Recursive Functions. Academic Press, New York, 1967.

[11] Emil L. Post. Finite combinatory processes. J. Symbolic Logic, 1:103–105,
1936.

[12] Emil L. Post. Recursively enumerable sets of positive integers and their
decision problems. Bull. Amer. Math. Soc., 50:284–316, 1944.

[13] H. Rogers. Theory of Recursive Functions and Effective Computability.
McGraw-Hill, New York, 1967.

[14] G. Tourlakis. Computability. Reston Publishing, Reston, VA, 1984.

Intro to (un)Computability and Unprovability via TMs and Church’s Thesis c© by George
Tourlakis, 2011



24 BIBLIOGRAPHY

[15] G. Tourlakis. Lectures in Logic and Set Theory, Volume 1: Mathematical
Logic. Cambridge University Press, Cambridge, 2003.

[16] G. Tourlakis. Mathematical Logic. John Wiley & Sons, Hoboken, NJ, 2008.

[17] Alan M. Turing. On computable numbers, with an application to the
Entscheidungsproblem. Proc. London Math Soc., 2(42, 43):230–265, 544–
546, 1936, 1937. (Also in Davis [4, 115–154].).

Intro to (un)Computability and Unprovability via TMs and Church’s Thesis c© by George
Tourlakis, 2011


	Turing machines
	Definitions
	A leap of faith: Church's Thesis
	Unsolvable ``Problems'' The Halting Problem
	Gödel's Incompleteness Theorem

