
1

March 5

0.1 Semi-computable Relations;
Unsolvability

We next define a P-counterpart of R∗ and PR∗ and look into some of its closure
properties.

0.1.1 Definition. (Semi-computable Relations) A relation P (~x) is called
semi-computable or semi-recursive iff for some f ∈ P, we have, for all ~xn,

P (~xn) ≡ f(~xn) ↓ (1)

The set of all semi-computable relations is denoted by P∗.
If f = φ

(n)
a in (1) above, then we say that “a is a semi-computable index

or just a semi-index of P (~xn)”. If n = 1 (thus P ⊆ N) and a is one of the
semi-indices of P , then we write P = Wa [Rog67]. �

� We are making the symbol P∗ up, in complete analogy with the symbols PR∗
and R∗. It is not standard in the literature. �

We have at once:

0.1.2 Theorem. (Normal Form Theorem for Semi-computable Relations)

P (~xn) ∈ P∗ iff, for some a ∈ N, we have (for all ~xn) P (~xn) ≡ (∃z)T (n)(a, ~xn, z).

Proof. Only if-part. Let P (~xn) ≡ f(~xn) ↓, with f ∈ P. Then, f = φ
(n)
a for

some a ∈ N.
If-part: The given equivalence translates into P (~xn) ≡ φ

(n)
a (~xn) ↓. But

φa ∈ P. �

CSE 4111/5111. George Tourlakis. Winter 2018

2

0.1.3 Corollary. (Strong Projection Theorem) P (~xn) ∈ P∗ iff, for some
recursive predicate Q(~xn, z), we have (for all ~xn) P (~xn) ≡ (∃z)Q(~xn, z).

Proof. (→): Say P (~xn) ∈ P∗. Then invoke the theorem above (“Q(~x, z)” will
be T (n)(a, ~xn, z)) for an appropriate a.

(←): Let P (~xn) ≡ (∃z)Q(~xn, z). This is the same as P (~xn) ≡ (µz)Q(~xn, z) ↓.
But λ~xn.(µz)Q(~xn, z) ∈ P. �

0.1.4 Corollary. P (~xn) ∈ P∗ iff, for some λ~xn.g(~xn) ∈ P, we have (for all
~xn) P (~xn) ≡ g(~xn) = 0.

Proof. The only if is immediate from 0.1.1: Let f ∈ P such that, for all ~xn,

P (~xn) ≡ f(~xn) ↓. Take g = λ~xn.Z
(
f(~xn)

)
.

For the if, note that g = φ
(n)
i for some i, thus

P (~xn) ≡ g(~xn) = 0 and g(~xn) = 0 ≡ (∃z)
(
T (n)(i, ~xn, z) ∧ d(z) = 0

)
We are done by 0.1.3.

Alternatively, the function

h(x) =

{
0 if x = 0

↑ otw

is in P. Of course, letting One = λxy.1, the “↑” above is short for (µy)One(x, y)
that is in P. Clearly,

• λ~xn.h(g(~xn)) ∈ P (substitution)

and

• P (~xn) ≡ h(g(~xn)) ↓, since h(g(~xn)) ↓ precisely when g(~xn) = 0; hence
P (~xn) ∈ P∗. �

� The preceding corollary has a known to us analogue of for PR∗ and R∗. It
provides, among other things, direct proofs for the facts PR∗ ⊆ P∗ and R∗ ⊆
P∗. For example, say, Q(~x) ∈ PR∗. Then, for some g ∈ PR, Q(~x) ≡ g(~x) = 0,
for all ~x. But g ∈ P as well, and we can invoke 0.1.4. �

CSE 4111/5111. George Tourlakis. Winter 2018

3

0.1.5 Corollary. (Graphs of Partial Recursive Functions) λ~xn.f(~xn) ∈
P iff y = f(~xn) is semi-recursive.

Proof. For the only if, let f = φ
(n)
i . Then

y = f(~xn) ≡ (∃z)
(
T (n)(i, ~xn, z) ∧ d(z) = y

)
We conclude by 0.1.3. For the if part, let (again, 0.1.3)

y = f(~xn) ≡ (∃z)Q(z, ~xn, y)

To compute f(~xn)—given ~xn—we enumerate all pairs 〈z, y〉 and stop at the
“first”, if any, that satisfies Q(z, ~xn, y); we output y. Mathematically,

f(~xn) =
(

(µw)Q
(
(w)0, ~xn, (w)1

))
1

Clearly f ∈ P. �
Pause. Why not argue the if part more simply, in view of 0.1.4? Let g ∈ P

such that
y = f(~xn) ≡ g(y, ~xn) = 0

Then f(~xn) = (µy)g(y, ~xn), for all ~xn, and thus f ∈ P.J

CSE 4111/5111. George Tourlakis. Winter 2018

4

0.1.6 Remark. (Deciders and Verifiers) A computable relation P (~xn) is,
by definition, one for which χP ∈ R; thus it has an associated URM M that
decides membership of any ~an in P both ways: “yes” (output 0) if it is in; “no”
(output 1) if it is not.

Thus this M is a decider for P (~xn).

A semi-computable relation Q(~xm), on the other hand, comes equipped only
with a verifier, i.e., a URM N that verifies ~am ∈ Q, if true, by virtue of halting
on input ~am.

A verifier gives no tangible information about the non membership cases,
which cause it to enter a so-called “infinite loop” (it enters a non terminating
computation).

While, mathematically speaking, ~am /∈ Q is also “verified” by virtue of loop-
ing forever on input ~am, computationally speaking this is no verification at all
as we do not have a way of knowing whether N is looping forever as opposed to
simply being awfully slow, planning perhaps to halt in a couple of trillion years
(cf. halting problem 0.1.12).

In the algorithmic sense, a verifier (of a semi-computable set of m-tuples)
verifies only the “yes” instances of questions such as “Is ~am ∈ Q?”—hence its
name. �

� Thus, the output of a verifier for a semi-computable relation Q(~x), when it halts,
is irrelevant. It has verified membership of its input to Q simply by virtue of
terminating its computation. �

CSE 4111/5111. George Tourlakis. Winter 2018

5

A Decider

"yes"=print"0"
andhalt

"yes"=justhalt.
Output is irrelevant

"no"=print"1"
andhalt "no"=loop

for ever

input input

A Verifier

A URM for the

 problem
A URM for the

 problem

Figure 1: A decider and a verifier, pictorially, for handling the query, “~xn ∈ A?”,
by a URM.

0.1.7 Definition. (Undecidable Problems) A problem is a question of the
form ~x ∈ Q. Synonymously, a question of the form Q(~x).

Thus, a problem is a predicate.

We say that a problem Q(~x) is decidable or (recursively)∗ solvable, iff there is
a decider for it, which mathematically is expressed by “Q(~x) ∈ R∗”—i.e., Q is
recursive. In the opposite case we say that Q(~x) is undecidable or (recursively)
unsolvable.

A problem Q(~x) is semi-decidable iff there is a a verifier for it, that is, iff
Q(~x) is semi-computable. �

∗The parenthetical qualifier is usually omitted.

CSE 4111/5111. George Tourlakis. Winter 2018

6

Intuitively, we see that if we have a verifier for a relation Q(~xn) and also have
a verifier for its complement (negation) ¬Q(~xn), then we can build a decider for
Q(~xn): On input ~an we simply run both verifiers simultaneously. If the one for
Q halts, then we print 0 and stop the computation. If, on the other hand, the
one for ¬Q halts, then we print 1 and stop. Of course, one or the other will
halt, since one of Q(~an) or ¬Q(~an) is true!

This process computes χQ(~an). Put more mathematically,

0.1.8 Proposition. If Q(~xn) and ¬Q(~xn) are in P∗, then both are in R∗.

Proof. Let i and j be semi-indices of Q and ¬Q respectively, that is (0.1.2),

Q(~xn) ≡ (∃z)T (n)(i, ~xn, z)

¬Q(~xn) ≡ (∃z)T (n)(j, ~xn, z)

Define
g = λ~xn.(µz)

(
T (n)(i, ~xn, z) ∨ T (n)(j, ~xn, z)

)
� Intuitively, g implements (mathematically) the process in which we run the two

verifiers simultaneously, (coded as) i and j, and look for one that halts, by
looking for the smallest z that codes a computation of i or j as the case may
be. �

Trivially, g ∈ P. Hence, g ∈ R, since it is total (why?). We are done by
noticing that Q(~xn) ≡ T (n)(i, ~xn, g(~xn)). By closure properties of R∗, ¬Q(~xn)
is in R∗, too. �

CSE 4111/5111. George Tourlakis. Winter 2018

7

0.1.9� Remark. (Undecidable Problems and Uncomputable Functions Exist)

We can readily show, albeit in a somewhat intangible manner, that undecid-
able problems and therefore uncomputable total functions (their characteristic
functions) exist.

This readily follows from a so-called cardinality argument : By Kleene’s Nor-
mal Form theorem, we have only a countable set of partial recursive functions

{φi : i ∈ N} (1)

Thus the subset of total (computable) 0-1-valued functions (and hence, decidable
problems) is countable. However, the set of all total functions f : N → {0, 1}
is uncountable. So there must be many such functions that do not belong
to the enumeration (1)! Each such function f not only provides an example
of an uncomputable function, but being 0-1-valued provides an example of an
undecidable problem, this one: f(x) = 0.

We called this an “intangible demonstration” of the existence of undecidable
problems as it produced no specific meaningful problem that is undecidable. We
remedy this below. � �

CSE 4111/5111. George Tourlakis. Winter 2018

8

0.1.10 Definition. (The Halting Problem) The halting problem has cen-
tral significance in computability. It is the question whether “program x will
ever halt if it starts computing on input x”. That is, if we set K = {x : φx(x) ↓},
then the halting problem is x ∈ K. We denote the complement of K by K. �

0.1.11 Exercise. The halting problem x ∈ K is semi-recursive.
Hint. The problem is “φx(x) ↓”. Now invoke the normal form theorem. �

0.1.12 Theorem. (Unsolvability of the Halting Problem) The halting prob-
lem is undecidable.

Proof. In view of the preceding exercise (and 0.1.8), it suffices to show that K is
not semi-computable. Suppose instead that i is a semi-index of this set. Thus,
x ∈ K ≡ (∃z)T (i, x, z), or, making the part x ∈ K—that is, φx(x) ↑—explicit:

¬(∃z)T (x, x, z) ≡ (∃z)T (i, x, z) (1)

Substituting i into x in (1) we get a contradiction. �

0.1.13� Remark. (1) By 0.1.1 a set S ⊆ N is semi-recursive iff “it is a Wi”,
that is, for some i, S = Wi. The above proof says that “K is not a Wi”. Is this
surprising? Well, no!

This goes back to the Cantor diagonalization that shows that D (⊆ N),
below,

D = {x : x /∈ Sx}

is not an Si (cf. our introductory MATH lectures), where each Si is a subset of
N. Indeed,

x ∈Wi
0.1.1≡ φi(x) ↓≡ (∃y)T (i, x, y)

hence x /∈ Wi≡¬(∃y)T (i, x, y) and, in particular, i /∈ Wi≡¬(∃y)T (i, i, y). But
the right hand side says “φi(i) ↑”, that is, i ∈ K. Thus

K = {x : x /∈Wx}

and Cantor’s diagonalization argument shows that “K is not a Wi”. So the
proof of 0.1.12 was a well-concealed diagonalization argument!

(2) Since K ∈ P∗, we conclude that the inclusion shown in class, R∗ ⊆ P∗,
is proper, i.e., R∗ ⊂ P∗.

(3) The characteristic function of K provides an example of a total uncom-
putable function.

(4) We saw an example of how to remove “points of non definition” from
a function so that it remains computable after it has been extended to a total
function: Cases of λxy.xy and λxy. bx/yc from text and class. Can we always
do that?

No. For example, the function f = λx.φx(x) + 1 cannot be extended to a
total computable function. Of course, by the Normal Form Theorem, f ∈ P,

CSE 4111/5111. George Tourlakis. Winter 2018

9

since, for all x, f(x) = d
(
(µy)T (x, x, y)

)
+ 1. Here is why: Suppose that g ∈ R

extends f . Thus, g = φi for some i. Let us look at g(i): We have

g(i) =
by g = φi

φi(i) 6=
both sides defined

φi(i) + 1 =
def. of f

f(i)

But since f(i) ↓, we also have g(i) = f(i) as g extends f , a contradiction. � �

Once we have built a class of functions or predicates, we next look at their
closure properties.

CSE 4111/5111. George Tourlakis. Winter 2018

10

0.1.14 Theorem. (Closure Properties of P∗) P∗ is closed under ∨, ∧, (∃y)<z,
(∃y), and (∀y)<z. It is not closed under either ¬ or (∀y).

Proof. Given semi-computable relations P (~xn), Q(~ym), and R(y, ~uk) of semi-
indices p, q, r, respectively. In each case we will express the relation we want to
prove semi-computable as a strong projection (0.1.3):

∨

P (~xn) ∨Q(~ym) ≡ (∃z)T (n)(p, ~xn, z) ∨ (∃z)T (m)(q, ~ym, z)

≡ (∃z)
(
T (n)(p, ~xn, z) ∨ T (m)(q, ~ym, z)

)
∧

P (~xn) ∧Q(~ym) ≡ (∃z)T (n)(p, ~xn, z) ∧ (∃z)T (m)(q, ~ym, z)

≡ (∃w)
(
(∃z)<wT (n)(p, ~xn, z) ∧ (∃z)<wT (m)(q, ~ym, z)

)
(∃y)<z

(∃y)<zR(y, ~uk) ≡ (∃y)<z(∃w)T (k+1)(r, y, ~uk, w)

≡ (∃w)(∃y)<zT
(k+1)(r, y, ~uk, w)

(∃y)

(∃y)R(y, ~uk) ≡ (∃y)(∃w)T (k+1)(r, y, ~uk, w)

≡ (∃z)(∃y)<z(∃w)<zT
(k+1)(r, y, ~uk, w)

(∀y)<z

(∀y)<zR(y, ~uk) ≡ (∀y)<z(∃w)T (k+1)(r, y, ~uk, w)

≡ (∃v)(∀y)<z(∃w)<vT
(k+1)(r, y, ~uk, w)

As for possible closure under ¬ and ∀y, K provides a counterexample to ¬:
K ∈ P∗ (0.1.11) but K /∈ P∗ (0.1.12). Closure under ∀y is also untenable as
¬T (x, x, y) provides a counterexample: Being primitive recursive, it is in P∗.
However, (∀y)¬T (x, x, y) is not, since this is ¬(∃y)T (x, x, y)—that is, x ∈ K.

�

CSE 4111/5111. George Tourlakis. Winter 2018

11

0.1.15 Proposition. If λ~x.f(~x) ∈ P and Q(z, ~y) ∈ P∗, then Q(f(~x), ~y) ∈ P∗.

Proof.

Q(f(~x), ~y) ≡ (∃z)
(
z = f(~x) ∧Q(z, ~y)

)
By 0.1.5 and 0.1.14, the right hand side, and hence the left hand side, of ≡ is
semi-recursive. �

0.1.16 Example. This is our first example of a reduction argument, a trivial
one. We introduce a generalization, K0, of the halting set K, by

K0
Def
= {(x, y) : φx(y) ↓}

We show that the problem (x, y) ∈ K0 is undecidable, that is,

K0 /∈ R∗ (1)

Suppose that (1) is false. Then the characteristic function, λxy.χK0(x, y) of
K0 is in R. But then so is the function f = λx.χK0(x, x) obtained from χK0

by identification of variables. However, f is the characteristic function of the
halting set, and we just have shown that the halting problem is decidable!

This contradiction shows that (1) is correct, after all.

We have just witnessed an instance of an argument that went like this: If
I have an algorithm that solves problem B,† then I know how to build another
algorithm that uses the one for B and solves problem A.‡

That is, we reduced problem A to problem B (this makes A “more decidable”
than B; and makes B “more undecidable” than A).

� This reduction shows that if we know that A is undecidable, then so must be B. �

We will encounter many more reduction arguments later. �

†Here (x, y) ∈ K0.
‡Here x ∈ K.

CSE 4111/5111. George Tourlakis. Winter 2018

12

0.1.17� Example. (A Very Hard Problem) The equivalence problem is: given
two programs, decide if they compute the same function or not.

A “program” here can be any finite way of describing a function. This finite
way could be an actual program, such as a URM or a loop program. Or it could
be a derivation, say, within PR or P, which defines a function.

To fix ideas, let us focus attention on primitive recursive functions, finitely
defined via loop programs.

We ask: Is the problem of determining whether two such functions are equal
decidable?

Well, if it is, then in particular so will be the special case of determining
whether λy.1 and λy.χT (x, x, y)—where T is the Kleene predicate—are the same
function or not, for any given x. The reader may readily imagine—due to the
primitive recursiveness of both functions—that they are given by loop programs.

The question, mathematically, is (∀y)(1 = χT (x, x, y)). In terms of T this
says (∀y)¬T (x, x, y), or ¬(∃y)T (x, x, y).

We recognize the last expression as x ∈ K, which we know that is not semi-
computable (0.1.12), let alone recursive!

Pause. Why “let alone”?J

Thus the equivalence problem of primitive recursive functions is incredibly
hard: There is not even a verifier for it! � �

CSE 4111/5111. George Tourlakis. Winter 2018

13

March ??

0.1.18 Remark. (Computably Enumerable Sets) There is an interesting
characterization of non-empty semi-computable sets that is found in all intro-
ductions to the theory of computation. These sets are precisely those that can
be “enumerated effectively” or “computably”, that is, we can prove that

A non-empty set S ⊆ N is semi-computable iff it is the range of some
f ∈ PR.

� The enumeration is not required to be 1-1, so there may be repetitions. Notice
that since the enumerating function is total, there will necessarily be repetitions
in the case when S is finite. �

What is the intuition for this? Well,

(1) Assume first that we have an algorithmic enumeration of all the members
of S. Here is then how to verify (semi-decide) the question x ∈ S: Given x,
start the algorithmic enumeration and keep an eye on what it “prints”. If
and when x is printed, then stop. We have verified x ∈ S. What if x /∈ S?
Well, then it will never be printed by the enumeration and we will never
stop our process.

(2) Conversely, assume that we have a verifier, M (a URM), for x ∈ S. We
write a new program N that behaves as follows: It systematically generates
all pairs of numbers (x, y), one at a time.

For example, one can enumerate all numbers

0, 1, 2, 3, . . . , z, . . .

in turn, and, for each z generated, one can generate the pair
(
(z)0, (z)1

)
.

For each pair generated, N checks whether M , on input x, halts within y
computation steps.§ If so, x is printed (as it clearly belongs to S).

Pause. Why make it so complicated and not instead enumerate all numbers
x in turn, and if M halts on x, then print x?J

The technique in (2) above is called dovetailing several computations (of M)
for several inputs “at once”. Well, strictly speaking, not “at once”. The method
implements, indeed sequentially simulates, a “poor person’s parallelism”, be-
cause, in essence, it simulates the in parallel examination of several questions
of the type “does M halt on x?”.

§Think of a “step” as the passage from one ID to the next.

CSE 4111/5111. George Tourlakis. Winter 2018

14

� The essential feature of parallelism is not the temporal simultaneity of testing
the questions “does M halt on x?” for various x, but rather the fact that if an
input x = a causes M to run forever, this does not affect, nor block, the testing
of other inputs for which M halts. A true parallel “environment” allocates
one process to each input x. On the other hand, dovetailing captures this key
property of parallelism and does so with a single computation process (or “single
processor”)! �

The simulation of parallelism is effected by allowing to each question grad-
ually more and more time (number of steps) to reach an answer. Notice that
since there are infinitely many pairs (a, y) with first component a, if M ever
halts on a—say, using y = b computation steps—then this fact will be eventu-
ally verified in the process (2): It will happen precisely when we will be testing
the pair (a, b).

An intuitively more immediate rearrangement of the dovetailing process of (2),
which demonstrates the sense in which dovetailing is approaching true paral-
lelism “in the limit”, is captured by the matrix below:

0; 1
0,1; 2
0,1,2; 3
0,1,2,3; 4
...
0,1,2,3,. . . , i; i+ 1
...

The number at the far right in each row is the number of steps that we let M
run. The other numbers in each row are the inputs we test for said number of
steps. In the “limit”, it is as if we are testing all inputs “simultaneously”: input
0 for one step; inputs 0 and 1 for two steps; inputs 0, 1 and 2 for three steps;
. . . , inputs 0, 1, . . . , i for i+ 1 steps; and so on. �

Mathematically, we repeat the above informal argument, (1) and (2), in
0.1.19 below to prove the italicized statement at the beginning of the previous
remark. Central in our preceding discussion was the concept of “step”. But what
is a step mathematically? We take as “step” to be the entire computation, coded
as y in the Kleene predicate T (i, x, y). That is, for any φi, its step-counting or
complexity function is

Φi = λx.(µy)T (i, x, y) (∗)

This is reasonable, since the computation y is a strictly increasing function of
how many ID-to-ID “real steps” took place in the (terminating) computation.

In fact, [Blu67] takes as the key, indeed defining, properties of the concept
of complexity of φi the following two:

(I) φi(x) ↓ iff Φi(x) ↓; that is, the program i halts on input x iff a complexity
of computation can be assigned for said input.

CSE 4111/5111. George Tourlakis. Winter 2018

15

(II) Φi(x) ≤ y is recursive; that is, we can decide whether machine i halts
within y (i.e., in ≤ y) “steps”.

[Blu67] takes (I)–(II) as the axioms for complexity theory, that is, without
specifying Φ explicitly. Many concrete choices of Φ that satisfy the axioms are
possible. By the way, for our chosen Φ in (∗), (I) is trivially obtained directly
from the normal form theorem. As for (II), Φi(x) ≤ y ≡ (∃z)≤yT (i, x, z) which
is more than recursive: primitive recursive.

On the other hand y < Φi(x) ≡ ¬Φi(y) ≤ y; also in PR∗.

� It is important to observe that we bypass (I), above, when we assess

Φi(x)
≤
=
≥
y

We do not compute Φi(x) (which may diverge!) to figure out the answer. �

0.1.19 Theorem. A non-empty set S ⊆ N is semi-computable iff it is the range
of some f ∈ PR.

Proof. For the part (1), let f be primitive recursive such that ran(f) = S. That
is,

y ∈ S ≡ (∃x)f(x) = y

Given that f(x) = y is in PR∗, y ∈ S is semi-computable by the projection
theorem (0.1.3).

For the dovetailing part, (2) of 0.1.18, assume that the non-empty S is semi-
computable. Let i be a semi-index for S, thus,

x ∈ S ≡ (∃y)T (i, x, y) (∗)

for all x. Following directly on the idea in (2), with the concept of “step” made
mathematically precise in the preceding remarks, we define the enumerating
function by:

f(z) =

{
(z)0 if T (i, (z)0, (z)1)

a otherwise

where “a” is some fixed member of S that we keep outputting every time the
condition “T (i, (z)0, (z)1)” fails,¶ ensuring that f is total. Of course f is prim-
itive recursive.

Is it true that ran(f) = S?

Indeed, as ran(f) contains only numbers of the form (z)0 such that T (i, (z)0, (z)1)
holds, it is immediate by (∗) that ran(f) ⊆ S. Conversely, let x ∈ S and let b
be a value of y that makes (∗) true. But then f([x, b]) = x, so x ∈ ran(f). �

The above result justifies the following nomenclature:

¶Condition failed: Either because we did not let the computation φi(x) to go on long
enough, or no terminating computation exists.

CSE 4111/5111. George Tourlakis. Winter 2018

16

0.1.20 Definition. A set S ⊆ N is called computably enumerable (c.e.) or re-
cursively enumerable (r.e.) iff it is either empty, or is the range of a primitive
recursive function. �

� There is no loss of generality in presenting the above definition for subsets of
N since via coding 〈. . .〉 it can be trivially and naturally extended to sets of
n-tuples for n > 1. A set S ⊆ Nn is c.e. iff there is a primitive recursive f such
that ran(f) = {〈~x〉 : S(~x)}. �

0.1.21 Corollary. A non-empty set S ⊆ N is semi-recursive iff it is c.e. (r.e.)

0.1.22 Corollary. A non-empty set S ⊆ Nn is semi-recursive iff it is c.e. (r.e.)

Proof. The if is straightforward, while the only if is a direct adaptation of the
proof of 0.1.19: Let

~xn ∈ S ≡ (∃y)T (n)(i, ~xn, y) (∗∗)

for all x. The enumerator f is given by

f(z) =

{
〈(z)0, . . . , (z)n−1〉 if T (n)(i, (z)0, . . . , (z)n−1, (z)n)

〈~an〉 otherwise

where “~an” is some fixed member of S. �

0.1.23 Corollary. A set S ⊆ Nn is semi-recursive iff it the range of an f ∈ P.

Proof. The only if is proved as above, where we just drop the “〈~an〉 otherwise”.
For the if, suppose that

y ∈ S ≡ (∃x)f(x) = y

By 0.1.5 and 0.1.14, the above yields S ∈ P∗. �

0.1.24� Example. (Another Very Hard Problem) The set R = {x : φx ∈
R}—which trivially is the same as {x : φx is total}—is very important in com-
putability. One certainly wants to know whether or not we can “tell” if a
program x computes a total function. We can tell in one of two ways: We can
fully (algorithmically) decide the question x ∈ R, or we can just verify it when
true. Which one is it here?

Neither. R is not semi-recursive, hence nor is it recursive. In that sense this
is another very hard—and very meaningful—problem of which we cannot even
verify the positive instances.

We prove the non semi-recursiveness by proving that R is not c.e. using
diagonalization. So, by way of contradiction, let f ∈ PR be such that R =
ran(f). This means that {φf(x) : x ∈ N} is the set of all total computable
functions of one variable. Consider the function d = λx.φf(x)(x) + 1.

By the preceding remark, and composition with the successor function, d ∈
R. Thus, for some i,

d = φf(i) (1)

CSE 4111/5111. George Tourlakis. Winter 2018

17

since R is the set of all programs that compute total 1-argument functions, thus
a program m for d must be an f(i).

What do we know of φf(i)(i)? Well,

φf(i)(i)
By (1)

= d(i)
By Def. of d

= φf(i)(i) + 1

A contradiction, since all sides of = are defined. So no such f exists, and R is
not c.e. � �

CSE 4111/5111. George Tourlakis. Winter 2018

18

0.1.25 Exercise. (Definition by Positive Cases) Consider a set of mutu-
ally exclusive relations Ri(~x), i = 1, . . . , n, that is, Ri(~x) ∧ Rj(~x) is false for
each ~x as long as i 6= j.

Then we can define a function f by positive cases Ri from given functions
fj by the requirement (for all ~x) given below:

f(~x) =



f1(~x) if R1(~x)

f2(~x) if R2(~x)

.

fn(~x) if Rn(~x)

↑ otherwise

Prove that if each fi is in P and each of the Ri(~x) is in P∗, then f ∈ P.
Hint. Use 0.1.5 along with closure properties of P∗ relations to examine

y = f(~x). �

� A semi-recursive predicate is “positive” having the form (∃y)Q(y, ~x) for some
recursive Q (0.1.3). It is also known as a Σ1 predicate.

It is important to note about the last case in the definition:
(1) The otherwise condition, is the negation of a positive predicate, namely,

of the semi-recursive R1∨· · ·∨Rn. A “negative” predicate such as this negation
has the form (∀y)R(y, ~x), for some recursive R, since it is the negation of one of
the form (∃y)Q(y, ~x), for some recursive Q. Such negative predicates are also
called Π1 predicates.

(2) Note that the “output” in the last case is ↑. This, intuitively, is as much
as is expected in general, given that, for example, the “otherwise” of some
positive cases, such as x ∈ K, are not even semi-recursive so that the obvious
“program” for the function f will enter into an infinite loop when pondering the
condition “otherwise”. �

CSE 4111/5111. George Tourlakis. Winter 2018

19

Bibliography

[Blu67] E. Blum, A machine-independent theory of the complexity of recursive
functions, ACM 14 (1967), 322–336.

[Rog67] H. Rogers, Theory of Recursive Functions and Effective Computability,
McGraw-Hill, New York, 1967.

CSE 4111/5111. George Tourlakis. Winter 2018

	Semi-computable Relations; Unsolvability

