
A Subset of the URM
Language; FA and NFA

This Note turns to a special case of the URM program-
ming language that we call Finite Automata, for short
FA.

This part presents almost a balance of How To and
Limitations of Computing topics.

Main feature of the latter will be the so-called “Pump-
ing Lemma”.
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0.1. The FA

The FA (programming language)† is introduced infor-
mally as a modified and restricted URM.

This new URM model will have explicit “read” in-
structions.∗

Secondly, any specific URM under this model will ONLY
have ONE variable that we may call generically “x”.

This variable will always be of type single-digit; it can-
not hold arbitrary integers, rather it can only hold single
digits as values.

†Note that some texts look at it as a “machine”, hence the terminology “automaton”.
∗In Notes #2 we explained why explicit read instructions are theoretically as redundant

as explicit write instructions are.
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The FA has no instructions —other than “read”—
compared to the FULL URM, except for a simplified if-
goto instruction.

� In the absence of a stop instruction, how does a compu-
tation halt?

We postulate that our modified URMs halt simply
by reading something that does not belong, that is, it
saw in the input stream an object that is not a member
of the input alphabet of permissible digits.

Such an “illegal” symbol serves as an end-marker of
the useful stream digits that constitute the input string
over the given alphabet. As such it is often called an
“end-of-file” marker, for short, eof.

This eof -marker is any “illegal” symbol, that is, a sym-
bol not in the particular FA’s INPUT ALPHABET. �

Thus the modified URM halts if IFF it runs out of
input, as this is signaled by it reading something NOT
in its input alphabet.
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� Our insistence on a URM-like model for the automaton
will be confined in this brief motivational introduction
and is only meant to illustrate the indebtedness of the fi-
nite automata model to the general URM model of Notes
#2, as promised above. �
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The FA has, for each label L, a group of instructions
as follows.

The typical group-instruction of an automaton.

L :



read

if x = a then goto M ′

if x = a′ then goto M ′′

...

if x = a(n) then goto M (n)

if x = eof then halt

where L and M ′, . . . ,M (n) are labels —not necessarily
distinct— and a, a′, . . . , a(n) are all the possible digit val-
ues in the context of a specific URM program, that is,
{a, a′, . . . , a(n)} is the input alphabet .

� The empty string, λ, will never be part of a FA’s input alphabet. �
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For any particular FA (program) —a particular FA, as
we say (omitting “program”)— labels, in practice, are
not restricted to be numerical nor even to be consecutive
(if numerical).

I However, one instruction’s placement is significant.

It is often identified by a label such as “0”, or “q0”, or
some such symbol and is placed at the very begin-
ning of the program.

This instruction’s label is called the initial state of
the specific automaton. Indeed, all labels in an automa-
ton are called states in the literature.

Pause. A finite automaton does not care about the
order of its other instructions, since they will be reach-
able by the goto-structure as needed wherever they are.J
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The semantics of the “typical” instruction above is:

• Read into the variable x the first unread digit-value
from some “external (to the FA) input stream” that
is waiting to be read.

• Then move to the next instruction as is determined
by the a(i)s (or the eof ) in the if-cases above (p.5).
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In order to have the FA make a decision about the
input string it just read, we (this is part of the design
of the particular FA program) partition the instruction-
labels of any given FA into two types: accepting and
rejecting.

Their role is as follows: Such an FA, when it has
halted,

Pause. When or if ?J

will have finished scanning a sequence of digits —a string
over its alphabet.

This string is accepted if the program halted
while in an accepting state, otherwise the input
is rejected.

0.1.1 Definition. (The Language of an FA)
The language decided by a FA M is called in the liter-

ature “the Language accepted by M”. It is, of course,

L(M)
Def
= {x : x is accepted by automaton M}

�
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� Since an FA cannot “write”, i.e., cannot change the con-
tents of x —since it does not have any of the instructions
x ← c, x ← x + 1, x ← x .− 1— we need the type of
state to “code” the yes/no (accept/reject) answer. �
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0.2. Deterministic Finite Automata and their
Languages

0.2.1 Example. Consider the FA below that operates
over the input alphabet {0, 1}

0 :


read

if x = 0 then goto 0

if x = 1 then goto 1

if x = eof then halt

1 :


read

if x = 0 then goto 1

if x = 1 then goto 0

if x = eof then halt

What does this program do? Once we have the graph
model, we will elaborate on what the above automaton
actually does. LATER!

In particular we will look into two cases:

• When only state 0 is accepting.

• When only state 1 is accepting.

�
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0.2.1. FA as Flow-Diagrams

Moving away from the URM-like programming language
for automata, we next consider a “flow chart” or “flow di-
agram” formalisation. This is achieved by first abstract-
ing an instruction

L : read; if x = a then goto M (1)

as the configuration below:

L
a

Figure capturing (1) above

Thus the “read” part is implicit, while the labeled ar-
row that connects the states L and M denotes exactly
the semantics of (1).
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� Therefore, an entire automaton can be viewed as a di-
rected graph —that is, a finite set of (possibly) labeled
circles, the states, and a finite set of arrows, the transi-
tions, the latter labeled by members of the automaton’s
input alphabet. �
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An arrow label a in the figure above represents “if
x = a then goto M”. The arrows or edges interconnect
the states. If L = M , then we have the configuration

a

L = M

where the optional label could be L, or M , or L = M

(as above), or nothing.

We depict the partition of states into accepting and re-
jecting by using two concentric circles for each accepting
state as below.

The special start state is denoted by drawing an arrow,
that comes from nowhere, pointing to the state.
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To summarise and firm up:

0.2.2 Definition. (FA as Flow Diagrams) A finite au-
tomaton, for short, FA, over the FINITE input alphabet Σ
is a finite directed graph of circular nodes —the states—
and interconnecting edges —the transitions— the latter
labeled by members of Σ.

We impose a restriction to the automaton’s structure:

I For every state L and every a ∈ Σ, there will be
precisely one edge, labeled a, leaving L and pointing to
some state M (possibly, L = M).

We say the automaton is fully specified (corresponding
to the italics in the part “For every state L and every
a ∈ Σ, there will be . . . ”) and deterministic (correspond-
ing to the italics in the part “there will be precisely one
edge, . . . ”).

This graph depiction of a FA is called its flow diagram
and is akin to a programming “flow chart”. �
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0.2.3� Remark. (1) Thus, full specification makes the
transition function total —that is, for any state-input
pair (L, a) as argument, it will yield some state as “out-
put”.

On the other hand, determinism ensures that the tran-
sition function is indeed a function (single-valued).

(2) On Digits. Each “legal” input symbol is a
member of the alphabet Σ, and vice versa. In the pream-
ble of this chapter we referred to such legal symbols
as “digits” in the interest of preserving the inheritance
from the URM of Notes #2, the latter being a number-
theoretic programming language.

But what is a “digit”? In binary notation it is one of 0
or 1. In decimal notation we have the digits 0, 1, . . . , 9. In
hexadecimal notation† we add the “digits” a, b, c, d, e, f

that have “values”, in that order, 10, 11, 12, 13, 14, 15.
The objective is to have single-symbol, atomic, digits to
avoid ambiguities in string notation.

Thus, a “digit” is an atomic symbol (unlike “10” or
“11”).

We will drop the terminology “digit” from now on.

Thus our automata alphabets are finite sets of symbols
—any length-ONE symbols, period. � �

†Base 16 notation.
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0.2.4 Example. Thus, if our alphabet is A = {0, 1},
then we cannot have the following configurations be part
of a FA.

Nontotal Transition Function

0

Non-determinism

0

0

�

0.2.5 Example. The FA of the example of 0.2.1, in flow
diagram form but with no decision on which state(s)
is/are accepting is given below:

0 0

1

1

We wrote q0 and q1 for the states “0” and “1” of 0.2.1.

�
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Another way to define a FA without the help of flow
diagrams is as follows:

0.2.6 Alternative Definition. (FA —Algebraically)
A finite automaton, FA, is a toolboxM = (Q,A, q0, δ, F ),‡

where

(1) Q is a finite set of states.

(2) A is a finite set of symbols; the input alphabet.

(3) q0 ∈ Q is the distinguished start state.

(4) δ : Q×A→ Q is a total function, called the transition
function.

(5) F ⊆ Q is the set of accepting states; Q−F is the set
of rejecting states. �

‡“M” is generic; for “machine”.

Intro to Automata© 2020, by George Tourlakis



18

0.2.7� Remark. Let us compare Definitions 0.2.2 and 0.2.6.

(1) The set of states corresponds with the nodes of the
graph (flow diagram) model. It is convenient —but
not theoretically necessary in general— to actually
name (label) the nodes with names from Q.

(2) The A in the flow diagram model is not announced
separately, but can be extracted as the set of all edge
labels.

(3) q0 —the start state by any name; q0 being generic—
in the graph model is recognised/indicated as the
node pointed at by an arrow that emanates from no
node.

(4) δ : Q × A → Q in the graph model is given by the
arrow structure: Referring to the figure at the begin-
ning of 0.2.1, we have δ(L, a) = M . � �
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How does a FA compute? From the URM analogy, we
understand the computation of a FA consisting of suc-
cessive

• read moves

• attendant changes of state

• until the program halts (by reading the eof ).

• At that point we proclaim that the string formed
by the stream of symbols read is accepted or rejected
according as the halted machine is in an accepting
or rejecting state.

Intro to Automata© 2020, by George Tourlakis



20

To formalise/mathematise FA computations as described
above, we use snapshots or Instantaneous Descriptions
(of a computation), for short IDs.

The IDs of the FA are very simple, since the machine
(program) is incapable of altering the input stream.

You do not need to keep track of how the contents of
variables change.
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0.2.8� Remark. We recall from discrete mathematics,
that a binary relation R is a set of ordered pairs and
we prefer to write aRb instead of (a, b) ∈ R or R(a, b).
For example, we write a ≤ b if R is ≤.

We also recall that the so-called transitive closure of
a relation R, denoted R+, is defined by

aR+b
Def
≡ aRa1Ra2 . . . am−1Rb, for some ai, i = 1, . . . ,m−1

We note that

for all i, aiRai+1Rai+2 is short for aiRai+1 and ai+1Rai+2

just as a ≤ b ≤ c means a ≤ b and b ≤ c.

The reflexive transitive closure of R is denoted by R∗

and is defined by

aR∗b
Def
≡ a = b ∨ aR+b

The following also are useful:

aRmb
Def
≡ aRa1Ra2Ra3Ra4 . . . am−2Ram−1Rb

that is, exactly m copies of R occur in the R-chain —or
just “chain” if R is understood—

aRa1Ra2Ra3Ra4 . . . am−2Ram−1Rb

Finally, “aR<mb” means “aRnb and n < m”. � �
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0.2.9 Definition. (FA Computations; Acceptance)
LetM = (Q,A, q0, δ, F ) be a FA, and x be an input string
—that is, a string over A that is presented as a stream
of (atomic) input symbols from A.

An M -ID or simply ID related to x is a string of the
form tqu, where q ∈ Q, and x = tu.

Intuitively, the expression tqu means that the comput-
ing agent, the FA, is in state q and that the next input
to process is the first symbol of u.

processed︷︸︸︷
t q u︸︷︷︸

to be processed

If u = λ —and hence the ID is simplified to tq— then
M has halted (has read eof ; no more input).

Formally, an ID of the form tq has no next ID. We call
it a terminal ID.

However, an ID of form tqau′, where a ∈ A, has a
unique next ID; this one: taq̃u′, just in case δ(q, a) = q̃.

We write

tqau′ `M taq̃u′
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or, simply (if M is understood)

tqau′ ` taq̃u′

and pronounce it “(ID) tqau′ yields (ID) taq̃u′”.

We say that M accepts the string x iff, for some q ∈ F ,
we have q0x `∗M xq.

The language accepted by the FA M is denoted gener-
ically by L(M) and is the subset of A∗ —this is notation
for the set of all strings over the alphabet A§— given by
L(M) = {x : (∃q ∈ F )q0x `∗M xq}.

An ID of the form q0x is called a start-ID. �

0.2.10� Remark.

(I) Of course, `∗M is the reflexive transitive closure of
`M and therefore I `∗M J —where I (not neces-
sarily a start-ID) and J (not necessarily terminal)
are IDs— means that I = J or, for some IDs Im,
m = 1, . . . , n− 1, we have an `M -chain

I `M I1 `M I2 `M I3 `M . . . `M In−1 `M J (1)

We say that we have an M -computation from I to
J iff we have I `∗M J . We say simply computation
if the “M -” part is understood.

§A+, by definition, is A∗ − {λ}.
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(II) There is a tight relationship between computations
and paths in a FA depicted as a graph.

To see this let us look at (1) above closer, namely,
let I = tp1a1a2 . . . anu where t is the part of the
input that was already read and processed before
we turned our attention to the computation, start-
ing with ID I.

Also, u is the part of the input string that we will
leave unprocessed after ID J , if indeed this ID is
not terminal.

I =tp1a1 . . . anu ` ta1p2a2 . . . tanu ` ta1a2p3a3 . . . anu ` etc.

` ta1 . . . pmam . . . anu ` ta1 . . . pm+1am+1 . . . anu ` etc.

` ta1 . . . anpn+1u = J

where above I used “. . .” within an ID to denote
not displayed symbols and used “etc.” between IDs
to denote not displayed IDs.

Note that each step (for any m = 1, . . . , n)

ta1 . . . pmam . . . anu ` ta1 . . . pm+1am+1 . . . anu

in the computation is possible (valid) IFF

δ(pm, am) = pm+1

iff the graph has the edge
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Having a computation segment —a subcomputa-
tion— due to an input sub-stream a1a2 . . . an is
equivalent to the existence of a labeled path —
that we will aptly call a computation path— in
the flow diagram M , from p1 to state pn+1 —fig.
below— whose labels, concatenated from left to right,
form the string a1a2 . . . an that was processed (and
“consumed”) by the subcomputation:

....

Figure 1: FA Computation Path

In particular, a string x = a1a2 . . . an over the in-
put alphabet belongs to L(M) —the Language Ac-
cepted (Decided) by the FA M ; cf. 0.1.1— iff it is
formed by concatenating the labels of a path such as
the above, where p1 = q0 (start state) and pn+1 is
accepting. In this case we have an accepting path.

We see that the flowchart model of a FA is more
than a static depiction of an automaton’s “vital”
parameters, Q, A, q0, δ, F . Rather, all computa-
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tions, including accepting computations, are also
encoded within the model as certain paths.

� �
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Lecture #19, Nov.23

The last few paragraphs were important. Let as sum-
marise:

0.2.11 Definition. (Graph acceptance) Let M be a
FA of start-state “p1” over the alphabet Σ.

Let x = a1a2 . . . an be a string over Σ.
Then x is accepted by M —equivalently x ∈ L(M)

(cf. 0.1.1)— iff x is the label of a computation path in
the graph version of M in the sense that x is obtained by
concatenating the names a1, a2, . . ., an OF THE EDGES
of said computation path (cf. Fig. 1) that starts at p1 and
ends at an accepting state pn+1. The latter state has just
scanned eof thus it caused M to halt. �
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Armed with Definition 0.2.11, let us consider an ex-
ample and shed more light on what exactly is eof .

0.2.12 Example.
Compilers, that is, Systems Programs that read

programs written in a high level programming language
like C and translate them into assembly language have
several subtasks.

One of them is delegated to the so-called “scanner” or
“token scanner” of the compiler and is the task of pick-
ing up variables from the program source. To “pick up”
a variable, the scanner has to “recognise” that it saw one!
Well, an automaton can do that!

Assume (as typically is the case) that the syntax of a
variable is a string that

• begins with a letter

and

• continues with letters or digits.
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To simplify the example and not get lost in details, we
denote the input alphabet of the automaton that we will
build here Σ = {L,D} where the symbol L stands for
any letter (in real life, one uses the members of the set
{A, B, C, . . . , Z; a, b,. . . , z}, sometimes augmented by
some special symbols like $ and underscore).

Similarly the symbol D in our alphabet stands for
digit (in real life, one has here the set of {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}).
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Using the characterisation of acceptance in 0.2.11, here
is our design:

0

1

T

L

D

L, D

L, D

The only paths to state “1” (accepting) are labelled with
L, followed by zero or more L and/or D in any order.
That’s the right syntax we want!

What is the role of state “T”?

T for trap! We do not want the first symbol of a vari-
able to be other than L. So, if it is D we go to trap, never
to exit from it (inputs L or D keep you in T, which is
NOT an accepting state!)

I What if input is λ? We do not want that to be
accepted either!

We are good since “0” —the start state— is NOT
accepting. If λ was the string provided as input (not
something starting with D), then immediately 0 “sees”
eof and halts. “0” being not accepting, λ is rejected!
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Finally, let us familiarise a bit more with eof .

This is not a unique end marker but is context depen-
dent. In the context of variable names, in something like

LLLDDD + +

(in C++) the first + is eof as it is not in the alphabet
of our scanner FA! Ditto if we had

LDDD := (LDLDDD + LLL)

in, say, Pascal. The first variable “LDDD” has “:” as
eof . The second one “LDLDDD” has “+” as eof . The
third one “LLL” has “)” as eof . �
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0.2.13 Proposition. If M is a FA, then λ ∈ L(M) iff
q0 —the start state— is an accepting state.

Proof. First, say λ ∈ L(M).

By 0.2.11, we have a path labeled λ from q0 to some
accepting p.

Since there are no symbols in λ to consume the only
application of “read” gave us eof and we are still at q0.
Thus q0 = p must be accepting.

Conversely, let q0 is accepting.

The input stream looks like λ¶, where I generically
indicated eof by “¶”. This ¶ is scanned by q0 and halts
the machine right away.

But q0 is accepting and λ is what was consumed before
hitting eof . Thus λ is accepted: λ ∈ L(M). �
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0.2.14 Example.
Here is another example that we promised. Refer to

Example 0.2.5. Consider the case where q0 is accepting.
Then the only possible acceptable strings x will have an
even number of 1s —even parity— since to go from q0
back to q0 we need to consume a 1 going and a 1 coming.

But do we get an arbitrary string otherwise? Yes, since
between any two consecutive 1s —and before the first 1
and after the last 1 we can consume any number of 0s.

Clearly, if q1 was the accepting state instead, then we
have an odd number of 1s in the accepting path since to
end on q1 as accepting state we need one 1, or three, or
five, . . . . We add two 1s every time to leave q1 and to go
back. �

0.2.15� Remark. BTW, for any M , the set L(M) —
considered as a set of numbers since the symbols in the
alphabet are essentially digits— is decidable!

The question x ∈ L(M) is decided by the FA M itself:
x ∈ L(M) iff we have an accepting computation of M
with input x. Cf. 0.2.11.

Wait! Is not decidability defined in terms of URMs?
Yes, but an FA is a special case of a URM! � �
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