A user-friendly
Introduction to

(un) Computability
and Unprovability
via “Church’s Thesis”
Part I1I

0.1. Recursively Enumerable Sets

In this section we explore the rationale behind the al-
ternative name “recursively enumerable” —r.e.— or “com-
putably enumerable” —c.e.— that is used in the literature
for the semi-recursive or semi-computable sets/predicates.

To avoid cumbersome codings (of n-tuples, by single
numbers) we restrict attention to the one variable case
in this section.

That is, our predicates are subsets of N.

Intro to (un)Computability via URMs—Part II (©) by George Tourlakis

First we define:

0.1.1 Definition. A set A C N is called computably
enumerable (c.e.) or recursively enumerable (r.e.) pre-
cisely if one of the following cases holds:

e A=10
e A =ran(f), where f € R.

Thus, the c.e. or r.e. relations are exactly those we can
algorithmically enumerate as the set of outputs
of a (total) recursive function:

A= {f(0), F1). f(2),. .., f(x),..}

Hence the use of the term “c.e.” replaces the non techni-
cal term “algorithmically” (in “algorithmically” enumer-
able) by the technical term “computably”.

Note that we had to hedge and ask that A # 0 for any
enumeration to take place, because no recursive function
(remember: these are total) can have an empty range.

Intro to (un)Computability via URMs—Part II (©) by George Tourlakis

4

0.1. Recursively Enumerable Sets 3
Next we prove:

0.1.2 Theorem. (“c.e.” or “r.e.” vs. semi-recursive)
Any non empty semi-recursive relation A (A C N) is the
range of some (emphasis: total) recursive function of
one variable.

Conversely, every set A such that A = ran(f) —where

Ax.f(x) is recursive— is semi-recursive (and, trivially,
nonempty).

Intro to (un)Computability via URMs—Part II (©) by George Tourlakis

Before we prove the theorem, here is an example:

0.1.3 Example. The set {0} is c.e. Indeed, f = A\z.0,
our familiar function Z, effects the enumeration with rep-
etitions (lots of them!)

xr =0 1 2 3 4
f)=0 0 0 0 0

Proof. of Theorem 0.1.2.

(I) We prove the first sentence of the theorem.
So, let A # () be semi-recursive.
By the projection theorem (see Notes #7) there is
a recursive relation Q(y, x) such that

r e A= (Jy)Q(y,x), for all x (1)

Thus, the totality of the x in A are the 2nd coor-
dinates of ALL pairs (y,x) that satisfy Q(y,).

So, to enumerate all x € A just enumerate all pairs
(y,x), and OUTPUT =« just in case (y,z) € Q.

Intro to (un)Computability via URMs—Part II (©) by George Tourlakis

0.1. Recursively Enumerable Sets 5
We enumerate all POSSIBLE PAIRS vy, x by

(y = (2)o, = =(2)1)
for each 2 =0,1,2,3,....

Recall that A # (). So fix an a € A. f below does
the enumeration!

The above is a definition by recursive cases hence
f is a recursive function, and the values x = (2);

that it outputs for each z = 0,1, 2,3, ... enumerate
A.

Intro to (un)Computability via URMs—Part II (©) by George Tourlakis

(IT) Proof of the second sentence of the theorem.
So, let A = ran(f) —where f is recursive.
Thus,
z€A= () fly) =2 (1)
By Grz-Ops, plus the facts that z = x s in R, and

the assumption f € R,

the relation f(y) = x is recursive.

By (1) we are done by the Projection Theorem.
U

Intro to (un)Computability via URMs—Part II (©) by George Tourlakis

0.1. Recursively Enumerable Sets 7

0.1.4 Corollary. An A C N s semi-recursive iff it is
r.e. (c.e.)

Proof. For nonempty A this is Theorem 0.1.2. For empty
A we note that this is r.e. by Definition 0.1.1 but is also
semi-recursive by) € PR, C R, C P.. 0

Corollary 0.1.4 allows us to prove some non-semi-recursiveness
results by good old-fashioned Cantor diagonalisation.

See below. @

Intro to (un)Computability via URMs—Part II (©) by George Tourlakis

8

0.1.5 Theorem. The complete index set A = {z : ¢, €
R} is not semi-recursive.

This sharpens the undecidability result for A that we es-
tablished in Note #7. @

Proof. Since c.e. = semi-recursive, we will prove instead
that A is not c.e.

If not, note first that A #) —e.g., S € R and thus
all ¢-indices of A are in A.

Thus, theorem 0.1.2 applies and there is an [€ R
that enumerates A:

A={(0),f(1), f(2), f(3),.. .}

The above says: ALL programs for unary R-functions are f(i)’s.

Define now
d=Ax.1+ qbf(x)(:z:) (1)

Seeing that ¢, (z) = UP)(f(z),) —you remember
U") 72— we obtain d € P.

But ¢y, is total since all the f(x) are ¢-indices of
total functions by the underlined blue comment above.
By the same comment,

d = ¢y, for some i (2)

Intro to (un)Computability via URMs—Part II (©) by George Tourlakis

0.1. Recursively Enumerable Sets 9
Let us compute d(i): d(i) = 1+ ¢;(3) by (1).

thus
L+ ¢py (1) = by (4)

“__»

which is a contradiction since both sides of are

defined. O

@ One can take as d different functions, for example, either
of d = Av42 4 ¢ppy(x) or d = Ax.1 = ¢y(y)(x) works.
And infinitely many other choices do! @

Intro to (un)Computability via URMs—Part II (©) by George Tourlakis

10

Lecture #17, Nov. 16

0.2. Some closure properties of decidable and
semi-dectdable relations

We already know that

0.2.1 Theorem. R, is closed under all Boolean opera-
tions, =, \,V,—, =, as well as under (Iy)~, and (Vy)..

How about closure properties of P,”

Intro to (un)Computability via URMs—Part II (©) by George Tourlakis

0.2. Some closure properties of decidable and semi-decidable relations 11

0.2.2 Theorem. P, s closed under N\ and V. It is also
closed under (y), or, as we say, “under projection”.

Moreover it is closed under (Jy)<. and (Vy)<..

It is not closed under negation (complement), nor un-
der (Vy).

Proof.
1. Let Q(Z,) be verified by a URM M, and S(¢,,) be
verified by a URM N.
Here is how to semi-decide Q(Z,) V S(y):
Given input 7, ¥,,, we call machine M with input

Zp, and machine N with input ¥, and let them crank
simultaneously (as “co-routines”).

If either one halts, then halt everything! This is
the case of “yes” (input verified).

2. For A it is almost the same, but our halting criterion
is different:

Here is how to semi-decide Q(Z,) A S(y):

Given input 7, ¥,,, we call machine M with input
Zp, and machine N with input ¥, and let them crank
simultaneously (“co-routines”).

If both halt, then halt everything!

By CT, each of the processes in 1. and 2. can be
implemented by some URM.

Intro to (un)Computability via URMs—Part II (©) by George Tourlakis

12

3. The (Jy) is very interesting as it relies on the

Projection Theorem:

Let Q(y, Z,) be semi-decidable. Then, by Projection
Theorem, a decidable P(z,y, ¥,) exists such that

Qy, 7n) = (32)P(z,y, 70 (1)
It follows that
(Fy)Q(y.) = (Fy)(32) P(z, ¥, 7,) (2)

This does not settle the story, as I cannot readily
conclude that (Jy)(32)P(z,y,T,) is semi-decidable
»because the Projection Theorem requires a single
(dy) in front of a decidable predicate!

Well, instead of saying that there are two values
z and y that verify (along with Z,) the predicate
P(z,y,%,), I can say there is a PAIR of values (z,vy).

In fact I can CODE the pair as w = (z,y) and say
there is ONE value, w:

z y

@w)P(wh, (),)

and thus I have —by (2) and the above—

(Fy)Q(y, Zn) = Bw)P((w)o, (W), Zn) — (3)

Intro to (un)Computability via URMs—Part II (©) by George Tourlakis

0.2. Some closure properties of decidable and semi-decidable relations 13

But since P((w)o, (w),#,) is recursive by the de-
cidability of P and Grz-Ops, we end up in (3) quan-
tifying the decidable P((w)g, (w)1, Z,,) with just one
(Jw). The Projection Theorem now applies!

4. For (Fy)-.Q(y,¥), where Q(y,Z) is semi-recursive,
we first note that

()<-Qy.) = By (y < 2 A Q7)) (+)

By PR, C R, C P,, y < z is semi-recursive. By
closure properties established SO FAR in this proof,
the rhs of = in (x) is semi-recursive, thus so is the
lhs.

Intro to (un)Computability via URMs—Part II (©) by George Tourlakis

14

5. For (Vy)-.Q(y,), where Q(y,Z) is semi-recursive,

we first note that (by Strong Projection) a decid-
able P exists such that

Qy, 7) = (Fuw)P(w,y, T)
By the above equivalence, we need to prove that
(Vy) <. (3w) P(w, y, Z) is semi-recursive (xx)

(*x) says that

for each y = 0,1,2,...,2 — 1 there is a w-value w,
—likely dependent on y— so that P(w,,y, ¥) holds

Since all those w,, are finitely many (z many!) there
is a value u bigger than all of them (for example,
take u = max(wp,...,w,—1) + 1). Thus (xx) says
(i.e., is equivalent to)

(Fu)(Vy)<-(Fw) <u P(w, y, T)

The blue part of the above is decidable (by closure
properties of R,, since P € R, —you may peek at
0.2.1). We are done by strong projection.

Intro to (un)Computability via URMs—Part II (©) by George Tourlakis

0.2. Some closure properties of decidable and semi-decidable relations 15

6. Why is P, not closed under negation (complement)?

Because we know that K € P,, but also know that
K ¢ P..

7. Why is P, not closed under (Vy)?

Well,
v € K = (Jy)Q(y,) (1)

for some recursive (Projection Theorem) and by
the known fact (quoted again above) that K € P..

(1) is equivalent to

v € K =-(3)Q(y,)

which in turn is equivalent to

z € K = (Vy)=Q(y, x) (2)

Now, by closure properties of R, See 0.2.1), =Q(y, x)
is recursive, hence also is in P, since R, C P;.

Therefore, if P, were closed under (Vy), then the above
(Vy)—Q(y, x) would be semi-recursive.

But that is z € K !]

Intro to (un)Computability via URMs—Part II (©) by George Tourlakis

16

0.3. Some tricky reductions

This section highlights a more sophisticated reduction
scheme that improves our ability to effect reductions of
the type K < A.

Intro to (un)Computability via URMs—Part II (©) by George Tourlakis

0.3. Some tricky reductions 17

0.3.1 Example. Prove that A = {z : ¢, is a constant}
is not semi-recursive. This is not amenable to the tech-
nique of saying “OK, if A is semi-recursive, then it is r.e.
Let me show that it is not so by diagonalisation”. This
worked for B = {z : ¢, is total} but no obvious diago-
nalisation comes to mind for A.

Nor can we simplistically say, OK, start by defining
(z,1) 0 ifrekK
T,y) =
T =34 othw

The problem is that if we plan next to say “by CT ¢ is partial
recursive hence by S-m-n, etc.”, we_shouldn’t!

The underlined part is wrong: g ¢ P, provably!

» For if it is computable, then so is Az.g(x, z) by Grz-
Ops.

But

g(z,r) | iff we have the top case, iff # € K

In short,
reK=g(x,1)l

which proves that K € P, using the verifier for “g(x, x) |”.
Contradiction.]

Intro to (un)Computability via URMs—Part II (©) by George Tourlakis

18

0.3.2 Example. (0.3.1 continued) Now, “Plan B” is
to “approximate” the top condition ¢,(x) 1 (same as
z € K).

The idea is that, “practically”, if the computation
¢, () after a “huge” number of steps y has still not
hit stop, this situation approximates —let me say once
more, “practically”— the situation ¢,(z) 1. This fuzzy
thinking suggests that we try next

0 if ¢.(x) did not return in < y steps
f(z,y) =
T othw

If the top condition is true for a given z it means
that at step y the URM that we picked to compute ¢, ()
has not hit stop yet.

The “othw” says, of course, that the computation of
the call ¢, (x) —or UP)(x, 2)— did return in y steps or
fewer.

Next step is to invoke an S-m-n theorem application,
so we must show that f defined above is computable.
Well here is an informal algorithm:

; keep count of computation steps
Return 0 if ¢,(x) did not return in < y steps
3) “Loop” if ¢,(x) returned in < y steps

Intro to (un)Computability via URMs—Part II (©) by George Tourlakis

0.3. Some tricky reductions 19

Of course, the “command” Loop means
“transfer to the subprogram” while 1=1 do { }

By CT, the pseudo algorithm (0)—-(3) is implementable
as a URM. That is, [€ P.

By S-m-n applied to f there is a recursive k such that

0 if ¢,(z) did not return in < y steps
T othw
(1)

Analysis of (1) in terms of the “key” conditions
¢(x) T and ¢, (x) |:
(A) Case where ¢,(x) 1.
Then, ¢,(z) did not halt in y steps, for any y!
Thus, by (1), we have ¢y, (y) = 0, for all y, that

is,

¢x($) T= ¢k(1’) = \y.0 (2)

Intro to (un)Computability via URMs—Part II (©) by George Tourlakis

20

(B) Case where ¢,(x) |. Let m = smallest y such that
the call ¢, (x) ended in m steps. Therefore,

e for step counts y = 0,1,2,...,m — 1 the compu-
tation of U")(z, x) has not yet hit stop, so the
top case of definition (1) holds. We get

for y =0, 1, ..., m-—1

e for step counts y = m,m + 1,m + 2,... the
computation of U")(z,) has already halted (it
hit stop), so the bottom case of definition (1)
holds. We get

for y =m, m+1, m+42,
¢k(aj) (y):Ty T; Ta
for short:

length m

———

In
length m

——
Dh(z) = (0,0,...,0)
we depict the function ¢y, as an array of its
m output values.

Intro to (un)Computability via URMs—Part II (©) by George Tourlakis

0.3. Some tricky reductions 21

@ Thus, in Plain English, when ¢,(z) |, the function
Pr(z) 1s NOT a constant! Not even totall @

Our analysis yielded:
{Ay.o if o () 1

not a constant function if ¢,(z) |

Pr(z) = (4)

We conclude now as follows for A = {z : ¢, is a constant}:

k(z) € Aiff ¢y, is a constant iff the top case of (4) applies
iff () 1

That is, » € K = k(x) € A, hence K < A, O

Intro to (un)Computability via URMs—Part II (©) by George Tourlakis

22

0.3.3 Example. Prove (again) that B = {x : ¢, €
R} = {x : ¢, is total} is not semi-recursive.

We piggy back on the previous example and the same
f through which we found a k£ € R such that

A0 if 6, (2) 1
¢k(w) — length m (5)
(0,0,..,0) if ¢u(z) |

The above is (4) of the previous example, but we will
use different English words to describe the bottom case,
which we displayed explicitly in (5).

length m

/_/A))
Note that (0,0,...,0) is a non-recursive (nontotal)
function listed as a finite array of outputs. Thus we
have

S = {Ay.o o)t g

nontotal function if ¢, (x) |
and therefore
k(z) € B iff ¢y, is total iff the top case of (6) applies iff ¢,(z) 1
That is, z € K = k(z) € B, hence K < B.]

Intro to (un)Computability via URMs—Part II (©) by George Tourlakis

0.3. Some tricky reductions 23

0.3.4 Example. We will prove that D = {z : ran(¢,) is
infinite} is not semi-recursive.

We (heavily) piggy back on Example 0.3.2 above.

We want to find j € R such that

{ inf. range if ¢, (x) 1
Pjw) =

finite range if ¢, (x) | (*)

OK, define ¢ (almost) like f of Example 0.3.2 by

y if the call ¢,(z) did not return in < y steps
(z,y) =
1T othw

Other than the trivial difference (function name) the
important difference is that we force infinite range in the
top case by outputting the input .

The argument that ¢ € P goes as the one for f in Ex-
ample 0.3.2. The only difference is that in the algorithm
(0)—(3) we change “Return 0” to “Return y”.

The question ¢ € P settled, by S-m-n thereisa j € R
such that

y if the call ¢,(x) returns in < y steps

D) (y) =
1T othw

(t)

Intro to (un)Computability via URMs—Part II (©) by George Tourlakis

24

Analysis of (1) in terms of the “key” conditions
bu(x) 1 and ,(z) |:
(I) Case where ¢,(x) 1.

Then, for all input values y, ¢,(x) is still not at
stop after y steps. Thus by (1), we have ¢;(,)(y) =
y, for all y, that is,

(IT) Case where ¢,(z) |. Let m = smallest y such
that the call ¢.(x) returned in m steps.

As before we find that for y =0,1,...,m — 1 we
have ¢;,)(y) = y, that is,

for y =0, 1, ..., m—1
di(¥)=0, 1, ..., m—1

and as before,

for y =m, m+1, m+2,
Gi(y)=1, T 1,

that is,

Oz () | = gbj(x) = (0,1,...,m—1) —finite range
(2)

(1) and (2) say that we got (x¥) —p.23— above.
Thus

j(x) € D iff ran(¢j(,) infinite iff top case holds, iff ¢,(z) T

Thus?gDviaj.]

Intro to (un)Computability via URMs—Part II (©) by George Tourlakis

	Recursively Enumerable Sets
	Some closure properties of decidable and semi-decidable relations
	Some tricky reductions

