
A user-friendly
Introduction to
(un)Computability
and Unprovability
via “Church’s Thesis”
Part II

This is Part II of our Uncomputability notes.

We introduce “half-computable” relations Q(~x) here.

These play a central role in Computability.

The term “half-computable” describes them well: For each of these relations

there is a URM M that will halt precisely for the inputs ~a that
make the relation true:

i.e., ~a ∈ Q or equivalently Q(~a) is true.

For the inputs that make the relation false —
~b /∈ Q— M loops forever.

That is, M verifies membership but does not yes/no-decide it by halting
and “printing” the appropriate 0 (yes) or 1 (no).
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Can’t we tweak M into M ′ that is a decider of such a Q?

No, not in general! For example, the halting set K has a verifier

� Right? x ∈ K ≡ φx(x) ↓≡ U (P )(x, x) ↓.

So any program MX
Y for the partial recursive λx.U (P )(x, x) is a verifier

for x ∈ K. See also 0.1.2 below. �

But we KNOW that x ∈ K has NO decider!

Since the “yes” of a verifier M is signaled by halting but the “no” is signaled
by looping forever,

the definition below does not require the verifier to print 0 for “yes”. Here “yes”
equals “halting”.
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0.1. Semi-decidable relations (or sets)

0.1.1 Definition. (Semi-recursive or semi-decidable sets)

A relation Q(~xn) is semi-decidable or semi-recursive —what we
called suggestively “half-computable” above—

iff

there is a URM, M , which on input ~xn has a ( halting!) computation
iff ~xn ∈ Q.

The output of M is unimportant!

A less civilized, but more mathematically precise way to say the above is:

A relation Q(~xn) is semi-decidable or semi-recursive iff there is an f ∈ P
such that

Q(~xn) ≡ f(~xn) ↓ (1)

Clearly, an f ∈ P is some M~xn
y . Thus, M is a verifier for Q.

The set of all semi-decidable relations we will denote by P∗.† �

†This is not a standard symbol in the literature. Most of the time the set of all semi-
recursive relations has no symbolic name! We are using this symbol in analogy to R∗—the
latter being fairly “standard”.
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The following figure shows the two modes of handling a query, “~xn ∈ A”, by
a URM.

A  Decider

"yes"=print"0"
andhalt

"yes"=justhalt.
Output is irrelevant

"no"=print"1"
andhalt "no"=loop

for ever

input input

A Verifier

A URM for the

    problem
A URM for the

     problem
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Here is an important semi-decidable set.

0.1.2� Example. K is semi-decidable. To work within the formal definition
(0.1.1) we note that the function λx.φx(x) is in P via the universal function
theorem of Part I: λx.φx(x) = λx.U (P )(x, x) and we know U (P ) ∈ P.

Thus x ∈ K ≡ φx(x) ↓ settles it. By Definition 0.1.1 (statement labeled (1))
we are done. � �

0.1.3� Example. Any recursive relation A is also semi-recursive.

That is,
R∗ ⊆ P∗

Indeed, intuitively, all we need to do to convert a decider for ~xn ∈ A into
a verifier is to “intercept” the “print 1”-step and convert it into an “infinite
loop”,

k : goto k

By CT we can certainly do the whole thing via a URM implementation.

A more elegant way (which still invokes CT) is to say, OK: Since A ∈ R∗, it
follows that cA, its characteristic function, is in R.

Define a new function f as follows:

f(~xn) =

{
0 if cA(~xn) = 0

↑ if cA(~xn) = 1

This is intuitively computable (the “↑” is implemented by the same “piece of
code” as above).

Hence, by CT, f ∈ P. But

~xn ∈ A ≡ f(~xn) ↓

because of the way f was defined. Definition 0.1.1 rests the case.
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One more way to do this: Totally mathematical (“formal”, as people say
incorrectly†) this time!

OK,
f(~xn) = if cA(~xn) = 0 then 0 else ∅(~xn)

That is, using the sw function that is in PR and hence in P, as in

f(~xn) = if

cA(~xn)
↓
z = 0 then

0
↓
u else

∅(~xn)
↓
w

∅ is, of course, the empty function which by Grz-Ops can have any number of
arguments we please! For example, we may take

∅ = λ~xn.(µy)g(y, ~xn)

where g = λy~xn.SZ(y) = λy~xn.1.

In what follows we will prefer the informal way (proofs by Church’s Thesis)
of doing things, most of the time. �

�

An important observation following from the above examples deserves the-
orem status:

†“Formal” refers to syntactic proofs based on axioms. Our “mathematical” proofs are
mostly semantic, depend on meaning, not just syntax. That is how it is in the majority of
MATH publications.
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0.1.4 Theorem. R∗ ⊂ P∗

Proof. The ⊆ part of “⊂” is Example 0.1.3 above.

The 6= part is due to K ∈ P∗ (0.1.2) and the fact that the halting problem
is unsolvable (K /∈ R∗).

So, there are sets in P∗ (e.g., K) that are not in R∗. �

What about K, that is, the complement

K = N−K = {x : φx(x) ↑}

of K? Is it perhaps semi-recursive ( verifiable)?
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The following general result helps us handle the above question.

0.1.5 Theorem. A relation Q(~xn) is recursive iff both Q(~xn) and ¬Q(~xn) are
semi-recursive.

� Before we proceed with the proof, a remark on notation is in order.
In “set notation” we write the complement of a set, A, of n-tuples as A.

This means, of course, Nn −A, where

Nn = N× · · · × N︸ ︷︷ ︸
n copies of N

In “relational notation” we write the same thing (complement) as

¬A(~xn)

Similarly,

“set notation”: A ∪B, A ∩B

“relational notation”: A(~xn) ∨B(~ym), A(~xn) ∧B(~ym) �

Back to the proof.

Proof. We want to prove that some URM, N , decides

~xn ∈ Q

We take two verifiers, M for “~xn ∈ Q” and M ′ for “~xn ∈ Q”,† and run them
—on input ~xn— as “co-routines” (i.e., we crank them simultaneously).

If M halts, then we stop everything and print “0” (i.e., “yes”).

If M ′ halts, then we stop everything and print “1” (i.e., “no”).

CT tells us that we can put the above —if we want to— into a single URM,
N . �

†We can do that, i.e., M and M ′ exist, since both Q and Q are semi-recursive.
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0.1.6� Remark. The above proof handled only the “if” direction. For the “only
if” this is trivial:

R∗ is closed under complement (negation) as we showed way back in a pre-
vious Note.

Thus, if Q is in R∗, then so is Q, by closure under ¬. By Theorem 0.1.4,
both of Q and Q are in P∗. � �

0.1.7� Example. K /∈ P∗.

Now, this (K) is a horrendously unsolvable problem! This problem is so
hard it is not even semi-decidable!

Why? Well, if instead it were K ∈ P∗, then combining this with Exam-
ple 0.1.2 and Theorem 0.1.5 we would get K ∈ R∗, which we know is not true.

� �
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0.2. Unsolvability via Reducibility

We turn our attention now to a methodology towards discovering new unde-
cidable problems, and also new non semi-recursive problems, beyond the ones
we learnt about so far, which are just,

1. x ∈ K,

2. φi = φj (equivalence problem)

3. and x ∈ K.

In fact, we will learn shortly that φi = φj is worse than undecidable; just
like K it too is not even semi-decidable.
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The tool we will use for such discoveries is the concept of reducibility of
one set to another:

0.2.1 Definition. (Strong reducibility) For any two subsets of N, A and B,
we write

A ≤m B†

or more simply
A ≤ B (1)

pronounced A is strongly reducible to B, meaning that there is a (total) recur-
sive function f such that

x ∈ A ≡ f(x) ∈ B (2)

We say that “the reduction is effected by f”.

The last sentence has the notation A ≤f B. �

� In words, A ≤m B says that we can algorithmically solve the problem x ∈ A if
we know how to solve z ∈ B. The algorithm is:

1. Given x.

2. Given the “subroutine” z ∈ B.

3. Compute f(x).

4. Give the same answer for x ∈ A (true or false) as you do for f(x) ∈ B.

�

†The subscript m stands for “many one”, and refers to f . We do not require it to be 1-1,
that is; many (inputs) to one (output) will be fine.
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When A ≤m B holds, then, intuitively,

“A is easier than B to either decide or verify”

since if we know how to decide or (only) verify membership in B then we
can decide or (only) verify membership in A: “x ∈ A?”

All we have to do is compute f(x) and ask instead the
question “f(x) ∈ B” which we can decide or verify .

This observation has a very precise counterpart (Theorem 0.2.3 below).
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0.2.2 Lemma. If Q(y, ~x) ∈ P∗ and λ~z.f(~z) ∈ R, then Q(f(~z), ~x) ∈ P∗.

Proof. By Definition 0.1.1 there is a g ∈ P such that

Q(y, ~x) ≡ g(y, ~x) ↓ (1)

Now, for any ~z, f(~z) is some number which if we plug into y in (1) we get
an equivalence:

Q(f(~z), ~x) ≡ g(f(~z), ~x) ↓ (2)

But λ~z~x.g(f(~z), ~x) ∈ P by Grz-Ops. Thus, (2) and Definition 0.1.1 yield
Q(f(~z), ~x) ∈ P∗. �

0.2.3 Theorem. If A ≤g B in the sense of 0.2.1, then

(i) if B ∈ R∗, then also A ∈ R∗

(ii) if B ∈ P∗, then also A ∈ P∗

Proof.

(i) The assumption says that z ∈ B is in R∗.

So is g(x) ∈ B by Grz. Ops. (Way back).

But x ∈ A ≡ g(x) ∈ B, so x ∈ A is in R∗.

(ii) Let z ∈ B be in P∗.
By 0.2.2, so is g(x) ∈ B. But this says x ∈ A. �
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Taking the “contrapositive”, we have at once:

0.2.4 Corollary. If A ≤ B in the sense of 0.2.1, then

(i) if A /∈ R∗, then also B /∈ R∗

(ii) if A /∈ P∗, then also B /∈ P∗
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We can now useK andK as a “yardsticks” —or
reference “problems”— and discover new undecid-
able and also non semi-decidable problems.

The idea of the corollary is applicable to the so-called “complete index sets”.

0.2.5 Definition. (Complete Index Sets) Let C ⊆ P and A = {x : φx ∈ C}.

A is thus the set of ALL programs (known by their addresses) x that com-
pute any unary f ∈ C:

Indeed, let λx.f(x) ∈ C. Thus f = φi for some i. Then i ∈ A.

But this is true of all φm that equal f .

We call A a complete index (programs-) set. �
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We embark on several examples, but first note the FORM of S-m-n Theorem
that we will be using going forward:

0.2.6 Theorem. (S-m-n in practice) If ψ ∈ P has two arguments, then
there is a unary h ∈ R such that

ψ(x, y) = φh(x)(y) (1)

for all x, y.

Proof. Fix an i such that ψ(x, y) = φ
(2)
i (x, y), for all x, y.

By S-m-n, we have a recursive λix.S1
1(i, x) such that

φ
(2)
i (x, y) = φS1

1(i,x)
(y)

for all i, x, y.

But i is fixed.

Thus λx.S1
1(i, x) is the “h” we want. �
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0.2.7 Example. The set A = {x : ran(φx) = ∅} is not semi-recursive.

� Recall that “range” for λx.f(x), denoted by ran(f), is defined by

{x : (∃y)f(y) = x}

�

We will try to show that
K ≤ A (1)

If we can do that much, then Corollary 0.2.4, part ii, will do the rest.

Well, define

ψ(x, y) =

{
0 if φx(x) ↓
↑ if φx(x) ↑

(2)

Here is how to compute ψ:

• Given x, y, ignore y.

• Call φx(x) —that is, U (P )(x, x),

• If the call ever returns, then print “0” and halt everything.

• If it never returns, then this agrees with the specified in (2) behaviour for
ψ(x, y).

By CT, ψ is in P, so, by the S-m-n Theorem, there is a recursive h such that

ψ(x, y) = φh(x)(y), for all x, y

� You may NOT use S-m-n UNTIL after you have proved that your
“λxy.ψ(x, y)” is in P. �
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We can rewrite this as,

φh(x)(y) =

{
0 if φx(x) ↓
↑ if φx(x) ↑

(3)

or, rewriting (3) without arguments (as equality of functions, not equality of
function calls)

φh(x) =

{
λy.0 if φx(x) ↓
∅ if φx(x) ↑ says x ∈ K

(3′)

In (3′), ∅ stands for λy. ↑, the empty function.

Thus,

h(x) ∈ A iff ran(φh(x)) = ∅
bottom case in 3′︷︸︸︷

iff φx(x) ↑

The above says x ∈ K ≡ h(x) ∈ A, hence K ≤h A, and thus A /∈ P∗ by
Corollary 0.2.4, part ii. �

K
Def
= {x : φx(x) ↓}

K
Def
= {x : φx(x) ↑}
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Lecture #15, Nov. 9.

0.2.8 Example. The set B = {x : φx has finite domain} is not semi-recursive.
This is really easy (once we have done the previous example)! All we have

to do is “talk about” our findings, above, differently!
We use the same ψ as in the previous example, as well as the same h as

above, obtained by S-m-n.
Looking at (3′) above we see that the top case has infinite domain, while the

bottom one has finite domain (indeed, empty). Thus,

h(x) ∈ B iff φh(x) has finite domain

bottom case in 3′︷︸︸︷
iff φx(x) ↑

The above says x ∈ K ≡ h(x) ∈ B, hence K ≤ B, hence B /∈ P∗ by Corol-
lary 0.2.4, part ii. �
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0.2.9 Example. Let us mine twice more (3′) to obtain two more important
undecidability results.

1. Show that G = {x : φx is a constant function} is undecidable.

We (re-)use (3′) of 0.2.7. Note that in (3′) the top case defines a constant
function, but the bottom case defines a non-constant. Thus

h(x) ∈ G ≡ φh(x) = λy.0 ≡ top case in 3′ ≡ x ∈ K

Hence K ≤ G, therefore G /∈ R∗.

2. Show that I = {x : φx ∈ R} is undecidable. Again, we retell what we can
read from (3′) in words that are relevant to the set I:

h(x) ∈ I ∅ /∈ R!≡ φh(x) = λy.0 ≡ x ∈ K

Thus K ≤ I, therefore I /∈ R∗. �

� In Notes #8 we will sharpen the result 2 of the previous example. �
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0.2.10� Example. (The Equivalence Problem, again) We now revisit the

equivalence problem and show it is worse than unsolvable (cf. Notes
#6):

The relation φx = φy is not semi-decidable.

By 0.2.2, if the 2-variable predicate above is in P∗ then so is λx.φx = φy,
i.e., taking a constant for y.

Choose then for y a φ-index for the empty function.

In short,

If the equivalence problem is VERIFIABLE, then so is

φx = ∅

Eq={x : φx = ∅} = {x : ran(φx) = ∅} = A

which says the same thing as

ran(φx) = ∅

We saw that this NOT SEMI-RECURSIVE in 0.2.7. � �
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0.2.11 Example. The set C = {x : ran(φx) is finite} is not
semi-decidable.

Here we cannot reuse (3′) above, because both cases in the definition by
cases —top and bottom— have functions of finite range.

We want one case to have a function of finite range, but the other to
have infinite range.

Aha! This motivates us to choose a different “ψ” (hence a different “h”),
and retrace the steps we took above.

OK, define

g(x, y) =

{
y if φx(x) ↓
↑ if φx(x) ↑

(ii)

Here is an algorithm for g:

• Given x, y.

• Call φx(x) —i.e., call U (P )(x, x).

• If this ever returns, then print “y” and halt everything.

• If it never returns from the call, this is the correct behaviour for g(x, y)
as well:

namely, we want g(x, y) ↑ if x ∈ K.

By CT, g is partial recursive, thus by S-m-n, for some recursive unary k we
have

g(x, y) = φk(x)(y), for all x, y

Thus, by (ii)

φk(x) =

{
λy.y if x ∈ K
∅ othw

(iii)
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Hence,

k(x) ∈ C iff φk(x) has finite range

bottom case in iii︷︸︸︷
iff x ∈ K

That is, K ≤ C and we are done. �
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0.2.12 Exercise. Show that D = {x : ran(φx) is infinite} is undecidable. �

0.2.13 Exercise. Show that F = {x : dom(φx) is infinite} is undecidable. �
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Enough “negativity”!

Here is an important “positive result” that helps to prove that certain rela-
tions ARE semi-decidable:

0.2.14 Theorem. (Projection theorem; Part I) A relation Q(~xn) that is
expressible as

Q(~xn) ≡ (∃y)S(y, ~xn) (1)

where S(y, ~xn) is recursive is itself semi-recursive.

� Q is obtained by “projecting” S along the y-co-ordinate, hence the name of the
theorem. �

Proof. Let S ∈ R∗, and Q be connected as in (1) of the theorem.

Clearly,

(∃y)S(y, ~xn) ≡ (µy)S(y, ~xn) ↓ (2)

and we know that

(µy)S(y, ~xn)
Def
= (µy)cS(y, ~xn), for all ~xn (3)

Thus λ~xn.(µy)cS(y, ~xn) is partial recursive by closure of P under UNbounded
search. Thus so is λ~xn(µy)S(y, ~xn) by (3).

Now (1) and (2) give

Q(~xn) ≡ (µy)S(y, ~xn) ↓

We are done by Def. 0.1.1. �
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0.2.15 Example. The set A = {(x, y, z) : φx(y) = z} is semi-recursive.

Here is a verifier for the above predicate:

Given input x, y, z. Comment. Note that φx(y) = z is true iff two things
happen: (1) φx(y) ↓ and (2) the computed value is z.

1. Given x, y, z.

2. Call φx(y) = U (P )(x, y).

3. If the call returns, then

• If the output of U (P )(x, y) equals z, then halt everything (the “yes”
output).

• If the output of U (P )(x, y) does NOT equal z, then get into an infinite
loop (the “no” case).

4. If the U (P )(x, y) ↑, then keep looping (say “no”, by looping).

By CT the above informal verifier can be formalised as a URM M . �
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Lecture #16, Nov. 11.

0.3. Projection Theorem II

This section provides a new powerful tool AND proves
the converse of Projection Theorem Part I.

How can we trace a (computation of a) URM ?

Exactly in the same manner that we learnt to trace a
commercially available program such as C.

0.3.1. Computation simulating functions

Given a URMM
~Xm

X1
where —without loss of generality—

we selected X1 as the output variable.

Let all its variables be

inputs︷ ︸︸ ︷
X1, . . . , Xm,

Non inputs︷ ︸︸ ︷
Xm+1, . . . , Xn (1)

Intro to (un)Computability via URMs—Part II © by George Tourlakis



28

For any input ~am, M ’s computation can be tabulated
in a (potentially infinite) table —p.29 below— where for
each y ≥ 0, row y contains the values of ALL the vari-
ables in (1) as well the value of the Instruction Pointer
IP —that points to the CURRENT instruction— at step
y.

A “step” is the act of executing ONE instruction of M
and reaching the next CURRENT instruction.
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At step zero, (y = 0) the computation ponders the first
instruction of M after the “I/O Agent” initialised the in-
put variables and has set all non-input variables to zero.

The entries on the zeroth row are self-evident.

Table 1: M Simulation Table

y IP X1 X2 . . . Xm Xm+1 Xm+2 . . . Xn

0 1 a1 a2 . . . am 0 0 . . . 0
...

...
...

... . . .
...

...
... . . .

...
i L b1 b2 . . . bm bm+1 bm+2 . . . bn

i+ 1 L′ b′1 b′2 . . . b′m b′m+1 b′m+2 . . . b′n
...

...
...

... . . .
...

...
... . . .

...

The process for filling the table is algorithmic as fol-
lows:

Going from row i to row i + 1 (Cf. p.10 in http://

www.cs.yorku.ca/~gt/papers/NOTES-2-URMs.pdf):

1. L points to Xk ← r. Then b′k = r while b′j = bj for
j 6= k. Also L′ = L+ 1.

2. L points to Xk ← Xk + 1. Then b′k = bk + 1 while
b′j = bj for j 6= k. Moreover L′ = L+ 1.

3. L points to Xk ← Xk
.− 1. Then b′k = bk

.− 1 while
b′j = bj for j 6= k. Moreover L′ = L+ 1.

4. L points to stop. Then b′j = bj for all j 6= n. More-
over L′ = L.

5. L points to if Xk = 0 goto R else goto Q. Then
b′j = bj for all j 6= n. Moreover L′ = if bk =
0 then R else Q.
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Note that at “time” y each Xj and the IP function
hold a value that depends on the initial ~am —and on y.

I. Thus we associate with each Xj and with the IP a
TOTAL function —λy~am.fj(y,~am) and λy~am.IP (y,~am).

Since I can produce each such function-value, for the
Xj and IP —for example, by hand— in the mechanical
way indicated,

by CT, each such function fj and IP is RECURSIVE.

In particular, f1 = M
~Xm

X1
∈ R and λy~am.IP (y,~am) ∈

R.

� Important!

0.3.1 Theorem. With reference to the URM M that we

“traced” above, we have that M
~Xm

X1
halts for input ~am

iff there is some step value y where M makes its stop
instruction current.

That is

(∃y)IP (y,~am) = k , where k is the label of stop

�
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0.3.2 Theorem. (Projection Theorem Part II) IF Q(~xm)
is semi-recursive, THEN there is a recursive P (y, ~xm)
such that

Q(~xm) ≡ (∃y)P (y, ~xm)

Proof. By Definition 0.1.1,

Q(~am) ≡ g(~am) ↓

where g ∈ P .

Let then g = M
~Xm

X1
.

By 0.3.1,

g(~am) ↓≡ (∃y)IP (y,~am) = q, where q labels stop in M

But IP (y,~am) = q is recursive so we may take it as
the “P (y, ~xm)” we want. �
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