
1

Lecture #7 —Continued

0.0.0.1 Proposition. If R(~x, y, ~z) ∈ PR∗ and λ~w.f(~w) ∈ PR,
then R(~x, f(~w), ~z) is in PR∗.
Proof. By lemma, let g ∈ PR such that

R(~x, y, ~z) ≡ g(~x, y, ~z) = 0, for all ~x, y, ~z

Then

R(~x, f(~w), ~z) ≡ g(~x, f(~w), ~z) = 0, for all ~x, ~w, ~z

By the lemma, and since λ~x~w~z.g(~x.f(~w), ~z) ∈ PR by Grzegorczyk Ops, we
have that R(~x, f(~w), ~z) ∈ PR∗. �

2

0.0.0.2 Proposition. If R(~x, y, ~z) ∈ R∗ and λ~w.f(~w) ∈ R, then R(~x, f(~w), ~z)
is in R∗.

Proof. Similar to that of 0.0.0.1. �

3

0.0.0.3 Corollary. If f ∈ PR (respectively, in R), then its graph, z = f(~x) is
in PR∗ (respectively, in R∗).

Proof. Using the relation z = y and 0.0.0.1. �

4

0.0.0.4 Exercise. Using unbounded search, prove that if z = f(~x) is in R∗
and f is total, then f ∈ R. �

5

0.0.0.5 Definition. (Bounded Quantifiers) The abbreviations

(∀y)<zR(z, ~x)

(∀y)y<zR(z, ~x)

(∀y < z)R(z, ~x)

all stand for

(∀y)
(
y < z → R(z, ~x)

)
while correspondingly,

(∃y)<zR(z, ~x)

(∃y)y<zR(z, ~x)

(∃y < z)R(z, ~x)

all stand for

(∃y)
(
y < z ∧R(z, ~x)

)
Similarly for the non strict inequality “≤”. �

6

0.0.0.6 Theorem. PR∗ is closed under bounded quantifica-
tion.

Proof. By logic it suffices to look at the case of (∃y)<z since (∀y)<zR(y, ~x) ≡
¬(∃y)<z¬R(y, ~x).

Let then R(y, ~x) ∈ PR∗ and let us give the name Q(z, ~x) to

(∃y)<zR(y, ~x) for convenience.

We note that Q(0, ~x) is false (why?) and logic says:

Q(z + 1, ~x) ≡ Q(z, ~x) ∨R(z, ~x).

Thus, as the following prim. rec. shows, cQ ∈ PR.

cQ(0, ~x) = 1

cQ(z + 1, ~x) = cQ(z, ~x)cR(z, ~x) �

7

0.0.0.7 Corollary. R∗ is closed under bounded quantification.

8

Lecture #8 —Oct.5

0.0.0.8 Definition. (Bounded Search) Let f be a total number-
theoretic function of n+ 1 variables.

The symbol (µy)<zf(y, ~x), for all z, ~x, stands for

{
min{y : y < z ∧ f(y, ~x) = 0} if (∃y)<zf(y, ~x) = 0

z otherwise

So, unsuccessful search returns the first number
to the right of the search-range.

We define “(µy)≤z” to mean “(µy)<z+1”. �

9

0.0.0.9 Theorem. PR is closed under the bounded search
operation (µy)<z. That is, if λy~x.f(y, ~x) ∈ PR, then
λz~x.(µy)<zf(y, ~x) ∈ PR.

Proof. Set g = λz~x.(µy)<zf(y, ~x) for convenience.

Then the following primitive recursion settles it:

Recall that “ifR(~z) then y else w” means “ifcR(~z) =
0 then y else w”.

0, 1, 2, . . . , z − 1, z =
︷ ︸︸ ︷
0, 1, 2, . . . , z − 1, z

So

g(0, ~x) = 0

Why 0 above?

g(z + 1, ~x) = if (∃y)<z

(
f(y, ~x) = 0

)
then g(z, ~x)

else if f(z, ~x) = 0 then z

else z + 1 �

10

0.0.0.10 Corollary. PR is closed under the bounded search
operation (µy)≤z.

0.0.0.11 Exercise. Prove the corollary. �

0.0.0.12 Corollary. R is closed under the bounded search op-
erations (µy)<z and (µy)≤z.

11

Consider now a set of mutually exclusive relations Ri(~x), i = 1, . . . , n,

that is, Ri(~x) ∧Rj(~x) is false, for each ~x as long as i 6= j.

Then we can define a function f by cases Ri from given
functions fj by the requirement (for all ~x) given below:

f(~x) =



f1(~x) if R1(~x)

f2(~x) if R2(~x)

.

fn(~x) if Rn(~x)

fn+1(~x) otherwise

where, as is usual in mathematics, “if Rj(~x)” is short
for “if Rj(~x) is true”

and the “otherwise” is the condition ¬(R1(~x) ∨ · · · ∨
Rn(~x)).

12

We have the following result:

0.0.0.13 Theorem. (Definition by Cases) If the func-
tions fi, i = 1, . . . , n + 1 and the relations Ri(~x), i =
1, . . . , n are in PR and PR∗, respectively, then so is f
above.

Proof. By repeated use (Grz Ops) of if-then-else. So,

f(~x) = if R1(~x) then f1(~x)
else if R2(~x) then f2(~x)

...
else if Rn(~x) then fn(~x)
else fn+1(~x)

�

0.0.0.14 Corollary. Same statement as above, replac-
ing PR and PR∗ by R and R∗, respectively.

13

The tools we now have at our disposal allow easy certi-
fication of the primitive recursiveness of some very useful
functions and relations. But first a definition:

0.0.0.15 Definition. (µy)<zR(y, ~x) means (µy)<zcR(y, ~x).

�

Thus, if R(y, ~x) ∈ PR∗ (resp. ∈ R∗),
then λz~x.(µy)<zR(y, ~x) ∈ PR (resp. ∈ R),
since cR ∈ PR (resp. ∈ R).

14

0.0.0.16 Example. The following are in PR or PR∗
as appropriate:

(1) λxy.bx/yc1 (the quotient of the division x/y).

This is another example of a nontotal function with
an “obvious” way to remove the points where it is
undefined (recall λxy.xy).

Thus the symbol “bx/yc”

is extended to mean

(µz)≤x
(
(z + 1)y > x

)
(∗)

for all x, y.

I Pause. Why is the above expression correct?

Because setting z = bx/yc we have

1For any real number x, the symbol “bxc” is called the floor of x. It succeeds in the
literature (with the same definition) the so-called “greatest integer function, [x]”, i.e., the
integer part of the real number x. Thus, by definition, bxc ≤ x < bxc+ 1.

15

z ≤ x

y
< z + 1

by the definition of “b. . .c”.

Thus, z is smallest such that x/y < z + 1, or such
that x < y(z + 1). J

It follows that, for y > 0, the search in (∗) yields the
“normal math” value for bx/yc, while it re-defines
bx/0c as = x+ 1.

16

(2) λxy.rem(x, y) (the remainder of the division x/y).

rem(x, y) = x .− ybx/yc.

17

(3) λxy.x|y (x divides y).

x|y ≡ rem(y, x) = 0.

Note that if y > 0, we cannot have 0|y —a good
thing!— since rem(y, 0) = y > 0.

Our redefinition of bx/yc yields, however, 0|0, but we
can live with this in practice.

18

(4) Pr(x) (x is a prime).

Pr(x) ≡ x > 1 ∧ (∀y)≤x(y|x→ y = 1 ∨ y = x).

19

(5) π(x) (the number of primes ≤ x).2

The following primitive recursion certifies the claim:

π(0) = 0,

and

π(x+ 1) = if Pr(x+ 1) then π(x) + 1 else π(x).

2The π-function plays a central role in number theory, figuring in the so-called prime
number theorem. See, for example, [LeV56].

20

(6) λn.pn (the nth prime).

First note that the graph y = pn is primitive recur-
sive:

y = pn ≡ Pr(y) ∧ π(y) = n+ 1.

Next note that, for all n,

pn ≤ 22n (see Exercise 0.0.0.18 below),

thus pn = (µy)≤22n(y = pn),

which settles the claim.

21

(7) λnx. exp(n, x) (the exponent of pn in the prime fac-
torization of x).

exp(n, x) = (µy)≤x¬(py+1
n |x).

I Is x a good bound? Yes! x = . . . pyn . . . ≥ pyn ≥
2y > y.

22

(8) Seq(x) (x’s prime number factorization contains at
least one prime, but no gaps).

Seq(x) ≡ x > 1 ∧ (∀y)≤x(∀z)≤x(Pr(y) ∧ Pr(z) ∧ y <
z ∧ z|x→ y|x). �

23

0.0.0.17
�

Remark. What makes exp(n, x) “ the expo-
nent of pn in the prime factorization of x”, rather than
an exponent, is Euclid’s prime number factorization the-
orem: Every number x > 1 has a unique factorization
—within permutation of factors— as a product of primes.

�
�

24

0.0.0.18 Exercise. Prove by induction on n, that for all
n we have pn ≤ 22n.

Hint. Consider, as Euclid did,3 p0p1 · · · pn + 1. If this
number is prime, then it is greater than or equal to pn+1

(why?). If it is composite, then none of the primes up to
pn divide it. So any prime factor of it is greater than or
equal to pn+1 (why?). �

3In his proof that there are infinitely many primes.

0.1. CODING SEQUENCES 25

Lecture #9, Oct. 7

0.1 CODING Sequences

0.1.0.1 Definition. (Coding Sequences) Any sequence
of numbers, a0, . . . , an, n ≥ 0, is coded by the number de-
noted by the symbol

〈a0, . . . , an〉

and defined as
∏

i≤n p
ai+1
i �

Example. Code 1, 0, 3. I get 21+130+153+1

For coding to be useful, we need a simple decoding
scheme.

26

By Remark 0.0.0.17 there is no way to have z = 〈a0, . . . , an〉 =
〈b0, . . . , bm〉, unless

(i) n = m

and

(ii) For i = 0, . . . , n, ai = bi.

Thus, it makes sense to correspondingly define the de-
coding expressions:

(i) lh(z) (pronounced “length of z”) as shorthand for
(µy)≤z¬(py|z)

I A comment and a question:

• The comment: If py is the first prime NOT
in the decomposition of z, and Seq(z) holds,
then since numbering of primes starts at 0,
the length of the coded sequence z is indeed y.

• Question: Is the bound z sufficient? Yes!

z = 2a+13b+1 . . . p
exp(y

.−1,z)
y .−1 ≥ 2 · 2 · · · 2︸ ︷︷ ︸

y times

= 2y > y

(ii) (z)i is shorthand for exp(i, z) .− 1

0.1. CODING SEQUENCES 27

Note that

(a) λiz.(z)i and λz.lh(z) are in PR.

(b) If Seq(z), then z = 〈a0, . . . , an〉 for some a0, . . . , an.
In this case, lh(z) equals the number of distinct primes
in the decomposition of z, that is, the length n+1 of
the coded sequence. Then (z)i, for i < lh(z), equals
ai. For larger i, (z)i = 0. Note that if ¬Seq(z) then
lh(z) need not equal the number of distinct primes
in the decomposition of z. For example, 10 has 2
primes, but lh(10) = 1.

�

The tools lh, Seq(z), and λiz.(z)i are sufficient to per-
form decoding, primitive recursively, once the truth of
Seq(z) is established. This coding/decoding scheme is
essentially that of [Göd31], and will be the one we use
throughout these notes.

�

28

0.1.1 Simultaneous Primitive Recursion

Start with total hi, gi for i = 0, 1, . . . , k. Consider the
new functions fi defined by the following “simultaneous
primitive recursion schema” for all x, ~y.

f0(0, ~y) = h1(~y)
...

fk(0, ~y) = hk(~y)

f0(x+ 1, ~y) = g0(x, ~y, f0(x, ~y), . . . , fk(x, ~y))
...

fk(x+ 1, ~y) = gk(x, ~y, f0(x, ~y), . . . , fk(x, ~y))

(2)

Hilbert and Bernays proved the following:

0.1. CODING SEQUENCES 29

0.1.1.1 Theorem. If all the hi and gi are in PR (resp.
R), then so are all the fi obtained by the schema (2) of
simultaneous recursion.

Proof. Define, for all x, ~y,

F (x, ~y)
Def
= 〈f0(x, ~y), . . . , fk(x, ~y)〉

H(~y)
Def
= 〈h0(~y), . . . , hk(~y)〉

G(x, ~y, z)
Def
= 〈g0(x, ~y, (z)0, . . . , (z)k), . . . , gk(x, ~y, (z)0, . . . , (z)k)〉

We readily have that H ∈ PR (resp. ∈ R) and G ∈ PR
(resp. ∈ R) depending on where we assumed the hi and
gi to be. We can now rewrite schema (2) (p.28) asF (0, ~y) = H(~y)

F (x+ 1, ~y) = G
(
x, ~y, F

(
x, ~y
)) (3)

I The 2nd line of (3) is obtained from

F (x+ 1, ~y) = 〈f0(x+ 1, ~y), . . . , fk(x+ 1, ~y)〉
=
〈
g0

(
x, ~y, f0(x, ~y), . . . , fk(x, ~y)

)
, . . . , gk

(
same as g0

)〉
=
〈
g0

(
x, ~y,

(
F (x, ~y)

)
0
, . . . ,

(
F (x, ~y)

)
k

)
, . . . , gk

(
same as g0

)〉

30

By the above remarks, F ∈ PR (resp. ∈ R) depend-
ing on where we assumed the hi and gi to be. In partic-
ular, this holds for each fi since, for all x, ~y, fi(x, ~y) =(
F (x, ~y)

)
i
. �

0.1. CODING SEQUENCES 31

0.1.1.2 Example. We saw one way to justify that λx.rem(x, 2) ∈
PR in 0.0.0.16. A direct way is the following. Setting
f(x) = rem(x, 2), for all x, we notice that the sequence
of outputs (for x = 0, 1, 2, . . .) of f is

0, 1, 0, 1, 0, 1 . . .

Thus, the following primitive recursion shows that f ∈
PR: {

f(0) = 0

f(x+ 1) = 1 .− f(x)

Here is a way, via simultaneous recursion, to obtain a
proof that f ∈ PR, without using any arithmetic! No-
tice the infinite “matrix”

0 1 0 1 0 1 . . .

1 0 1 0 1 0 . . .

Let us call g the function that has as its sequence outputs
the entries of the second row—obtained by shifting the
first row by one position to the left. The first rowstill
represents our f . Now

f(0) = 0

g(0) = 1

f(x+ 1) = g(x)

g(x+ 1) = f(x)

(1)

�

32

0.1.1.3 Example. We saw one way to justify that λx. bx/2c ∈
PR in 0.0.0.16. A direct way is the following.

⌊
0

2

⌋
= 0⌊

x+ 1

2

⌋
=
⌊x

2

⌋
+ rem(x, 2)

where rem is in PR by 0.1.1.2.
Alternatively, here is a way that can do it —via simul-

taneous recursion— and with only the knowledge of how
to add 1. Consider the matrix

0 0 1 1 2 2 3 3 . . .
0 1 1 2 2 3 3 4 . . .

The top row represents λx. bx/2c, let us call it “f”. The
bottom row we call g and is, again, the result of shifting
row one to the left by one position. Thus, we have a
simultaneous recursion

f(0) = 0

g(0) = 0

f(x+ 1) = g(x)

g(x+ 1) = f(x) + 1

(2)

�

Bibliography

[Dav65] M. Davis, The undecidable, Raven Press,
Hewlett, N. Y., 1965.

[Göd31] K. Gödel, Über formal unentsceidbare sätze der
pricipia mathematica und verwandter systeme i,
Monatshefte für Math. und Physic 38 (1931),
173–198, (Also in English in Davis [Dav65, 5–
38]).

[LeV56] William J. LeVeque, Topics in number theory,
vol. I, Addison-Wesley, Reading, Massachusetts,
1956.

33

	CODING Sequences
	Simultaneous Primitive Recursion

