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Lecture #7 —Continued

0.0.0.1 Proposition. If R(~x, y, ~z) ∈ PR∗ and λ~w.f(~w) ∈ PR,
then R(~x, f(~w), ~z) is in PR∗.
Proof. By lemma, let g ∈ PR such that

R(~x, y, ~z) ≡ g(~x, y, ~z) = 0, for all ~x, y, ~z

Then

R(~x, f(~w), ~z) ≡ g(~x, f(~w), ~z) = 0, for all ~x, ~w, ~z

By the lemma, and since λ~x~w~z.g(~x.f(~w), ~z) ∈ PR by Grzegorczyk Ops, we
have that R(~x, f(~w), ~z) ∈ PR∗. �
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0.0.0.2 Proposition. If R(~x, y, ~z) ∈ R∗ and λ~w.f(~w) ∈ R, then R(~x, f(~w), ~z)
is in R∗.

Proof. Similar to that of 0.0.0.1. �
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0.0.0.3 Corollary. If f ∈ PR (respectively, in R), then its graph, z = f(~x) is
in PR∗ (respectively, in R∗).

Proof. Using the relation z = y and 0.0.0.1. �
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0.0.0.4 Exercise. Using unbounded search, prove that if z = f(~x) is in R∗
and f is total, then f ∈ R. �
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0.0.0.5 Definition. (Bounded Quantifiers) The abbreviations

(∀y)<zR(z, ~x)

(∀y)y<zR(z, ~x)

(∀y < z)R(z, ~x)

all stand for

(∀y)
(
y < z → R(z, ~x)

)
while correspondingly,

(∃y)<zR(z, ~x)

(∃y)y<zR(z, ~x)

(∃y < z)R(z, ~x)

all stand for

(∃y)
(
y < z ∧R(z, ~x)

)
Similarly for the non strict inequality “≤”. �



6

0.0.0.6 Theorem. PR∗ is closed under bounded quantifica-
tion.

Proof. By logic it suffices to look at the case of (∃y)<z since (∀y)<zR(y, ~x) ≡
¬(∃y)<z¬R(y, ~x).

Let then R(y, ~x) ∈ PR∗ and let us give the name Q(z, ~x) to

(∃y)<zR(y, ~x) for convenience.

We note that Q(0, ~x) is false (why?) and logic says:

Q(z + 1, ~x) ≡ Q(z, ~x) ∨R(z, ~x).

Thus, as the following prim. rec. shows, cQ ∈ PR.

cQ(0, ~x) = 1

cQ(z + 1, ~x) = cQ(z, ~x)cR(z, ~x) �
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0.0.0.7 Corollary. R∗ is closed under bounded quantification.



8

Lecture #8 —Oct.5

0.0.0.8 Definition. (Bounded Search) Let f be a total number-
theoretic function of n+ 1 variables.

The symbol (µy)<zf(y, ~x), for all z, ~x, stands for

{
min{y : y < z ∧ f(y, ~x) = 0} if (∃y)<zf(y, ~x) = 0

z otherwise

So, unsuccessful search returns the first number
to the right of the search-range.

We define “(µy)≤z” to mean “(µy)<z+1”. �
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0.0.0.9 Theorem. PR is closed under the bounded search
operation (µy)<z. That is, if λy~x.f(y, ~x) ∈ PR, then
λz~x.(µy)<zf(y, ~x) ∈ PR.

Proof. Set g = λz~x.(µy)<zf(y, ~x) for convenience.

Then the following primitive recursion settles it:

Recall that “ifR(~z) then y else w” means “ifcR(~z) =
0 then y else w”.

0, 1, 2, . . . , z − 1, z =
︷ ︸︸ ︷
0, 1, 2, . . . , z − 1, z

So

g(0, ~x) = 0

Why 0 above?

g(z + 1, ~x) = if (∃y)<z

(
f(y, ~x) = 0

)
then g(z, ~x)

else if f(z, ~x) = 0 then z

else z + 1 �
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0.0.0.10 Corollary. PR is closed under the bounded search
operation (µy)≤z.

0.0.0.11 Exercise. Prove the corollary. �

0.0.0.12 Corollary. R is closed under the bounded search op-
erations (µy)<z and (µy)≤z.
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Consider now a set of mutually exclusive relations Ri(~x), i = 1, . . . , n,

that is, Ri(~x) ∧Rj(~x) is false, for each ~x as long as i 6= j.

Then we can define a function f by cases Ri from given
functions fj by the requirement (for all ~x) given below:

f(~x) =



f1(~x) if R1(~x)

f2(~x) if R2(~x)

. . . . . .

fn(~x) if Rn(~x)

fn+1(~x) otherwise

where, as is usual in mathematics, “if Rj(~x)” is short
for “if Rj(~x) is true”

and the “otherwise” is the condition ¬(R1(~x) ∨ · · · ∨
Rn(~x)).
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We have the following result:

0.0.0.13 Theorem. (Definition by Cases) If the func-
tions fi, i = 1, . . . , n + 1 and the relations Ri(~x), i =
1, . . . , n are in PR and PR∗, respectively, then so is f
above.

Proof. By repeated use (Grz Ops) of if-then-else. So,

f(~x) = if R1(~x) then f1(~x)
else if R2(~x) then f2(~x)

...
else if Rn(~x) then fn(~x)
else fn+1(~x)

�

0.0.0.14 Corollary. Same statement as above, replac-
ing PR and PR∗ by R and R∗, respectively.
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The tools we now have at our disposal allow easy certi-
fication of the primitive recursiveness of some very useful
functions and relations. But first a definition:

0.0.0.15 Definition. (µy)<zR(y, ~x) means (µy)<zcR(y, ~x).

�

Thus, if R(y, ~x) ∈ PR∗ (resp. ∈ R∗),
then λz~x.(µy)<zR(y, ~x) ∈ PR (resp. ∈ R),
since cR ∈ PR (resp. ∈ R).
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0.0.0.16 Example. The following are in PR or PR∗
as appropriate:

(1) λxy.bx/yc1 (the quotient of the division x/y).

This is another example of a nontotal function with
an “obvious” way to remove the points where it is
undefined (recall λxy.xy).

Thus the symbol “bx/yc”

is extended to mean

(µz)≤x
(
(z + 1)y > x

)
(∗)

for all x, y.

I Pause. Why is the above expression correct?

Because setting z = bx/yc we have

1For any real number x, the symbol “bxc” is called the floor of x. It succeeds in the
literature (with the same definition) the so-called “greatest integer function, [x]”, i.e., the
integer part of the real number x. Thus, by definition, bxc ≤ x < bxc+ 1.
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z ≤ x

y
< z + 1

by the definition of “b. . .c”.

Thus, z is smallest such that x/y < z + 1, or such
that x < y(z + 1). J

It follows that, for y > 0, the search in (∗) yields the
“normal math” value for bx/yc, while it re-defines
bx/0c as = x+ 1.
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(2) λxy.rem(x, y) (the remainder of the division x/y).

rem(x, y) = x .− ybx/yc.
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(3) λxy.x|y (x divides y).

x|y ≡ rem(y, x) = 0.

Note that if y > 0, we cannot have 0|y —a good
thing!— since rem(y, 0) = y > 0.

Our redefinition of bx/yc yields, however, 0|0, but we
can live with this in practice.
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(4) Pr(x) (x is a prime).

Pr(x) ≡ x > 1 ∧ (∀y)≤x(y|x→ y = 1 ∨ y = x).
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(5) π(x) (the number of primes ≤ x).2

The following primitive recursion certifies the claim:

π(0) = 0,

and

π(x+ 1) = if Pr(x+ 1) then π(x) + 1 else π(x).

2The π-function plays a central role in number theory, figuring in the so-called prime
number theorem. See, for example, [LeV56].
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(6) λn.pn (the nth prime).

First note that the graph y = pn is primitive recur-
sive:

y = pn ≡ Pr(y) ∧ π(y) = n+ 1.

Next note that, for all n,

pn ≤ 22n (see Exercise 0.0.0.18 below),

thus pn = (µy)≤22n(y = pn),

which settles the claim.
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(7) λnx. exp(n, x) ( the exponent of pn in the prime fac-
torization of x).

exp(n, x) = (µy)≤x¬(py+1
n |x).

I Is x a good bound? Yes! x = . . . pyn . . . ≥ pyn ≥
2y > y.
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(8) Seq(x) (x’s prime number factorization contains at
least one prime, but no gaps).

Seq(x) ≡ x > 1 ∧ (∀y)≤x(∀z)≤x(Pr(y) ∧ Pr(z) ∧ y <
z ∧ z|x→ y|x). �
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0.0.0.17
�

Remark. What makes exp(n, x) “ the expo-
nent of pn in the prime factorization of x”, rather than
an exponent, is Euclid’s prime number factorization the-
orem: Every number x > 1 has a unique factorization
—within permutation of factors— as a product of primes.

�
�
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0.0.0.18 Exercise. Prove by induction on n, that for all
n we have pn ≤ 22n.

Hint. Consider, as Euclid did,3 p0p1 · · · pn + 1. If this
number is prime, then it is greater than or equal to pn+1

(why?). If it is composite, then none of the primes up to
pn divide it. So any prime factor of it is greater than or
equal to pn+1 (why?). �

3In his proof that there are infinitely many primes.
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Lecture #9, Oct. 7

0.1 CODING Sequences

0.1.0.1 Definition. (Coding Sequences) Any sequence
of numbers, a0, . . . , an, n ≥ 0, is coded by the number de-
noted by the symbol

〈a0, . . . , an〉

and defined as
∏

i≤n p
ai+1
i �

Example. Code 1, 0, 3. I get 21+130+153+1

For coding to be useful, we need a simple decoding
scheme.
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By Remark 0.0.0.17 there is no way to have z = 〈a0, . . . , an〉 =
〈b0, . . . , bm〉, unless

(i) n = m

and

(ii) For i = 0, . . . , n, ai = bi.

Thus, it makes sense to correspondingly define the de-
coding expressions:

(i) lh(z) (pronounced “length of z”) as shorthand for
(µy)≤z¬(py|z)

I A comment and a question:

• The comment: If py is the first prime NOT
in the decomposition of z, and Seq(z) holds,
then since numbering of primes starts at 0,
the length of the coded sequence z is indeed y.

• Question: Is the bound z sufficient? Yes!

z = 2a+13b+1 . . . p
exp(y

.−1,z)
y .−1 ≥ 2 · 2 · · · 2︸ ︷︷ ︸

y times

= 2y > y

(ii) (z)i is shorthand for exp(i, z) .− 1
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Note that

(a) λiz.(z)i and λz.lh(z) are in PR.

(b) If Seq(z), then z = 〈a0, . . . , an〉 for some a0, . . . , an.
In this case, lh(z) equals the number of distinct primes
in the decomposition of z, that is, the length n+1 of
the coded sequence. Then (z)i, for i < lh(z), equals
ai. For larger i, (z)i = 0. Note that if ¬Seq(z) then
lh(z) need not equal the number of distinct primes
in the decomposition of z. For example, 10 has 2
primes, but lh(10) = 1.

�

The tools lh, Seq(z), and λiz.(z)i are sufficient to per-
form decoding, primitive recursively, once the truth of
Seq(z) is established. This coding/decoding scheme is
essentially that of [Göd31], and will be the one we use
throughout these notes.

�
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0.1.1 Simultaneous Primitive Recursion

Start with total hi, gi for i = 0, 1, . . . , k. Consider the
new functions fi defined by the following “simultaneous
primitive recursion schema” for all x, ~y.

f0(0, ~y) = h1(~y)
...

fk(0, ~y) = hk(~y)

f0(x+ 1, ~y) = g0(x, ~y, f0(x, ~y), . . . , fk(x, ~y))
...

fk(x+ 1, ~y) = gk(x, ~y, f0(x, ~y), . . . , fk(x, ~y))

(2)

Hilbert and Bernays proved the following:
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0.1.1.1 Theorem. If all the hi and gi are in PR (resp.
R), then so are all the fi obtained by the schema (2) of
simultaneous recursion.

Proof. Define, for all x, ~y,

F (x, ~y)
Def
= 〈f0(x, ~y), . . . , fk(x, ~y)〉

H(~y)
Def
= 〈h0(~y), . . . , hk(~y)〉

G(x, ~y, z)
Def
= 〈g0(x, ~y, (z)0, . . . , (z)k), . . . , gk(x, ~y, (z)0, . . . , (z)k)〉

We readily have that H ∈ PR (resp. ∈ R) and G ∈ PR
(resp. ∈ R) depending on where we assumed the hi and
gi to be. We can now rewrite schema (2) (p.28) asF (0, ~y) = H(~y)

F (x+ 1, ~y) = G
(
x, ~y, F

(
x, ~y
)) (3)

I The 2nd line of (3) is obtained from

F (x+ 1, ~y) = 〈f0(x+ 1, ~y), . . . , fk(x+ 1, ~y)〉
=
〈
g0

(
x, ~y, f0(x, ~y), . . . , fk(x, ~y)

)
, . . . , gk

(
same as g0

)〉
=
〈
g0

(
x, ~y,

(
F (x, ~y)

)
0
, . . . ,

(
F (x, ~y)

)
k

)
, . . . , gk

(
same as g0

)〉
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By the above remarks, F ∈ PR (resp. ∈ R) depend-
ing on where we assumed the hi and gi to be. In partic-
ular, this holds for each fi since, for all x, ~y, fi(x, ~y) =(
F (x, ~y)

)
i
. �
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0.1.1.2 Example. We saw one way to justify that λx.rem(x, 2) ∈
PR in 0.0.0.16. A direct way is the following. Setting
f(x) = rem(x, 2), for all x, we notice that the sequence
of outputs (for x = 0, 1, 2, . . .) of f is

0, 1, 0, 1, 0, 1 . . .

Thus, the following primitive recursion shows that f ∈
PR: {

f(0) = 0

f(x+ 1) = 1 .− f(x)

Here is a way, via simultaneous recursion, to obtain a
proof that f ∈ PR, without using any arithmetic! No-
tice the infinite “matrix”

0 1 0 1 0 1 . . .

1 0 1 0 1 0 . . .

Let us call g the function that has as its sequence outputs
the entries of the second row—obtained by shifting the
first row by one position to the left. The first rowstill
represents our f . Now

f(0) = 0

g(0) = 1

f(x+ 1) = g(x)

g(x+ 1) = f(x)

(1)

�
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0.1.1.3 Example. We saw one way to justify that λx. bx/2c ∈
PR in 0.0.0.16. A direct way is the following.

⌊
0

2

⌋
= 0⌊

x+ 1

2

⌋
=
⌊x

2

⌋
+ rem(x, 2)

where rem is in PR by 0.1.1.2.
Alternatively, here is a way that can do it —via simul-

taneous recursion— and with only the knowledge of how
to add 1. Consider the matrix

0 0 1 1 2 2 3 3 . . .
0 1 1 2 2 3 3 4 . . .

The top row represents λx. bx/2c, let us call it “f”. The
bottom row we call g and is, again, the result of shifting
row one to the left by one position. Thus, we have a
simultaneous recursion

f(0) = 0

g(0) = 0

f(x+ 1) = g(x)

g(x+ 1) = f(x) + 1

(2)

�
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