A Subset of the URM
Language; FA and NFA

0.0.1 Definition. If M is a FA then its L(M) is called the regular set asso-
ciated with M, or even the regular language recognised (decided, actually)
by M. ]

This Note continues from where Note #9 left but we will present first a few
more simple examples of automata® that decide /recognise some given set of
strings over some alphabet.

0.0.2 Example. We want to specify (program!) an automaton M over ¥ =
{0,1}, such that L(M) = {01 : n > 0}.
We recall that, for any string =, ° =P/ X\, while

n+1 copies of x

n+1 :Def induction!

—N—

x " kx = THT*k...%T

where I denoted concatenation by *. Thus the strings in {01 : n > 0} are
1,01,001,0001, 00001, . .. (1)

We readily see that the following automaton’s only accepting paths will follow
zero or more times the “loop” labeled 0 (attached to the start state), and then
the edge labeled 1 to end up with an accepting state. Thus, its recognised
language is indeed the one depicted intuitively in (1) above, that is, the set

{0"1:n >0}
N
CO—(C

*Plural of automaton.

Intro to Automata© 2012 and 2019, by George Tourlakis



A new thing we learnt in this example is that in depicting an automaton as a
graph we do mot necessarily need to name the states! As in all mathematical
arguments, we will of course assign names to objects (in particular to states)
if we need to refer to them in the course of the argument —it is convenient to
refer to them by name!

The reader should note the use of two shorthand notations in labeling: One,
we used two labels on the vertical down-pointing edge. This abbreviates the
use of two edges going from the accepting to the trap state, one labeled 0, the
other 1. We could also have used the label “0, 17 at the left or right of the
arrow, “,” serving as a separator. This latter notational convention was used in
labeling the loop attached to the trap state. O

0.0.3 Example. The two FAs below, each over the input alphabet {0,1}, ac-
cept the languages @) (the top one) and {0,1}* (the bottom one).

N

0,1

0,1

N

O

0.0.4 Example. The FA below over the input alphabet {0, 1} accepts the lan-

guage {A}.
\C 0,1

Indeed, we saw in Notes #9 that making the start (initial) state also accepting
we do accept A. Moreover, the FA above accepts nothing else since any input
symbol leads to the rejecting trap state. d

0,1

Intro to Automata(© 2012 and 2019, by George Tourlakis



0.1. Some Closure Properties of Regular Languages 3

0.1. Some Closure Properties of Regular Lan-
quages

0.1.1 Theorem. The set of all regular languages over an alphabet ¥ is closed
under complement. That is, if L C X* is reqular, then so is L =P¢f ¥* — L.

Proof. Let L = L(M) for some FA M over input alphabet ¥ and state alphabet
Q). Moreover, let F' C @ be the set of accepting states of M.

We need a FA that recognises/decides L.

Trivially, we want to swap the “yes” (accepting state) and “no” (rejecting

state) behaviour of M, changing nothing else. Thus, L = L(M), where the FA
M is the same as M, except that M’s set of accepting states is ) — F'. O

What makes the above proof tick is that FA are “total”: Every input string
will be scanned to its eof. Only the yes/no decision changes.

0.1.2 Example. The automaton that accepts the complement of the language
in Example 0.0.2 is found without comment below, just following the construc-
tion of the L(M) complement for some FA M, given above.

L
O—)

O

0.1.3 Theorem. The set of all reqular languages over an alphabet ¥ is closed
under union. That is, if L CX* and L' C X* are regular, then so is LU L’.

Proof. Solet L = L(M) and L' = L(M'). The idea is to run M and M’ in
parallel on each input x and accept iff at least one of M and M’ accepts.
We cannot use CT for this, as CT promises a full URM that decides the

union. We want a FA though! So we will have to carefully simulate this paral-
lelism with ONE FA! We must build one.

But consider: If indeed we had two separate FA, M and M’ operate on input
z simultaneously, then they would at each step both consider the same input

Intro to Automata© 2012 and 2019, by George Tourlakis



symbol, let us call it generically, a. However while M would be at state, say, g,
M’ would be at state, say, p. Let us say the response of M would be to get to

state g, i.e.,
M performs the move @L (1)

while M’ got into ¢/, i.e.,

M’ performs the move i> (2)

IDEA! The “parallel” FA, let us call it N, will have the same alphabet 3 as M
and M’ and its states would be ordered pairs of states of M and M’. That is,

if the we denote Q = {qo,q1,.-.,qn} and Q" = {po,p1,--.,Pm} —where n £ m
in general— the sets of states of M and M’ respectively, then

the set of states of IV is the set Q x Q' = {(q,p) tqgEQADE Q’}

Thus N keeps track of both computations —of M and M’'— on input z by
keeping track of the sequence of M-states caused by = using the first component
of the state pair (g, p), while it keeps track of the sequence of M’-states caused
by x using the second component of the state pair (g, p).

To do so, we build N so that a transition

(@0}4e)

is in N iff each of (1) and (2) above are in M and M’ respectively. The accepting
states for N will be the pairs (g, p) such that at least one of the components
of the pair is accepting.

We omit a tedious induction proof that this N works as stated since the
concept is straightforward. Once we introduce the Nondeterministic FA (NFA)
a proof using NFA will be trivial. O

0.1.4 Corollary. The set of all reqular languages over an alphabet ¥ is closed
under intersection. That is, if L C ¥* and L' C ¥* are reqular, then so is
LnL.

Proof. Either by using 0.1.3 and 0.1.1 and noting that LN L = LU L/, or by
the construction in 0.1.3, changing the accepting set of states in the FA N: The
accepting states for N will be the pairs (g, p) such that both of the components
of the pair is accepting. O

0.2. Proving Negative Results for FA; Pumping
Lemma

Is there a FA M such that L(M) = {0™1™ : n > 0}7 How can we tell? Surely, not
by trying each FA (infinitely many) out there as a possible fit for this language!

Intro to Automata© 2012 and 2019, by George Tourlakis



0.2. Proving Negative Results for FA; Pumping Lemma )

The following theorem, known as the pumping lemma can be used to prove
“negative” results such as: There is no FA M such as L(M) = {0"1™ : n > 0}.
For short, the language {0"1" : n > 0} is not regular.

0.2.1 Theorem. (Pumping Lemma) If the language S is regular, i.e., S =
L(M) for some FA M, then there is a constant C that we will refer to as a
pumping constant such that for any string x € S, if |x| > C, then we can
decompose it as x = uvw so that

(1) v#A
(2) w'iw € S, for alli >0
and
(3) |uwv| < C.
A pumping constant is not uniquely determined by S. @

Proof. So, let S = L(M) for some FA M of n states. We will show that if we
take C' = n' this will work.

Let then z = ajas---a,---a, be a string of S. As chosen, it satisfies
|z] > C. An accepting computation path of M with input x looks like this:

Say p; repeats as

where py,ps,... denotes a (notationally) convenient renaming® of the states
visited after gg in the computation. In the sequence

qo,P1,P25---3Pn

we have named n+ 1 states, while we only have n states in the FA’s “Q”. Thus,
at least two names refer to the same state —as we say, two states repeat.

TYou see why C is not unique, since for any S that is an L(M) we can have infinitely many
different M that accept S. Can we not?

fWhy rename? What is wrong with q1,q2,...? Well, the set Q is given as something
like {qo0,q1, g2, q3, - - .} using some arbitrary fixed enumeration order without repetition for its
members. Now, it would be wrong to expect that the arbitrary input = caused the FA to walk
precisely along g1, q2, g3, etc., after it saw the first symbol of . For one thing, it might need
to go back to go after it processed the first symbol. How do we show that after go the states
depend on input and they are neither distinct necessarily nor necessarily the q1,q2,q3,...7
A messy way to do so is by double subscripting: qo, q;,, 45,5, --- A less messy one is as I
did above, using p;.

Intro to Automata© 2012 and 2019, by George Tourlakis



We may redraw the computation above as follows:

\ ai as
()

We can now partition z into u, v and w parts from the picture above: We set
U =aya...a;

U= Q410542 ...0aj
and
W= Qj4+10542...0m
Note that

(1) v # A, since there is at least one edge (labelled a;41) emanating from p; on
the sub-path that connects this state to the (identical) state p;.

(2) We may utilize the loop v zero or more times (along with u in the front and
w at the tail) to always obtain an accepting path. Thus, all of uv*w belong
to L(M) —i.e., S.

(3) Since |uv| = j < n, we have also verified that |uv| < C. O

The repeating pair p;, p; may occur anywhere between ¢y and p,. A different
graphical proof is common in the literature. Let x = aias ... a,, as above

u Pi w
xz‘allagl... |ai|(1¢+1|... |aj|aj+1|... Ianlan+1|... Iam‘

Observe:

1. By determinism, the subcomputation that starts at symbol a;y1 (blue)
—while in state p; ( = p;)— will end at ¢ € F' at eof after consuming the
string w.

2. By determinism, the subcomputation that starts at symbol a;41 (red) in
state p;, will consume v and end at pj, ready to process a;y1 (blue).

Thus, all of uv, uvvw, uvvvw, ..., uv"

uvw (given).

w,...are in L(M). Of course, so is ¢ =

Intro to Automata(© 2012 and 2019, by George Tourlakis



0.2. Proving Negative Results for FA; Pumping Lemma 7

0.2.2 Example. The language over {0,1} given as L = {0™1™ : n > 0} is not
regular. Suppose it is. Then the pumping lemma holds for L, so let C' be an
appropriate pumping constant and consider the string z = 0“1¢ of L. We can
then decompose x as uvw with |uv| < C so that we can “pump” v # X as much
as we like and the obtained wv’w will all be in L.

We will prove the statement in red false, so we cannot pump; but then L
cannot be regular!

Red is false due to the observations: By |uv| < C, uv (and hence v) lie
entirely in the 0%-part of the chosen 2 = 091¢. So, if we pump down (i.e., use
1Y) we obtain uw € L.

But uw = 051 where K < C since |v| > 1. But such unbalanced 0-1 string
cannot be in L, by specification, so we contradicted the pumping lemma. O

All proofs by 0.2.1 are by contradiction and they prove non recognisability by
any FA (or, equivalently, NFA to be introduced in Section 0.3).

0.2.3 Example. We introduced FA as special URMs that cannot write. Is it
immediate that they cannot compute functions? No, for we can agree that by
“compute f(x)” we mean “decide the graph y = f(z)”.

For example, we can “compute” Az.3 by accepting all strings, but no others,
of the form 0™1000 over the alphabet {0,1}. That is we use 1 as a separator
between input n (depicted as 0™) and output 3 (depicted as 000), then the
following FA decides (recognises) the language L = {0™1000 : n > 0}.

O

0.2.4 Example. FA cannot compute Az.z + 1. “Surely”, you say, “how can
they add 1 if they cannot do arithmetic or write anything at all?”

Again, how about deciding the “graph”-language over A = {0, 1}, given by
T = {0"10"* : n > 0}? Here “0™” represents input n, “0"*1” represents
output n + 1 and 1 is a separator as in the previous example.

§ All sufficiently long strings of regular languages can be pumped by 0.2.1 and stay in L.

Intro to Automata© 2012 and 2019, by George Tourlakis



Alas, no FA can do this. Say T is FA-decidable, and let C' be an appropriate
pumping constant. Choose z = 0910°+1. Splitting = as wvw with |uv| < C
we see that 1 is to the right of v. Thus, uw (using v%) is not in T since the
relation between the Os to the left and those to the right of 1 is destroyed. This
contradicts the assumption that 7' is FA-decidable. O

0.2.5 Exercise. Indeed FA cannot even compute the identity function, A\z.z,
as it should be clear from 0.2.2. Adapt that proof to show the graph language
for A\x.z, namely, {0"10™ : n > 0} is not regular. 0

0.2.6 Example. The set over the alphabet {0} given by P = {0? : ¢ is a prime
number} is not FA-decidable.

Assume the contrary, and let C' be an appropriate pumping constant. Let
Q > C be prime. We show that considering the string = 09 will lead us to a
contradiction. Well, as x is longer than C, let us write —according to 0.2.1—
x = uvw. By said theorem, we must have that all numbers |u| + i|v| + |w]|, for
1 > 0 are prime. These numbers have the form

ai+b (1)

where a = |v| > 1 and b = |u| + |w|. Can all these numbers in (1) (for all i) be
prime?
Here is why not, and hence our contradiction. We consider cases:

e Case where b = 0. This is impossible, since the numbers in (1) now have
the form ai. But, e.g., a4 is not prime.

e Case where b > 0. Now taking ¢ = b, one of the numbers of the form (1)
is (a + 1)b. We have Subcases!

— Subcase b > 1. Then (a+1)b is not prime (recall that a+1 > 2 since
a>1).

— Subcase b = 1. Then take i = 2 + a to obtain the number (of type
(1)) a(2+a)+1=a?+2a+1 = (a+1)%2. But this is not prime! [

The preceding shows that we can have a set that is sufficiently complex and thus
fails to be FA-decidable even over a single-symbol alphabet. Here is another such
case.

0.2.7 Example. Consider Q = {0"" : n > 0} over the alphabet A = {0}. It
will not come as a surprise that @ is not FA-decidable.
For suppose it is. Then, if C' is an appropriate pumping constant, consider
z = 0°°, Clearly, x € @ and is long enough. So, split it as z = wvw with
|luv| < C and v # .
Now, by 0.2.1,
uvvw € Q (1)

Intro to Automata© 2012 and 2019, by George Tourlakis



0.3. Nondeterministic Finite Automata 9

But
C? < Juvvw| < luvw| + Juv| < C*+C < C? +2C +1 = (C +1)?

Thus, the number |uvvw| is not a perfect square being between two successive
ones. But this will not do, because by (1), for some n, we have uvvw = 0" and
thus |uvvw| = n? —a perfect square after all! O

0.3. Nondeterministic Finite Automata

The FA formalism provides us with tools to finitely define certain languages:
Such a language —defined as an L(M) over some alphabet A, for some FA M—
contains a string x iff there is an accepting computation

qox Fiy xq (1)

or, equivalently an accepting path within the FA (given as a flow diagram) whose
labels from left to right form x.

O

The computation (1) above, equivalently, the path labeled x within the FA, are
uniquely determined by x since the automaton’s § —the transition relation—
is a total function.

Much is to be gained in theoretical flexibility if we relax both the require-
ments that § is single-valued (a function) and total.

This gives rise to a nondeterministic model of finite automata, an “NFA”,
that may accept a string in more than one ways, that is, there may be more
than one distinct paths from gy to an accepting state ¢, each labeled by the
same string x.

Indeed, even more flexibility is attained if we also allow “unconditional
jumps” from one state to another, such as

which, in the first approximation, will have unlabeled edges as above. However,
in order to retain the central property that we may “read off” what string is

Intro to Automata© 2012 and 2019, by George Tourlakis



10

accepted by any given accepting path, namely, by simply concatenating the edge
labels of the path from left to right, we will label all unconditional jumps by a
string that is neutral with respect to concatenation —that is, by A. For this
reason, unconditional jumps are also called “\ moves”.

0.3.1 Example. The displayed flow diagram below, over the alphabet {0, 1},
incorporates all the liberties in notation and convention introduced in the pre-
ceding discussion.

We have two A moves, and the string 1 can be accepted in two distinct ways:
One is to follow the top A move, and then go once around the loop, consuming
input 1. The other is to follow the bottom A move, and then follow the transition
labeled 1 to the accepting state at the bottom (reading 1 in the process).

Folklore jargon will have us speak of guessing when we describe what the
diagram does with an input. For example, to accept the input 00 one would say
that the NFA guesses that it should follow the upper A, and then it would go
twice around the top loop, on input 0 in each case.

0,1

1

O—0
This diagram is an example of a nondeterministic finite automaton, or NFA;
it has A moves, its transition relation —as depicted by the arrows— is not a
function (e.g., the top accepting state has two distinct responses on input 1),

nor is it total. For example, the bottom accepting state is not defined on any
input; nor is the start state: A is not an input! O

Returning to the issue of guessing, we emphasize that a NFA simply provides the
mathematical framework within which we can formulate and verify an existential
statement of the type

for some given input x, an accepting path exists

Given an acceptable input, the NFA does not actually guess “correct” moves
(from among a set of choices), either in a hidden manner (consulting the Oracle
in Delphi, for example), or in an explicit computational manner (e.g., paral-
lelism, backtracking) toward finding an accepting path for said z. Simply, the

Intro to Automata© 2012 and 2019, by George Tourlakis



0.3. Nondeterministic Finite Automata 11

NFA formalism allows us to state, and provides tools so that we can verify, the
statement

for some given input x an accepting path exists (0.3.3) (1)

just as the language of logic allows us to state statements such as (3y).Z (y, x),
and offers tools for their proof.

An independent agent, which could be ourselves or a FA —yes, we will see
that every NFA can be can simulated by some FA!— can effect the verification
that indeed an accepting path labeled x exists.

¢

0.3.2 Definition. (NFA as flow diagrams) A nondeterministic finite automa-

ton, or NFA, over the input alphabet ¥ is a finite directed graph of circular nodes
—the states— and interconnecting edges —the transitions— the latter labeled
by members of A. It is specified as in the definition of FA (Notes #9) with some
amendments:

e The restriction (for FA) that for every state L and every a € X, there will
be precisely one edge, labeled a, leaving L and pointing to some state M
(possibly, L = M) is removed.

e The NFA need not be fully specified —it can be nontotal.
e It is allowed unconditional jumps, that is, edges labeled only by A.

We will generically use names such as M, N, or K for NFA, just as we did for
the case of FA. O

The above can be recast in an algebraic formulation, viewing a NFA from an
alternative point of view as a tuple of ingredients @Q, A, etc., just as we did for
the FA. If one does so, one will relax the requirement that § be a single-valued
relation, and will also relax the requirement of totalness. One will also allow
0 to have inputs of the type (¢, A) making sure to view this as an extension of
what 6 can deal with (as inputs) rather than mistaking this as an extension of
the input alphabet. Said alphabet cannot have the empty string as a member.

We will not pursue the algebraic model, as the flow diagram model will do
all we want it to do.

It is trivial that, since a NFA is defined by relaxing requirements in the
Definition of the FA (Notes #9), any FA is also a NFA, but not conversely, as
the preceding example demonstrates.

The NFA “computes” as follows:

¢

0.3.3 Definition. (NFA computations; string acceptance) Let M be a NFA

over the input alphabet X. An accepting path is a path in M from the start
state to some accepting state.

A string x over X is accepted by M iff x is obtained by concatenating the
path labels from left to right in an accepting path. We say that = names, or
is the name of, said accepting path. L(M) denotes the set of all strings over ¥
accepted by M. We say that M decides/recognises L(M). O

Intro to Automata© 2012 and 2019, by George Tourlakis



12

0.3.4 Example. The following is a NFA but not a FA (why? Compare with
0.0.2). It decides the language {0™1 : n > 0}.

L
QH

0.3.5 Example. NFA are much easier to construct than FA, partly because of
the convenience of the A moves, and the lack of concern about single-valuedness
of §. Also, partly due to lack of concern for totalness: we do not have to worry
about “installing” a trap state. For example, the following NFA over A = {0, 1}
decides/recognises just its alphabet A and nothing else as we can trivially see
that there are just two accepting paths: one named “0” and one named “1”.

0.3.1. From FA to NFA and Back

We noted earlier that any FA is a NFA, thus the NFA are at least as powerful
as the FA. They can do all that the deterministic model can do. It is a bit of
a surprise that the opposite is also true: For every NFA M we can construct a
FA N, such that L(M) = L(N).

Thus, in the case of these very simple machines, nondeterminism (“guess-
ing”) buys convenience, but not real power.

How does one simulate a NFA on an input 7 The most straightforward
idea is to trace all possible paths labeled x (due to nondeterminism they may
be more than one —or none at all) in parallel and accept iff one (or more) of

Intro to Automata© 2012 and 2019, by George Tourlakis



0.3. Nondeterministic Finite Automata 13

those is accepting. The principle of this idea is illustrated below.

Say, the input to the NFA M is x = ab... Suppose that a leads the start state
—which is at “level 0”— to three states; we draw all three. These are at level
1. We repeat for each state at level 1 on input b: Say, for the sake of discussion,
that, of the three states at level 1, the first leads to one state on input b, the
second leads to two and the third leads to none. We draw these three states
obtained on input b; they are at level 2. Etc.

An FA can keep track of all the states at the various levels since they can be
no more than the totality of states of the NFA M! The amount of information at
each level is independent of the input size —i.e., it is a constant— and moreover
can be coded as a single FA-state (depicted in the figure by an ellipse) that uses
a “compound” name, consisting of all the NFA state names at that level. This
has led to the idea that the simulating FA must have as states nodes whose
names are sets of state names of the NFA. Clearly, for this construction, state
names are important, through which we can keep track of and describe what
we are doing. Here are the details:

0.3.6 Definition. (a-successors) Let M be a NFA over an input alphabet X,
q be a state, and a € ¥. A state p is an a-successor of ¢ iff there is an edge
from ¢ to p, labeled a. O

In a NFA a-successors need not be unique, nor need to exist (for every pair
(¢,a)). On the other hand, in a FA they exist and are unique.

0.3.7 Definition. (A-closure) Let M be a NFA with state-set @ and let S C
Q. The A-closure of S, denoted by A(S), is defined to be the smallest set that
includes S but also includes all ¢ € @, such that there is a path, named A, from
some p € S to q.

When we speak of the A-closure of a state ¢, we mean that of the set {q}
and write A(q) rather than A({q}). O

Intro to Automata© 2012 and 2019, by George Tourlakis

¢



14

Note that a path named A will have all its edges named ) since the concatenation
of a sequence of strings is A iff each string in the sequence is. @

0.3.8 Example. Consider the NFA below.

0

We compute some A-closures: A(a) = {a,b,d}; A(c) = {c, a,b,d}. O

0.3.9 Theorem. Let M be a NFA with state set Q and input alphabet X. Then
there is a FA N that has as state set a subset of P(Q) —the power set of Q—
and the same input alphabet as that of M. N satisfies L(M) = L(N).

We say that two automata M and N (whether both are FA or both are NFA, or
we have one of each kind) are equivalent iff L(M) = L(N). Thus, the above says
that for any NFA there is an equivalent FA. In fact, this can be strengthened
as the proof shows: We can construct the equivalent FA. @

Proof. The FA' N will have as state set some subset of P(Q), meaning that
every state of N will have a compound name consisting of the names (in any
order, hence set rather than sequence) of the members of some subset of Q.
Moreover,

e The start state of N is A(go), where qo is the start state of M.

o A state of N is accepting iff its name contains at least one accepting state
name of M.

e Let S be a state of N and let a € . The unique a-successor of S in N is
constructed as follows:

(1) Construct the set of all a-successors in M of all members of S. Call
T this set of a-successors.

(2) Construct \(T'); this is the a-successor of S in N.
As an illustration, we compute some 0-successors in the FA constructed as above
if the given NFA is that of Example 0.3.8.

(I) For state {a,b,d} step (1) yields {c}. Step (2) yields the A-closure of {c}:
The state {c, a,b,d} is the 0-successor.

Intro to Automata© 2012 and 2019, by George Tourlakis



0.3. Nondeterministic Finite Automata 15

(IT) For state {c,a,b,d} step (1) yields {c}. Step (2) yields the A-closure of
{c}: The state {c,a,b,d} is the O-successor; that is, the 0-edge loops back to
where it started.

We return to the proof. We will show that this construction of the FA N
works. So let us prove first that L(M) C L(N).

Let x = ajas - - - a, € L(M). Without loss of generality, we have an accepting
path in M that is labeled as follows:

MragN2ag N3 ag - - X a, Nn+t (3)

where each M\i depicts j; > 0 consecutive path edges, each labeled X\, where
Ji = 0 in this context means that the j; group has no A\-moves. We show this M-
path graphically below as the zig-zag path with horizontal segments alternating
with down-sloping segments. For easy reference, we assign the level number i to
each horizontal part labeled Mi+1, that is the one that is followed immediately
by a down-sloping edge labeled a;1.

Now the FA N that is constructed as detailed in the above three bullets will
—its 6 being total— have a unique¥ path labeled aias . . . a, from its start state
to some other state, its states being denoted by ellipses in the diagram.

9By determinism.

Intro to Automata© 2012 and 2019, by George Tourlakis



16

The diagram implicitly claims that each N-state at level 4, depicted as an ellipse
in the diagram,

(A) contains as part of its name all the states that participate in the M-sub-
path with name M+t for i =0,1,2,...

(B) the N-state at level i has the N-state shown, and partially named, at the
next level as its a;1-successor.

We prove (A) by an easy induction on ¢ and obtain (B) at once (bullet three on
p.14) as a side effect. Indeed, for level i = 0 (basis), all the state names shown
(from M) are in A(go) and we are done by the first bullet on p.14.

Taking as I.H. the validity of (A) for a fixed unspecified level i —where we
have an N-state S— we look next at level ¢ + 1, where we have an N-state T.

By definition of “level”, level i+1 is reached by the edge named a; 1. By the
assumption on how M accepts z, the edge named a; 1 bridges the two indicated
states, ¢ and r. From what we know about the components present in the name
of S (I.LH.), the third bullet that describes the transitions of N entails that all
states in the A-path from r to p are in the N-state T'.

The string will be accepted by N iff the state pointed at by a,, —at level n—
is accepting in N. This is so by the fact that the last state of the M-computation
is accepting and —by (A)— is part of the last N-state in the above N-path.

We turn to the converse. So let © = ajas...a, € L(N). We will argue that
x € L(M).

We will reuse the above figure. Let us concentrate at first only in the ellip-
tical states of the FA N and the indicated in the figure interconnecting transi-
tions, which from top to bottom form the accepting N-computation path labeled
ajas . ..a,. We will want to produce a corresponding accepting M-path, that
we will “fold” and fit its “horizontal” (A-moves) parts inside appropriate ellipse
states. This time it will be most convenient to do so starting at the bottom of
the FA path and work backwards.

Thus the last (bottommost) state of N is two things:

(i) accepting; hence must contain an accepting M-state (as illustrated)

(ii) the an-successor of the preceding N-state (not illustrated). Therefore
(p.14), the latter must contain an M-state from which the a,-edge em-
anates and this edge either points to the illustrated accepting M-state, or,
more generally, to a different M-state, which is part of the last ellipse’s
name and is connected to the accepting M-state by an A\-path. We always
adopt the general case (illustrated).

Continuing to build an M-computation path backwards, from an accepting state
toward the start state —and “folding it” inside the ellipses of N as we go, leaving
only the edges labeled a; to connect levels— assume that we have reached the
ellipse at level i+ 1. This N-state acts on input a;1o that emanates from the M-
state p inside the ellipse. By the third bullet on p.14, this p must have become

Intro to Automata(© 2012 and 2019, by George Tourlakis



0.3. Nondeterministic Finite Automata 17

part of the ellipse’s name either by directly being pointed to by the a;yi-edge
—emanating from some M-state, that we will call ¢, inside the i-level ellipse—
or the edge from ¢ actually points to a state r inside the level-i + 1 ellipse, this
7, in turn, pointing to p via an A-path (the “general case”), as illustrated.
Once we reach level 1 in this way, we have a state p’ (of M) as part of the
level-1 ellipse’s name, which —as in the general case at level i + 1— is either
pointed to by the aj-edge (emanating from ¢’) directly, or indirectly via an A-
path from r’; as illustrated. Finally, at level 0, we have N’s start state. Thus,
either ¢’ is the start state of M, or, more generally, as illustrated, ¢’ is reachable
from M'’s start state by an A path. We have constructed an accepting path in
M, labeled . 0

In theory, to construct a FA for a given NFA we draw all the states of the latter
and then determine the interconnections via edges, for each state-pair and each
member of the input alphabet 3. In practice we may achieve significant economy
of effort if we start building the FA “from the start state down”: That is, starting
with the start state (level 0) we determine all its a-successors, for each a € X.
At the end of this step we will have drawn all states at “level 1”. In the next
step for each state at level 1, draw its a-successors, for each a € ¥. And so on.
This sequence of steps terminates since there are only a finite number of
states in the FA and we cannot keep writing new ones; that is, sooner or later
we will stop introducing new states: edges will point “back” to existing states.
See the following example. @

0.3.10 Example. We convert the NFA of 0.3.8 to a FA. See below, and review
the above comment and the proof of 0.3.9, in particular the three bullets on
p-14, to verify that the given is correct, and follows procedure.

You will notice the aforementioned economy of effort achieved by our process.
We have only three states in the FA as opposed to the predicted 32 ( = 2°) of
the proof of Theorem 0.3.9. But what happened to the other states? Why are
they not listed by our procedure?

Intro to Automata© 2012 and 2019, by George Tourlakis



18

Because the procedure only constructs FA states that are accessible by the
start state via a computation path. These are the only ones that can possibly
participate in an accepting path. The others are irrelevant to accepting compu-
tations —indeed to any computations that start with the start state— and can
be omitted without affecting the set decided by the FA. O

0.3.11 Example. Suppose that we have converted a NFA M into a FA N. Let
a be in the input alphabet. What is the a-successor of the state named 0 in
N? Well, there is no M state ¢ that connects some state in () to g with label a.
Thus, the set of a-successors (in M) of states from () is itself the empty set. In
other words, the a-successor of ) in N is (). The edge labeled a loops back to it.

Therefore, in the context of the NFA-to-FA conversion, () is a trap state in N.

" e

Intro to Automata© 2012 and 2019, by George Tourlakis



	Some Closure Properties of Regular Languages
	Proving Negative Results for FA; Pumping Lemma
	Nondeterministic Finite Automata
	From FA to NFA and Back


