
1

March 19

0.1 The Iteration Theorem of Kleene

Suppose that i codes a URM program, M , that acts on input variables x and y
to compute a function λxy.f(x, y). It is certainly trivial to modify program M
to compute λx.f(x, a) instead. In computer programming terms, we replace an
instruction such as “read y” by one that says “y ← a”.

In URM terms, since the input variables x1,x2, . . . are initialized before the
computation starts, the way to implement the suggested “decommissioning” of y
as an input variable —opting rather to initialize it with the number a explicitly,
first thing during the computation— is to do the following, assuming x and y
of f are mapped to x1 and x2 of M :

(1) Remove x2 from the input variables list, x1,x2, and
(2) Modify M into M ′ by adding the instruction x2 ← a as the very first

instruction.

� From the original code, i, a new code (depending on i and a) can be easily
calculated. This is the intuition of Kleene’s iteration or “S-m-n” theorem below. �

The mathematical details are as follows, but first note that the function
g = λx~y.Πi<xf(i, ~y) is in PR if f is:{

g(0, ~y) = 1

g(x+ 1, ~y) = g(x, ~y) · f(x, ~y)

0.1.1 Definition. (Code Concatenation)

x ∗ y Def
= x ·Πi<lh(y)p

exp(i,y)
i+lh(x) �

0.1.2� Remark. Clearly, λxy.x ∗ y is primitive recursive. The definition’s aim
is to achieve this—which it clearly does:

〈a1, . . . , an〉 ∗ 〈b1, . . . , bm〉 = 〈a1, . . . , an, b1, . . . , bm〉

If Seq(x) or Seq(y) fail, then the result of x ∗ y is irrelevant to us. � �

0.1.3 Exercise. What is 10 ∗ 5? �

0.1.4 Exercise. What is 1 ∗ z? z ∗ 1? �

0.1.5 Definition. (Concatenating URMs) Given two URMs M and N of
codes m and n. We denote their concatenation by MN and m_ n in terms of
their codes. Note that MN means the superposition of the two URMs, in that
order, with the stop-instruction removed from M and all the instructions of N
adjusted to reflect that the first label of N now is lh(m).

We define m_ n to be 0 if either of m or n is not a valid URM code. �

CSE 4111/5111. George Tourlakis. Winter 2018



2

0.1.6 Lemma. Let adj(n, k) (“adjust n”) be the expression that codes a URM
n after k was added to all its instruction numbers (and all if-statements were ad-
justed to still transfer to the same instructions as before). Let also adj(n, k) = 0
if n does not code a URM. Then the function λnk.adj(n, k) is primitive recur-
sive.

Proof. First let us define a less ambitious function, f , that adjusts one instruc-
tion due to adding k to the instruction number:

f(z, k) =



3kz if (∃L, i, a)≤z

(
z = 〈1, L, i, a〉 ∨

z = 〈2, L, i〉 ∨

z = 〈3, L, i〉 ∨

z = 〈5, L〉
)

231kz if (∃L, i, P,Q)≤zz = 〈4, L, i, P,Q〉
0 otherwise

Note that 231 = 3 · 7 · 11. Clearly, f ∈ PR. Finally,

adj(n, k) =

{
Πi<lh(n)p

f((n)i,k)+1
i if URM(n)

0 otherwise

Clearly, adj is primitive recursive. �

0.1.7 Lemma. λmn.m _ n is primitive recursive.

Proof.

m_ n =


 m

p
exp(lh(m)

.−1,m)

lh(m)
.−1

 ∗ adj(n, lh(m)
.− 1) if URM(m) ∧ URM(n)

0 otherwise

The left hand operand of ∗ above represents the removal of the stop-instruction
of the URM m prior to concatenation. It is immediate from the above and the
preceding lemma that λmn.m _ n is primitive recursive. �

0.1.8 Theorem. (Kleene’s Iteration or “S-m-n” Theorem) For each m ≥
1 and n ≥ 1, there is a primitive recursive function λi~yn.S

m
n (i, ~yn) such that,

for all i, ~xm, ~yn,

φ
(m+n)
i (~xm, ~yn) = φ

(m)
Sm
n (i,~yn)

(~xm) (1)

Proof. The construction of Smn is guided by the introductory remarks of this
section: If i codes a (normalised) URM M such that

Mx1,...,xm+n
x0

= φ
(m+n)
i

CSE 4111/5111. George Tourlakis. Winter 2018



3

then we remove the n variables xm+1, . . . ,xm+n from the designated input-
variable list and add the instructions below at the top of program M .

xm+1 ← y1,xm+2 ← y2, . . . ,xm+n ← yn

To be able to use of the tools we have developed in this section, we implement
the above plan by concatenating the following URM, N , to the left of M . Note
that N is not normalized, but NM is, since M is.

1 : xm+1 ← y1
...

n : xm+n ← yn
n+ 1 : stop

(N)

The code for N is a function of ~yn (recall that m,n are constants) which we will
name init(~yn). Thus,

init(~yn) = p
〈1,1,m+1,y1〉+1
0 p

〈1,2,m+2,y2〉+1
1 · · · p〈1,n,m+n,yn〉+1

n−1 p〈5,n+1〉+1
n (2)

It is immediate that λ~yn.init(~yn) is primitive recursive. Thus, Smn , given below
for all i, ~yn, is too by Lemma 0.1.7.

Smn (i, ~yn) = init(~yn) _ i (3)

It is important to note that (by 0.1.7) if i fails the URM(i) “test”, then so does
Smn (i, ~yn) (indeed, equals 0; cf. 0.1.7) and thus both sides of (1) are equal (both
sides contain the empty function acting on inputs). �

0.1.9� Remark. (1) It is important to note by inspecting (2) and (3) in the
proof above that if URM(i) holds, then Smn is strictly increasing with respect
to each yi variable. Of course, if URM(i) fails, then Smn returns 0 no matter
what the inputs yi may be.

(2) A note on notation: In Smn the upper index, m, is a mnemonic tool for
how many variables stayed “up” (in the φ argument), while the lower index,
n, indicates how many variables were moved “down”, to be hardwired into the
“program” Smn (i, ~yn) as it were.

These considerations led to the nickname of the iteration theorem as the
“S-m-n theorem”.

(3) In practice, the S-m-n theorem is applied as follows: If λ~xky~zr.f(~xk, y, ~zr) ∈
P, then there is a 1-1 h ∈ PR, such that, for all ~xk, y, ~zr, we have

f(~xk, y, ~zr) = φ
(k+r)
h(y) (~xk, ~zr)

By the assumption on f and the definition of φ-indices, there is an i ∈ N, such
that f(~xk, y, ~zr) = φk+r+1

i (~xk, ~zr, y). Note the permutation of variables, where
y was moved to the end of the argument list of φk+r+1

i , to align with require-
ments of the S-m-n theorem. Can we do this? Yes, since we may chose the

CSE 4111/5111. George Tourlakis. Winter 2018



4

URM i such that we have mapped the “mathematical” variables ~xk, y, ~zr of f
to the “formal” variables X1, . . . X1k+r+1 so that y’s role is played by X1k+r+1.

We take h = λy.Sk+r1 (i, y). Note that the italicized part, “a 1-1”, above is a
weakening of the observation (1) above. � �

CSE 4111/5111. George Tourlakis. Winter 2018



5

0.2 Diagonalization Revisited; Unsolvability via
Reductions

This section further develops the theory of computability and uncomputability
by developing tools—in particular, reducibility—that are more sophisticated
than the ones we encountered so far in this volume, toward discovering undecid-
able and non c.e. problems. We also demonstrate explicitly that diagonalization
is at play in a number of interesting examples.

As we mentioned in the Preface and elsewhere already, the aim of com-
putability is to “formalize” the concept of “algorithm” and then proceed to
classify problems as decidable vs. undecidable and verifiable vs. unverifiable.

We continue taking—by definition—the term “algorithm” to mean URM
program, and computable (partial) function to mean a URM-computable func-
tion, or equivalently, one that has a P-derivation (using the number theoretic
re-definition of P proved in class and in the text). Thus proving that such and
such a problem x ∈ A does not have an “algorithmic solution”, or is not even
verifiable, becomes mathematically precise: By Definition, we need to show
that A /∈ R∗ or A /∈ P∗, respectively.

Church has gone a step further, and observing that all known formalisms of
the concept of algorithm were proved to be equivalent (each produced the same
computable functions), formulated

Church’s Thesis. Any partial function that can be informally
demonstrated to be computable by some algorithm, can be math-
ematically demonstrated to be programmable in any one of
the known formalisms (such as Turing machines, Markov algo-
rithms, Post systems, URMs∗).

Of course, this “thesis” is a belief based on empirical evidence, not a metathe-
orem. The difficulty (toward theoremhood) lies in the fact that in order to, say,
demonstrate mathematically that the concepts of “algorithm” and URM coin-
cide, we must already have a mathematical formulation of algorithm!

� This is why we said above that we take by definition that algorithm means URM.
We cannot do better than being arbitrary like this. We already mentioned that
while the “Thesis” is widely adopted—indeed, some advanced books such as
[Rog67] use it to shorten proofs that such and such a function is computable—
the adoption is not universal; cf. [Kal57]. �

This volume will not take the shortcut of relying on Church’s Thesis. When-
ever we want to prove that f is computable we will do so mathematically, in-
variably using the two definitions of P as needed and closure properties of P.
Nevertheless, we will often also offer an intuitive argument that establishes the
desired computability, just to get a feeling as to why things tick!

∗Actually, the URM formalism postdates the formulation of Church’s Thesis but is demon-
strably equivalent to all the others.

CSE 4111/5111. George Tourlakis. Winter 2018



6

0.2.1 More Diagonalization

We begin the development of the theory by revisiting the proof of the undecid-
ability of the halting problem.

0.2.1 Theorem. (The Undecidability of the Halting Problem; Again)
K /∈ R∗.

Proof. We will argue by contradiction, so we assume that K ∈ R∗, that is, the
relation φx(x) ↓ is recursive. We view a one-argument function f as a sequence
of values,

f(0), f(1), . . .

where (informally), if f(x) ↑, then we take the symbol “↑” as the yielded value.
On this understanding we form the infinite matrix below, of which the i-th

row represents φi, for all i.

φ0(0) φ0(1) φ0(2) . . .
φ1(0) φ1(1) φ1(2) . . .

...
...

...
φi(0) φi(1) φi(2) . . .

...
...

...

We proceed to utilize the main diagonal

φ0(0), φ1(1), . . . , φi(i), . . .

and build a function that cannot be a row of the above matrix. We simply
change each entry that is ↑ to ↓, and vice versa:

d(x) =

{
↓ if φx(x) ↑
↑ if φx(x) ↓

The above captures the idea, but it is not a well-defined function since we have
not said what the output of d is when it is defined. We resolve this “uncertainty”
arbitrarily as follows:

d(x) =

{
42 if φx(x) ↑
↑ if φx(x) ↓

(1)

Indeed, d does not match any row above as it differs from each row in the spot
where it intersects the diagonal. Why do we care? Well, since P is closed under
definition by cases (Exercise 28 in Problem Set #1), and since by assumption
both φx(x) ↓ and φx(x) ↑ are recursive,

Pause. Why “both”?J

it follows that d ∈ P, i.e., d = φi for some i—i.e., d must be some row in the
above matrix. We have a contradiction. �

CSE 4111/5111. George Tourlakis. Winter 2018



7

An intuitive reason as to why the function d as defined in (1) is computable,
is presented here by outlining a pseudo algorithm for the computation of d(x):
Let M be a URM that decides the predicate φx(x) ↓. Given input x, run M
on x. If it says “no”, then print 42 and halt; if it says “yes”, then get into a
deliberate infinite loop.

� Worth repeating. We chose d so that at input x it differs from φx(x), and
thus it differs from φx; full stop. We have “cancelled” x as a possible φ-index
of d.

Given that we have done this for all x, we have cancelled all possible φ-
indices of d. Thus d is not computable. Since our assumption about φx(x) ↓
also forced d to be computable, we managed to reject said assumption as it
forced a contradiction. �

A version of unbounded search is the following:

0.2.2 Definition. (Alternate Unbounded Search Operator) For any to-
tal function λy~x.g(y, ~x) the expression (µ̃y)g(y, ~x) stands for{

min{y : g(y, ~x) = 0} if the minimum exists

↑ otherwise

�

� It is immediate that (µy) and (µ̃y) coincide on total functions since—in g(y, ~x) =
0 ∧ (∀z)<y(g(z, ~x) ↓)—the subformula (∀z)<y(g(z, ~x) ↓) is true for such g and
therefore its presence or absence in the formula is immaterial. �

0.2.3 Definition. We say that a class of number-theoretic functions C is closed
under (µ̃y) just in case for every total g in the class, λ~x.(µ̃y)g(y, ~x)—which may
fail to be total—is in the class. �

0.2.4 Theorem. P is closed under (µ̃y).

Proof. By the preceding �-remark, if g ∈ R, then, for all ~x, (µ̃y)g(y, ~x) =
(µy)g(y, ~x).

Thus λ~x.(µ̃y)g(y, ~x) ∈ P. �

� Note that the requirement that (µ̃y) apply on total functions makes it a semantic
rather than a syntactic operator: As we have seen, the problem of whether

φ
(n+1)
i is in R or not is undecidable, indeed is not even c.e.

Thus, given i we cannot know whether writing (µ̃y)φ(n+1)(y, ~xn) makes sense

or not : For we cannot decide, as Definition 0.2.2 requires, whether φ
(n+1)
i is

total. �

CSE 4111/5111. George Tourlakis. Winter 2018



8

Pause. Hmm. Why can’t we stop worrying about totalness and just allow—
in defiance of Definition 0.2.2—(µ̃y) to apply to all partial functions, including
nontotal ones?J

Well, a first approximation objection to the suggestion of defiance is that
while (µy)g(y, ~x) is correctly computed by the pseudo program below

y ← 0
while

¬g(y, ~x) = 0
y ← y + 1

end

the same program does not compute (µ̃y)g(y, ~x).

� For the sake of argument, say, for a given ~a, we have g(0,~a) ↑, but g(1,~a) = 0.
If so, the above pseudo program correctly computes (µy)g(y,~a) since the

definition requires —for convergence—that (∀z < 1)g(z,~a) ↓.
This is not the case for (µ̃y)g(y,~a), which ought to return min{y : g(y,~a) =

0} = 1 (overlooking the nontotal-ness of g) but the program above loops forever,
since the call to g(0,~a) does.

But wait! What if there is a really clever alternative program that computes
correctly min{y : g(y,~a) = 0}, for any computable g, total or not?

How can we establish that such a program does not exist (assuming we be-
lieve that it does not)? By producing a partial recursive, nontotal, λxy.ψ(x, y),
for which λx.(µ̃y)ψ(x, y) /∈ P! �

0.2.5 Theorem. There is a nontotal λxy.ψ(x, y) ∈ P such that λx.(µ̃y)ψ(x, y) /∈
P.

Proof. The proof just firms up the “what if” discussion above that cast some
initial doubt on the appropriateness of applying (µ̃y) to nontotal functions. So
let us define ψ by

ψ(x, y) =

{
0 if

(
y = 0 ∧ φx(x) ↓

)
∨ y = 1

↑ otherwise

Given that the predicate φx(x) ↓ is semi-recursive, closure properties of P∗
establish the top condition in the definition of ψ as semi-recursive. By definition
by positive cases we have that ψ ∈ P.

Let us evaluate

(µ̃y)ψ(x, y) (1)

There are just two possible output values: The search returns 0 if φx(x) ↓, while
it returns 1 if φx(x) ↑. Thus λx.(µ̃y)ψ(x, y) is χK and therefore is not in P). �

Incidentally, note that χK , being a characteristic function, it is total, even
though ψ is not.

CSE 4111/5111. George Tourlakis. Winter 2018



9

0.2.6 Proposition. The problem which requires us to determine for a given
URM program i and input x whether a predetermined output y is attained is
undecidable.

We opted to say the above in English, in the first instance. Mathematically
we are saying that λix.φi(x) = y is not in R∗.
Proof. If the stated predicate is in R∗ then so is λx.φx(x) = y by closure
properties. We will use a straightforward diagonalization to see that the latter
cannot be.

φ0(0) φ0(1) φ0(2) . . .
φ1(0) φ1(1) φ1(2) . . .

...
...

...
φi(0) φi(1) φi(2) . . .

...
...

...

Define the new diagonal so that it differs from the one above at every place.

d(x) =

{
y + 1 if φx(x) = y

y otherwise

Thus, d is not a row in the above infinite matrix. On the other hand, since we
assumed that λx.φx(x) = y is recursive, we have that d ∈ R (it is total) hence
d = φi for some i and hence must be a row. A contradiction. �

0.2.7 Corollary. λixy.φi(x) = y is not in R∗.

Proof. Otherwise we would contradict the preceding proposition, via Grzegor-
czyk operations. �

CSE 4111/5111. George Tourlakis. Winter 2018



10

The next result, also based on a variant of diagonalisation, has a computa-
tional complexity flavour: There are arbitrarily hard-to-compute recursive func-
tions! Recall our concept of complexity of computable functions, Φ, introduced
in the context of the dovetailing technique.

0.2.8 Theorem. For any a priori chosen recursive function λx.g(x), we can
construct an f ∈ R such that, for any i, if f = φi, then g(x) < Φi(x) for all
x ≥ i.

� Thus, we have a priori arbitrarily chosen a level of computational “difficulty”, g.
We may choose a horrendously “big” g [e.g., Ax(x), where A is the Ackermann
function]. Then we show how to find a function f , which no matter how we
program it (via a URM i), such a program will take more than g(x) “steps”
to terminate on almost all inputs x, indeed on all x ≥ i. �

Proof. We want to build an f that for i ≤ x cannot be computed within ≤ g(x)
steps.

Thus, we need to meet two requirements:
(1) Ensure that the f we build is recursive.
(2) Ensure that all φ-indices i that satisfy

i ≤ x and Φi(x) ≤ g(x)

are cancelled.

Let us thus set

I(x)
Def
= {i : i ≤ x ∧ Φi(x) ≤ g(x)}

Given that Φi(x) ≤ y is recursive, so is Φi(x) ≤ g(x) since g ∈ R, and thus
we have that λix.i ∈ I(x) is recursive. So is the predicate I(x) 6= ∅, being
equivalent to (∃i)≤xΦi(x) ≤ g(x). We define f , for all x, as follows:

f(x) =

{
1 +

∑
i∈I(x) φi(x) if I(x) 6= ∅

1 otherwise
(3)

It is clear that f ∈ P from Exercise 28 of Problem Set #1. But we need to work
a bit more to show it is total, before we show that it has property (2) above.
Let us define, for all i, x, the function h:

h(i, x)
Def
= if i ∈ I(x) then φi(x) else 0

By the earlier remark on i ∈ I(x) we have that h ∈ P. Since whenever i ∈ I(x)
holds we have φi(x) ↓ (why?), it follows that h ∈ R. Thus the totalness of
f is established as soon as we rewrite (3) as follows, since

∑
i∈I(x) φi(x) =∑

i≤x h(i, x).

f(x) =

{
1 +

∑
i≤x h(i, x) if I(x) 6= ∅

1 otherwise

CSE 4111/5111. George Tourlakis. Winter 2018



11

We finally turn to establish property (2) for f . Let then f = φk for some k (as
it must since it is recursive) and pick any x ≥ k. Can it be that Φk(x) ≤ g(x)?

No, for otherwise k ∈ I(x) holds and therefore f(x) = 1+ . . .+φk(x)+ . . . >
φk(x). A contradiction. �

� The reader will note that the claim that we “can construct” an f with the stated
properties is apt. �

0.2.9 Corollary. There is no λx.g(x) ∈ R such that every recursive φi is ex-
pressed as φi = λx.d

(
(µy)≤g(x)T (i, x, y)

)
.

Proof. Exercise! �

� The corollary says that there is no upper bound on the complexities of the
recursive functions. �

� � You may omit this ��-enclosed part.

It is noteworthy that there are arbitrarily hard to compute 0-1 valued re-
cursive functions, that is, arbitrarily hard to compute recursive predicates. The
following and its proof is due to [Blu67].

0.2.10 Theorem. For any a priori chosen recursive function λx.g(x), we can
construct 0-1 valued f ∈ R —in essence, a predicate in R∗— such that, for any
i, if f = φi, then g(x) < Φi(x) a.e.

Proof. With a 0-1 valued function we have to employ a more tricky index can-
cellation process, following [Blu67]. Adding all the φi —for the i we want to
cancel—and then adding 1 on top of that will not work. We define instead as
follows:

f(x) =


1 .− φk(x) if k is the smallest uncancelled i in I(x);

now cancel the k that was employed above;

1† if no uncancelled i exists in I(x)

(1)

Let us leave for last the rather dull verification that (1) can be made mathe-
matically precise toward showing that f ∈ R. That f is 0-1 valued is obvious.

For now, we view the description in (1) as a reasonably complete guideline
on how to “program” f and embark on proving its claimed complexity.

Let then f = φr, for some r, and let us argue by contradiction.

Since f = φr, the φ-index r is never cancelled. (2)

If the claim “g(x) < Φr(x) a.e.” is false, then there is an infinite sequence of
inputs above r,

r < x1 < x2 < x3 < . . . < xm < . . . <

†Could have used output 0; either is fine.

CSE 4111/5111. George Tourlakis. Winter 2018



12

on which Φr(xi) ≤ g(xi), for each xi: i = 1, 2, . . ..

Now, input xi, for each i, satisfies r < xi too. Moreover, r is uncanceled—
that is, there are available indices to cancel in I(xi); cf. (1). So we cancel some
j < r (why j < r?) at this step, and set f(xi) = 1 .− φj(xi).

From the above follows that we will have an infinite sequence of indices, ji,
that we will cancel, one for each xi:

j1
↑

due to x1

< j2
↑

due to x2

< j3
↑

due to x3

< . . . < r

The inequalities are clear: Since r cannot be cancelled, it must be j1 < r, and
indeed j1 is the smallest available. For x2, index j1 is already cancelled, so
the next larger uncanceled index, j2, is cancelled. Always, it must be that the
indices we cancel are below r, as the latter is never cancelled.

This leads us to the absurdity that we have an infinite ascending sequence
of integers between j1 and r. We conclude that Φr(x) > g(x) a.e. as claimed.

But why is f recursive? We build f together with λx.c(x), the latter a
function that stores, via prime power coding, the cancelled indices i ≤ x, after
f(x) has been defined. We start with c, but first we recall the notation x ∈ z
from the Ackerman lectures. The function c is given by a primitive recursion.

c(0) = 1

c(x+ 1) = c(x) ∗
〈

if (∃y)≤x
(
y ∈ I(x) ∧ ¬y

uncancelled

↓
∈ c(x)

)
then (µy)≤x

(
y ∈ I(x) ∧ ¬y ∈ c(x)

)
else 1

〉
λyx.y ∈ I(x) being in R∗, we conclude that c ∈ R. We return to f :

f(x) =

{
1 .− φ

(µy)≤x

(
y∈I(x)∧¬y∈ c(x)

)(x) if (∃y)≤x
(
y ∈ I(x) ∧ ¬y ∈ c(x)

)
1 if ¬(∃y)≤x

(
y ∈ I(x) ∧ ¬y ∈ c(x)

)
Since λxy.φx(y) ∈ P and by Exercise 28 of Problem Set #1, f ∈ P. It is also
defined on any x since the index of φ is in I(x). �

� �

� The above theorem establishes the existence of arbitrarily hard to compute
recursive predicates. Does this mean that there are recursive predicates that are
not in PR∗? Yes! Exercise! �

CSE 4111/5111. George Tourlakis. Winter 2018



13

Bibliography

[Blu67] E. Blum, A machine-independent theory of the complexity of recursive
functions, ACM 14 (1967), 322–336.

[Kal57] L. Kalmár, An argument against the plausibility of church’s thesis, Con-
structivity in Mathematics, Proc. of the Colloquium held at Amster-
dam, 1957, pp. 72–80.

[Rog67] H. Rogers, Theory of Recursive Functions and Effective Computability,
McGraw-Hill, New York, 1967.

CSE 4111/5111. George Tourlakis. Winter 2018


	The Iteration Theorem of Kleene
	Diagonalization Revisited; Unsolvability via Reductions
	More Diagonalization


