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0.1 URM Computations and their Arithmetiza-
tion

We now return to the systematic development of the basic theory of partial
recursive functions, with a view of gaining an insight in the inherent limitations
of the computing processes.

Instrumental to this study is a mathematical characterization of what is go-
ing on during a URM computation as well as a mathematical “coding”, as a
primitive recursive predicate, of the statement “the URM M , when presented
with input x has a terminating computation, coded by the number y” —the so-
called Kleene-predicate. We achieve this “mathematization” via a process that
[Göd31] invented in his paper on incompleteness of arithmetic, namely, arith-
metization. The arithmetization of URM computations is our first task in this
section. This must begin with a mathematically precise definition of “URM
computation”.

As an “agent” executes some URM’s, M , instructions, it generates at each
step instantaneous descriptions (IDs)—intuitively, “snapshots”—of a computa-
tion.

The information each such description includes is simply the values of each
variable of M , and the label (instruction number) of the instruction that is about
to be executed next—the so-called current instruction.

In this section we will arithmetize URMs and their computations—just as
Gödel did in the case of formal arithmetic and its proofs (loc. cit.)—and prove a
cornerstone result of computability, the “normal form theorem” of Kleene that,
essentially, says that the URM programming language is rich enough to allow
us write a universal program for computable functions. Such a program, U , re-
ceives two inputs: One is a URM description, M , and the other is “data”, x. U
then simulates M on the data, behaving exactly as M would on input x.

Programmers may call such a universal program an interpreter or a compiler.
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0.1.1 Definition. (Codes for Instructions) The instructions are coded—using
prime-power coding 〈x0, . . . , xn〉—as follows, where X1i is short for

X

i ones︷ ︸︸ ︷
1 · · · 1, i ≥ 0

In the metalanguage we use, of course, convenient names as x0, X
′, x, y, Z, etc.,

for variables.

(1) L : X1i ← a has code 〈1, L, i, a〉.

(2) L : X1i ← X1i + 1 has code 〈2, L, i〉.

(3) L : X1i ← X1i .− 1 has code 〈3, L, i〉.

(4) L : if X1i = 0 goto P else goto R has code 〈4, L, i, P,R〉.

(5) L : stop has code 〈5, L〉. �

0.1.2� Remark. So we have 5 types of instructions coded as numbers, and it
will be convenient to have 5 predicates that test a number for being which
instruction code. In what follows we employ shorthand such as (∃z, w)<u for
(∃z)<u(∃w)<u, and similarly for longer quantifier groupings, as well as for ∀.

typ1(z)
Def
≡ Seq(z) ∧ lh(z) = 4 ∧ (z)0 = 1 ∧ (∃L, i, a)≤zz = 〈1, L+ 1, i, a〉

typ2(z)
Def
≡ Seq(z) ∧ lh(z) = 3 ∧ (z)0 = 2 ∧ (∃L, i)≤zz = 〈2, L+ 1, i〉

typ3(z)
Def
≡ Seq(z) ∧ lh(z) = 3 ∧ (z)0 = 3 ∧ (∃L, i)≤zz = 〈3, L+ 1, i〉

typ4(z)
Def
≡ Seq(z) ∧ lh(z) = 5 ∧ (z)0 = 4 ∧ (∃L, i, P,R)≤zz = 〈4, L+ 1, i, P + 1, R+ 1〉

typ5(z)
Def
≡ Seq(z) ∧ lh(z) = 2 ∧ (z)0 = 5 ∧ (∃L)≤zz = 〈5, L+ 1〉

Clearly, typ1(z) to typ5(z) are primitive recursive, and so is

instr(z)
Def
≡ typ1(z) ∨ typ1(z) ∨ typ2(z) ∨ typ3(z) ∨ typ4(z) ∨ typ5(z)

instr(z) is true iff z codes a URM instruction. � �
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In turn, we code a URM M as an ordered sequence of numbers, each being
a code for an instruction. Thus given a code z [i.e., z codes something : Seq(z)
is true] we can determine algorithmically whether z codes some URM. This
remark is made precise in Theorem 0.1.3 below.

0.1.3 Theorem. The relation URM(z) that holds precisely if z codes a URM
is in PR∗.

Proof. So, URM(z) says that

• z satisfies Seq(z) and lh(z) ≥ 2 (at least two instructions since stop refers
to no variables)

• stop appears only once, as the lh(z)-th instruction

• The i-th instruction in the URM code z = p
(z)0+1
0 · · · p(z)i+1

i · · · p(z)n+1
n has

label i, but we must account in this correspondence that labels go “1, 2, 3,
. . . ”, but members of the code z are enumerated as (z)j , for j = 0, 1, 2, . . .
Labels values are shifted 1-to-the-right.

Thus,
(
(z)i

)
1

= i+ 1.

• Instruction type 4 does not branch to illegal line numbers (i.e., less than
1 or more than the label of stop).

URM(z) ≡ Seq(z) ∧ lh(z) ≥ 2 ∧ (z)lh(z) .−1 = 〈5, lh(z)〉 ∧

(∀i)<lh(z)
.−1

((
instr

(
(z)i

)
∧ ¬typ5

(
(z)i

))
∧
(
(z)i

)
1

= i+ 1 ∧(
typ4

(
(z)i

)
→ 1 ≤

(
(z)i

)
3
∧ 1 ≤

(
(z)i

)
4
∧
(
(z)i

)
3
≤ lh(z) ∧

(
(z)i

)
4
≤ lh(z)

))
�
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0.1.4� Remark. (Normalizing Input/Output:) There is clearly no loss of
generality (why?) in assuming that any URM that computes a function of
n ≥ 1 inputs does so using X1 through X1n as input variables and X, i.e., X10

as the output variable. Such a URM will have at least three instructions, since
the stop instruction does not reference any variables and no instruction refers
to two distinct variables. � �

0.1.5 Definition. An ID of a computation of a URM M is an ordered sequence
L; a0, a1, . . . , ar, where all of M ’s variables —that is, all those referenced in in-
structions in M— appear among the X,X1, X11, . . . X1r, and the ai is the
value of X1i.

Thus, the formal variables X,X1, X11, . . . X1r is a superset of the variables
that are actually used.

In any discussion we pick and fix such a superset.
In metanotation we will denote these formal variables as x0, . . . ,xr, while

ai denotes the current value of xi immediately before instruction L is executed.
L points precisely to the current instruction, meaning the immediately next to
be executed.

All IDs have the same length, and we say that ID I1 = L; a0, . . . , ar yields
ID I2 = P ; b0, . . . , br, in symbols I1 ` I2, exactly when one of (i)–(v) below is
the case:

(i) L labels “xi ← c”, and I1 and I2 are identical, except that bi = c and
P = L+ 1.

(ii) L labels “xi ← xi + 1”, and I1 and I2 are identical, except that bi = ai + 1
and P = L+ 1.

(iii) L labels “xi ← xi
.− 1”, and I1 and I2 are identical, except that bi = ai

.− 1
and P = L+ 1.

(iv) L labels “if xi = 0 goto R else goto Q”, and I1 and I2 are identical, except
that P = R if ai = 0, while P = Q otherwise.

(v) L labels “stop”, and I1 and I2 are identical.

� Thus when stop is reached the computation continues forever trivially,
changing nothing. �
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A terminating computation of M with input a1, . . . , ak is a sequence of IDs
I0, . . . , In such that for all i < n we have Ii ` Ii+1 and for some j ≤ n, Ij has
as 0th component the label of stop. Moreover, I0 is initial; that is,

I0 = 1; 0, a1, . . . , ak, 0, . . . , 0︸ ︷︷ ︸
r − k 0s

The above reflects the normalizing convention of 0.1.4, and the standard con-
vention of implicitly —i.e., not as part of the computation— setting all the
non-input variables to 0, i.e., the xk+1, . . . ,xr and x0, before the computation
“starts”.

The length or run time of the computation is its number of steps Ii ` Ii+1:
That is, n. �

We code an ID I = L; a0, . . . , ar as code(I) = 〈L, a0, . . . , ar〉 and a termi-
nating computation I0, . . . , In by 〈code(I0), . . . , code(In)〉.

So, how long need an ID of a URM M coded as z be?

Just long enough so that we do not omit any variables actually used in M !

Given the ID’s format (0.1.5), it suffices that it is as long as the largest index
j of of any variable yj —this yj is among the xi— that is used by the URM;
plus two (why two?).

Since the maximum j is max{
(
(z)i

)
2

: i < lh(z)}, and we have
(
(z)i

)
2
<

z, we adopt for ID length the generous, but simple, bound ≤ z + 1 (that is,
(z − 1) + 2).

� Thus, all IDs of a URM coded as z will have length z + 1. �
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0.1.6 Definition. The relation “yield(z, u, v)” says “the URM with code z
causes u ` v, where each of u and v are codes of IDs”. �

0.1.7 Lemma. yield(z, u, v) ∈ PR∗.

Proof.

yield(z, u, v) ≡ (∃k)<z(∃L)<lh(z)

(
L+ 1 = (u)0 ∧

{
(∃a)<z

(
(z)L = 〈1, L+ 1, k, a〉 ∧ v = 2pa+1

k+1

⌊
u/p

exp(k+1,u)
k+1

⌋
∗) ∨(

(z)L = 〈2, L+ 1, k〉 ∧ v = 2pk+1u
)
∨(

(z)L = 〈3, L+ 1, k〉 ∧ v = 2(if (u)k+1 = 0 then u else bu/pk+1c)
)
∨

(∃P,R)<lh(z)

(
(z)L = 〈4, L+ 1, k, P + 1, R+ 1〉 ∧

v = if (u)k+1 = 0 then
⌊
u/2L+2

⌋
2P+2

else
⌊
u/2L+2

⌋
2R+2

)
∨(

(z)L = 〈5, L+ 1〉 ∧ v = u
)})

�

0.1.8 Theorem. For any n ≥ 1, the relation Comp(n)(z, y), which is true iff
y codes a terminating computation of the n-input normalised URM coded by z
is primitive recursive.

Proof. By the remark on p. 4, which normalises the input/output convention,
it must be that lh(y) ≥ 3. By the previous discussion ID length bound, and the
fact that the variables of the ID are among the xi, we also have lh((y)i) = z+1
for all i < lh(y).

In the course of the proof we will want to keep our quantifiers bounded
by some primitive recursive function so that the placement of Comp(n)(z, y) in
PR∗ can be achieved.

Observe next that

Comp(n)(z, y) ≡ URM(z) ∧ Seq(y) ∧ (∀i)<lh(y)

(
Seq((y)i) ∧ lh((y)i) = z + 1 ∧

((y)i)0 > 0
)
∧ lh(y) ≥ 3 ∧ (∀j)<lh(y)

.−1yield(z, (y)j , (y)j+1) ∧

{Comment. The last ID has the label of z’s stop.} ((y)lh(y) .−1)0 = lh(z) ∧
{Comment. The initial ID.} ((y)0)0 = 1 ∧ ((y)0)1 = 0 ∧

(∀i)≤z
(
n+ 1 < i→ ((y)0)i = 0

)
∗The effect of “L + 1 : X1k ← a” on ID u = 〈L + 1, . . .〉 is to change L + 1 to L + 2

(effected by the factor 2) and change the current value of xk, which is (u)k+1 since L + 1 is

at position 0 of u, stored in the ID as a factor p
exp(k+1,u)
k+1 . This factor we remove by dividing

u by it and then reset xk to a, this being accomplished by inserting the factor pa+1
k+1 instead.
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0.1.9 Corollary. (The Kleene T -predicate) For each n ≥ 1, the Kleene
predicate T (n)(z, ~xn, y) that is true precisely when the n-input URM z with input
~xn has a terminating computation y, is primitive recursive.

Proof. By earlier remarks, T (n)(z, ~xn, y) ≡ Comp(n)(z, y) ∧
(
(y)0

)
2

= x1 ∧(
(y)0

)
3

= x2 ∧ . . . ∧
(
(y)0

)
n+1

= xn. �

Recalling that for any predicate R(y, ~x), (µy)R(y, ~x) is alternative notation
for (µy)χR(y, ~x) we have:

0.1.10 Corollary. (The Kleene Normal Form Theorem)

(1) For any input/output normalized URM M of code z (0.1.1) and n inputs,

we have that MX1,...X1n

X is defined on the input ~xn iff (∃y)T (n)(z, ~xn, y).

(2) There is a primitive recursive function d such that for any λ~xn.f(~xn) ∈ P
there is a number z and we have for all ~xn:

f(~xn) = d
(
(µy)T (n)(z, ~xn, y)

)
Proof. Statement (1) is immediate as “(∃y)T (n)(z, ~xn, y)” says that there is a
terminating computation of M (coded as z) on input ~xn.

For (2), let f = MX1,...X1n

X , where M is a normalized URM of code z.
The role of d is to extract, from a terminating computation’s last ID, its 1st
component. Thus, for all y, we let d(y) =

(
(y)lh(y) .−1

)
1
. �

� In what follows, the term computation will stand for terminating computation.
Note that the “complete” equality† in the corollary, (2), becomes standard equal-
ity, =, iff we do have a (terminating) computation. �

†That is, equality on N extended by stipulating that ↑=↑.
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0.1.11 Definition. (φ-Notation of [Rog67]) We denote by φ
(n)
z the partial

recursive n-ary function computed by a URM of code z, as MX1,...,X1n

X . That

is, φ
(n)
z = λ~xn.d

(
(µy)T (n)(z, ~xn, y)

)
. We usually write φz for φ

(1)
z and T (z, x, y)

for T (1)(z, x, y). �

0.1.12 Remark. If f = φ
(n)
i , for some URM code i, then we call i a φ-index

of f . �
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We now readily obtain the very important number-theoretic characterization
of P, a class that was originally defined in ?? via the URM formalism. This
result is a direct consequence of 0.1.10 and is the direct analog of Theorem ??,
about PR.

0.1.13 Corollary. (Number-Theoretic Characterization of P) P is the
closure of the same I that we used for PR, under composition, primitive recur-
sion, and unbounded search.

Proof. If we temporarily call P̃ the closure that we mentioned in the corollary,
then since P contains I and is closed under the three stated operations, we
immediately have P̃ ⊆ P.

Conversely, ignoring closure under (µy) for a moment, we get PR ⊆ P̃.

Thus λ~xn.d((µy)T (n)(z, ~xn, y)) ∈ P̃, for all z. This shows P ⊆ P̃. �

� The preceding corollary provides an alternative formalism—that is, a syntactic,
finite description other than via URM programs—for the functions of P: Via
P-derivations, which can be defined totally analogously with the case of ??, by
adding the operation of unbounded search. Both types of derivation are special
cases of the general case of ??. �

CSE 4111/5111. George Tourlakis. Fall 2018



10

0.1.14 Remark. (1) The normal form theorem says, in particular, that every
unary function that is computable in the technical sense of ??—or, equivalently,
0.1.13—can be expressed as an unbounded search followed by a composition, us-
ing a toolbox of just two primitive recursive functions(!): d and λzxy.χT (z, x, y).
This representation, or “normal form”, is parametrized by z, which denotes a
URM M that computes the function in a normalized manner: as MX1

X . Thus
what we had set out to do at the beginning of this section is now done: The two-
input URM U that computes λzx.d

(
(µy)T (z, x, y)

)
—a computable function by

0.1.13—is universal, in precise the same way that compilers‡ of practical com-
puting are: The universal URM U accepts two inputs—a program M , coded as
a number z, and data for said program, x. It then “interprets” and acts exactly
as program z would on x, i.e., as MX1

X .
(2) From Definition 0.1.1 it is clear that not every z ∈ N represents a URM.

Nevertheless, “λx.d
(
(µy)T (z, x, y)

)
” in Definition 0.1.11 is meaningful for all

natural numbers z regardless of whether they code a URM or not,

� and is in P, by the latter’s closure properties. �

Thus, if z is not a URM code, then T (z, x, y) will simply be false, for all x,
and all y; thus we will have φz(x) ↑ for all x. This is perfectly fine! Indeed, it is
consistent with the phenomenon where a real-life computer program that is not
syntactically correct (like our z here) will not be translated by the compiler and
thus will not run. Therefore, for any input it will decline to offer an output; the
corresponding function will be totally undefined.

� Due to these considerations we extend the concept of φ-index to all of N, and
correspondingly remove the hedging from Definition 0.1.11: “computed by a
URM of code z, as MX1,...,X1n

X ”.

We now say: For all z ∈ N, φ
(n)
z denotes the function λ~xn.d

(
(µy)T (n)(z, ~xn, y)

)
. �

(3) In view of the above redefinition, Definition ?? can now be rephrased as

“λ~xn.f(~xn) ∈ P iff, for some z ∈ N, f = φ
(n)
z ”—not just “for some z that is a

URM code”. �

‡A “compiler” translates “high level” programs written in C, Pascal, etc., into machine
language so they can be “understood” by a computer, and therefore be executed on given
input data.
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0.1.15 Exercise. Prove that every function of P has infinitely many φ-indices.
Hint. There are infinitely many ways to modify a program and yet have all

programs so obtained compute the same function. �

0.1.16 Example. The nowhere-defined function, ∅, is in P, as it can be ob-
tained from any invalid code. For example,

∅ = λx.d
(
(µy)T (0, x, y)

)
Pause. Why is 0 not a URM code?J

It can, however, also be obtained from a program that compiles all right.
Setting S̃ = λyx.x+ 1 we note:

(1) λx.(µy)S̃(y, x) ∈ P by ?? and ??.

(2) By the techniques of ?? we can write a program for ∅ = λx.(µy)S̃(y, x).

As a side-effect we have that PR 6= P and R 6= P. �
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[Göd31] K. Gödel, Über formal unentsceidbare sätze der pricipia mathemat-
ica und verwandter systeme i, Monatshefte für Math. und Physic 38
(1931), 173–198, (Also in English in Davis [?, 5–38]).

[Rog67] H. Rogers, Theory of Recursive Functions and Effective Computability,
McGraw-Hill, New York, 1967.

CSE 4111/5111. George Tourlakis. Fall 2018


	URM Computations and their Arithmetization

