
Ackermann’s Function∗

George Tourlakis

February 18, 2008

1 What
The Ackermann function was proposed, naturally, by Ackermann. The version here is a
simplification offered by Robert Ritchie.

What the function does is to provide us with an example of a number-theoretic intuitively
computable, total function that is not in PR.

Another thing it does is it provides us with an example of a function λ~x.f(~x) that is “hard
to compute” (f /∈ PR) but whose graph —that is, the predicate λy~x.y = f(~x)— is “easy to
compute” (∈ PR∗).1

Definition 1.1 The Ackermann function, λnx.An(x), is given, for all n ≥ 0, x ≥ 0 by the
equations

A0(x) = x+ 2
An+1(x) = Ax

n(2)

where hx is function iteration (repeated composition of h with itself a variable number of
times, x)

h ◦ h ◦ h ◦ · · · ◦ h︸ ︷︷ ︸
x copies of h

More precisely, for all x, y,

h0(y) = y

hx+1(y) = h
(
hx(y)

)
�

Remark 1.2 An alternative way to define the Ackermann function, extracted directly from
Definition 1.1, is as follows:

A0(x) = x+ 2
∗Lecture notes for CS4111 and CS5111; Winter 2006, 2008
1Here the colloquialisms “easy to compute” and “hard to compute” are aliases for “primitive recursive” and “not

primitive recursive” respectively. This is a hopelessly coarse rendering of easy/hard and a much better gauge for the
time complexity of a problem is on which side of O(2n) it lies. However, our gauge will have to do here: All I want
to leave you with is that for some functions it is easier to compute the graph —to the quantifiable extent that it is in
PR∗— than the function itself —to the extent that it fails being primitive recursive.

1

An+1(0) = 2
An+1(x+ 1) = An(An+1(x)) �

2 Properties of the Ackermann function
We have a sequence of less-than-earth shattering —but useful— theorems. So we will just
call them lemmata.

Lemma 2.1 For each n ≥ 0, λx.An(x) ∈ PR.

Proof Induction on n:
For the basis, clearly A0 = λx.x+ 2 ∈ PR.
Assume the case for (arbitrary, fixed) n —i.e., An ∈ PR— and go to n + 1. Immediate

from 1.2, last two equations. �
It turns out that the function blows up far too fast with respect to the argument n. We now

quantify this remark.
The following unambitious sounding lemma is the key to proving the growth properties

of the Ackermann function. It is also the least straightforward to prove, as it requires a double
induction —at once on n and x— as dictated by the fact that the “recursion” of definition 1.2
does not leave any argument fixed.

Lemma 2.2 For each n ≥ 0 and x ≥ 0, An(x) > x+ 1.

Proof We start an induction on n:

n-Basis. n = 0: A0(x) = x+ 2 > x+ 1; check.

n-I.H.2 For all x and a fixed (but unspecified) n, assume An(x) > x+ 1.

n-I.S.3 For all x and the above fixed (but unspecified) n, prove An+1(x) > x+ 1.

We do the n-I.S. by induction on x:

x-Basis. x = 0: An+1(0) = 2 > 1; check.

x-I.H. For the above fixed n, fix an x (but leave it unspecified) for which assume
An+1(x) > x+ 1.

x-I.S. For the above fixed (but unspecified) n and x, prove An+1(x+ 1) > x+ 2.

Well,

An+1(x+ 1) = An(An+1(x)) by 1.2
> An+1(x) + 1 by n-I.H.
> x+ 2 by x-I.H.

�
2I.H. is an acronym for Induction Hypothesis. Formally, what we are proving is “(∀n)(∀x)An(x) > x + 1”.

Thus, as we start on an induction on n, its I.H. is “(∀x)An(x) > x + 1” for a fixed unspecified n.
3I.S. is an acronym for Induction Step. Formally, the step is to prove —from the Basis and I.H.—

“(∀x)An+1(x) > x + 1” for the n that we fixed in the I.H. It turns out that this is best handled by induction
on x.

2

Lemma 2.3 λx.An(x)↗.

NOTE. “λx.f(x) ↗” means that the (total) function f is strictly increasing, that is,
x < y implies f(x) < f(y), for any x and y. Clearly, to establish the property one just needs
to check for the arbitrary x that f(x) < f(x+ 1).

Proof We handle two cases separately.
A0: λx.x+ 2↗.
An+1: An+1(x+ 1) = An(An+1(x)) > An+1(x) + 1 —the “>” by Lemma 2.2. �

Lemma 2.4 λn.An(x+ 1)↗.

Proof An+1(x + 1) = An(An+1(x)) > An(x + 1) —the “>” by Lemmata 2.2 (left
argument > right argument) and 2.3. �

NOTE. The “x + 1” in 2.4 is important since An(0) = 2 for all n. Thus λn.An(0) is
increasing but not strictly (constant).

Lemma 2.5 λy.Ay
n(x)↗.

Proof Ay+1
n (x) = An(Ay

n(x)) > Ay
n(x) —the “>” by Lemma 2.2. �

Lemma 2.6 λx.Ay
n(x)↗.

Proof Induction on y:
For y = 0 we want that λx.A0

n(x)↗, that is, λx.x↗, which is true.
We take as I.H. that

Ay
n(x+ 1) > Ay

n(x) (1)

We want
Ay+1

n (x+ 1) > Ay+1
n (x) (2)

But (2) follows from (1) by applying An to both sides of “>” and invoking Lemma 2.3. �

Lemma 2.7 For all n, x, y, Ay
n+1(x) ≥ Ay

n(x).

Proof Induction on y:
For y = 0 we want that A0

n+1(x) ≥ A0
n(x), that is, x ≥ x.

We take as I.H. that
Ay

n+1(x) ≥ Ay
n(x)

We want
Ay+1

n+1(x) ≥ Ay+1
n (x)

This is true because

Ay+1
n+1(x) = An+1

(
Ay

n+1(x)
) if y = x = 0 we have “=”; else by 2.4

≥ An

(
Ay

n+1(x)
) 2.3 and I.H.

≥ Ay+1
n (x)

�

Definition 2.8 For a predicate P (~x) we say that P (~x) is true almost everywhere —in sym-
bols “P (~x) a.e.”– iff the set of (vector) inputs that make the predicate false is finite. That is,
the set {~x : ¬P (~x)} is finite.

A statement such as “λxy.Q(x, y, z, w) a.e.” can also be stated, less formally, as
“Q(x, y, z, w) a.e. with respect to x and y”. �

3

Lemma 2.9 An+1(x) > x+ l a.e. with respect to x.

NOTE. Thus, in particular, A1(x) > x+ 10350000 a.e.

Proof In view of Lemma 2.4 and the note following it, it suffices to prove

A1(x) > x+ l a.e. with respect to x

Well, since

A1(x) = Ax
0(2) =

x 2’s︷ ︸︸ ︷
(· · · (((y + 2) + 2) + 2) + · · ·+ 2) ‖evaluated at y = 2 = 2 + 2x

we ask: Is 2 + 2x > x + l a.e. with respect to x? You bet. It is so for all x > l − 2 (only
x = 0, 1, . . . , l − 2 fail). �

Lemma 2.10 An+1(x) > Al
n(x) a.e. with respect to x.

Proof If one (or both) of l or n is 0, then the result is trivial. For example,

Al
0(x) =

l 2’s︷ ︸︸ ︷
(· · · (((x+ 2) + 2) + 2) + · · ·+ 2) = x+ 2l

In the preceding proof we saw that A1(x) = 2x + 2. Clearly, 2x + 2 > x + 2l as soon as
x > 2l − 2, that is, a.e with respect to x.

Let us then assume l ≥ 1, n ≥ 1. We note that (straightforwardly, via Definition 1.1)

Al
n(x) = An(Al−1

n (x)) = A
Al−1

n (x)
n−1 (2) = A

A
Al−2

n (x)
n−1 (2)

n−1 (2) = A
A
A
Al−3

n (x)
n−1 (2)

n−1 (2)
n−1 (2)

The straightforward observation that we have a “ladder” of k An−1’s precisely when the
top-most exponent is l − k can be ratified by induction on k (not done here). Thus I state

Al
n(x) =

k An−1

{
A·
··
A
Al−k

n (x)
n−1 (2) . . .

n−1 (2)

In particular, taking k = l,

Al
n(x) =

l An−1

{
A·
··
A
Al−l

n (x)
n−1 (2) . . .

n−1 (2) =
l An−1

{
A·
··
Ax

n−1(2) . . .
n−1 (2) (∗)

Let us now take x > l.
Thus, by (∗),

An+1(x) = Ax
n(2) =

x An−1

{
A·
··
A2

n−1(2) . . .
n−1 (2) (∗∗)

4

By comparing (∗) and (∗∗) we see that the first “ladder” is topped (after l An−1 “steps”) by
x and the second is topped by

x−l An−1

{
A·
··
A2

n−1(2) . . .
n−1 (2)

Thus —in view of the fact that Ay
n(x) increases with respect to each of the arguments

n, x, y— we conclude by answering:

“Is
x−l An−1

{
A·
··
A2

n−1(2) . . .
n−1 (2) > x a.e. with respect to x?”

Yes, because by (∗∗) this is the same question as “is An+1(x − l) > x a.e. with respect to
x?” which has been answered in Lemma 2.9. �

Lemma 2.11 For all n, x, y, An+1(x+ y) > Ax
n(y).

Proof

An+1(x+ y) = Ax+y
n (2)

= Ax
n

(
Ay

n(2)
)

= Ax
n

(
An+1(y)

)
> Ax

n(y) by Lemmata 2.2 and 2.6

�

3 The Ackermann function majorises all the functions of
PR

We say that a function f majorises another one, g, iff g(~x) ≤ f(~x) for all ~x. The following
theorem states precisely in what sense “the Ackermann function majorises all the functions
of PR”.

Theorem 3.1 For every function λ~x.f(~x) ∈ PR there are numbers n and k, such that for all
~x we have f(~x) ≤ Ak

n(max(~x)).

Proof The proof is by induction on PR. Throughout I use the abbreviation |~x| for max(~x)
as it is notationally friendlier.

For the basis, f is one of:

• Basis.

Basis 1. λx.0. Then A0(x) works (n = 0, k = 1).

Basis 2. λx.x+ 1. Again A0(x) works (n = 0, k = 1).

Basis 3. λ~x.xi. Once more A0(x) works (n = 0, k = 1): xi ≤ |~x| < A0(|~x|).

5

• Propagation with composition. Assume as I.H. that

f(~xm) ≤ Ak
n(|~xm|) (1)

and
for i = 1, . . . ,m, gi(~y) ≤ Aki

ni
(|~y|) (2)

Then

f(g1(~y), . . . , gm(~y)) ≤ Ak
n(|g1(~y), . . . , gm(~y)|), by (1)

≤ Ak
n(|Ak1

n1
(|~y|), . . . , Akm

nm
(|~y|)|), by 2.6 and (2)

≤ Ak
n

(
|Amax ki

max ni
(|~y|)

)
, by 2.6 and 2.7

≤ Ak+max ki

max(n,ni)
(|~y|), by 2.7

• Propagation with primitive recursion. Assume as I.H. that

h(~y) ≤ Ak
n(|~y|) (3)

and
g(x, ~y, z) ≤ Ar

m(|~x, y, z|) (4)

Let f be such that

f(0, ~y) = h(~y)
f(x+ 1, ~y) = g(x, ~y, f(x, ~y))

I claim that
f(x, ~y) ≤ Arx

m

(
Ak

n(|x, ~y|)
)

(5)

I prove (5) by induction on x:

For x = 0, I want f(0, ~y) = h(~y) ≤ Ak
n(|0, ~y|). This is true by (3) since |0, ~y| = |~y|.

As an I.H. assume (5) for fixed x.

The case for x+ 1:

f(x+ 1, ~y) = g(x, ~y, f(x, ~y))
≤ Ar

m(|~x, y, f(x, ~y)|), by (4)

≤ Ar
m

(∣∣∣~x, y, Arx
m

(
Ak

n(|x, ~y|)
)∣∣∣), by I.H.(5) and 2.6

= Ar
m

(
Arx

m

(
Ak

n(|x, ~y|)
))

, by |~w| ≥ wi and 2.6

= Ar(x+1)
m

(
Ak

n(|x, ~y|)
)

With (5) proved, let me set l = max(m,n). By Lemma 2.7 I now get

f(x, ~y) ≤ Arx+k
l (|x, ~y|) <

Lemma 2.11
Al+1(|x, ~y|+ rx+ k) (6)

6

Now, |x, ~y|+ rx+ k ≤ (r + 1)|x, ~y|+ k thus, (6) and 2.3 yield

f(x, ~y) < Al+1((r + 1)|x, ~y|+ k) (7)

To simplify (7) note that there is a number q such that

(r + 1)x+ k ≤ Aq
1(x) (8)

for all x. Indeed, this is so since (easy induction on y)Ay
1(x) = 2yx+2y +2y−1 + · · ·+2.

Thus, to satisfy (8), just take y = q large enough to satisfy r+1 ≤ 2q and k ≤ 2q +2q−1 +
· · ·+ 2.

By (8), (7) and 2.3 yield

f(x, ~y) < Al+1(Aq
1(|x, ~y|)) ≤ A1+q

l+1 (|x, ~y|)

(by Lemma 2.7) which is all we want. �

NB. Reading the proof carefully we note that the subscript argument of the majorant4

is precisely the depth of nesting of primitive recursion. Indeed, the initial functions have
a majorant with subscript 0; composition has a majorant with subscript no more than the
maximum subscript of the component parts —no increase; primitive recursion has a majorant
with a subscript that is bigger than the maximum subscript of the h and g-majorants by
precisely 1.

Corollary 3.2 λnx.An(x) /∈ PR.

Proof By contradiction: If λnx.An(x) ∈ PR then also λx.Ax(x) ∈ PR. By the theorem
above, for some n, k, Ax(x) ≤ Ak

n(x), for all x, hence, by 2.10

Ax(x) < An+1(x), a.e. with respect to x (1)

On the other hand, An+1(x) < Ax(x) a.e. with respect to x —indeed for all x > n + 1 by
2.4— which contradicts (1). �

4 The Graph of the Ackermann function is in PR∗
How does one compute a yes/no answer to the question

“An(x) = z?” (1)

Thinking “recursively” (in the programming sense of the word), we will look at the ques-
tion by considering three cases, according to the definition in the Remark 1.2:

(a) If n = 0, then we will directly check (1) as “is x+ 2 = z?”.

(b) If x = 0, then we will directly check (1) as “is 2 = z?”.

4The function that does the majorising

7

(c) In all other cases, i.e., n > 0 and x > 0, for an appropriate w, we may naturally5 ask two
questions (both must be answerable “yes” for (1) to be true): “Is An−1(w) = z?”, and
“is An(x− 1) = w?”

Assuming that we want to pursue this by pencil and paper or some other equivalent means,
it is clear that the pertinent info that we are juggling are ordered triples of numbers such
as n, x, z, or n − 1, w, z, etc. That is, the letter “A”, the brackets, the equals sign, and
the position of the arguments (subscript vs. inside brackets) are just ornamentation, and the
string “Ai(j) = k”, in this section’s context, does not contain any more information than the
ordered triple “i, j, k”.

Thus, to “compute” an answer to (1) we need to write down enough triples, in stages (or
steps), as needed to justify (1): At each stage we may write a triple i, j, k down just in case
one of (i)–(iii) holds:

(i) i = 0 and k = j + 2

(ii) j = 0 and k = 2

(iii) i > 0 and j > 0, and for some w, we have already written down the two triples
i− 1, w, k and i, j − 1, w.

Pause. Since “i, j, k” abbreviates “Ai(j) = k”, Lemma 2.2 implies that w < k.
Our theory is more competent with numbers (than with pairs, triples, etc., preferring to

code such tuples6 into single numbers), thus if we were to carry out the pencil and paper
algorithm within our theory, then we would be well advised to code all these triples, which
we write down step by step, by single numbers: E.g., 〈i, j, k〉.

We note that our computation is tree-like, since a “complicated” triple such as that of case
(iii) above requires two similar others to be already written down, each of which in turn will
require two earlier similar others, etc, until we reach “leaves” (cases (i) or (ii)) that can be
dealt directly without passing the buck.

This “tree”, just like the tree of a mathematical proof,7 can be arranged in a sequence, of
triples 〈i, j, k〉, so that the presence of a “〈i, j, k〉” implies that all its dependencies appear
earlier (to its left).

We will code such a sequence by a single number, u, using the prime-power coding of
sequences given in class:

〈a0, . . . , az−1〉 = Πi<zp
ai+1
i

Given any number u we can primitively recursively check whether it is a code of an Acker-
mann function computation or not:

Theorem 4.1 The predicate

Comp(u) def= u codes an Ackermann function computation

is in PR∗.
5An(x) = An−1(An(x− 1)).
6As in quintuples, n-tuples. This word has found its way in the theoretician’s dictionary, if not in general purpose

dictionaries.
7Assuming that modus ponens is the only rule of inference, the proof a formula A depends, in general, on that of

“earlier” formulae X → A and X , which in turn depend (require) earlier formulae each, and so on and so on, until
we reach formulae that are axioms.

8

Proof We will use some notation that will be useful to make the proof more intuitive (this
notation also appears in the Kleene Normal Form notes posted). Thus we introduce two
predicates: λvu.v ∈ u and λvwu.v <u w. The first says

u = 〈. . . , v, . . .〉

and the second says
u = 〈. . . , v, . . . , w, . . .〉

Both are in PR∗ since

v ∈ u ≡ Seq(u) ∧ (∃i)<lh(u)(u)i = v

and
v <u w ≡ Seq(u) ∧ (∃i)<lh(u)(∃j)<lh(u)

(
(u)i = v ∧ (u)j = w ∧ i < j

)
We can now define Comp(u) by a formula that makes it clear that it is in PR∗:

Comp(u)≡Seq(u) ∧ (∀v)≤u

[
v ∈ u→ Seq(v) ∧ lh(v) = 3 ∧

{
{Comment: Case (i), p.8} (v)0 = 0 ∧ (v)2 = (v)1 + 2 ∨
{Comment: Case (ii)} (v)1 = 0 ∧ (v)2 = 2 ∨

{Comment: Case (iii)}
(

(v)0 > 0 ∧ (v)1 > 0 ∧

(∃w)<v(〈(v)0
·
−1, w, (v)2〉 <u v ∧ 〈(v)0, (v)1

·
−1, w〉 <u v)

)}]
The “Pause” on p.8 justifies the bound on (∃w) above. Indeed, we could have used the tighter
bound “(v)2”. Clearly Comp(u) ∈ PR∗. �

Thus An(x) = z iff 〈n, x, z〉 ∈ u for some u that satisfies Comp, for short

An(x) = z ≡ (∃u)(Comp(u) ∧ 〈n, x, z〉 ∈ u) (1)

If we succeed to find a bound for u that is a primitive recursive function of n, x, z then we
will have succeeded showing:

Theorem 4.2 λnxz.An(x) = z ∈ PR∗.

Proof Let us focus on a computation u that as soon as it verifies An(x) = z quits, that is, it
only codes 〈n, x, z〉 and just the needed predecessor triples, no more. How big can such a u
be?

Well,
u = · · · p〈i,j,k〉+1

r · · · p〈n,x,z〉+1
l (2)

for appropriate l (=lh(u) − 1). For example, if all we want is to verify A0(3) = 5, then
u = p

〈0,3,5〉+1
0 .

Similarly, if all we want to verify isA1(1) = 4, then —since the “recursive calls” here are
toA0(2) = 4 andA1(0) = 2— two possible u-values work: u = p

〈0,2,4〉+1
0 p

〈1,0,2〉+1
1 p

〈1,1,4〉+1
2

or u = p
〈1,0,2〉+1
0 p

〈0,2,4〉+1
1 p

〈1,1,4〉+1
2 .

How big need l be? No bigger than needed to provide distinct positions (l + 1 such)
in the computation, for all the “needed” triples i, j, k. Since z is the largest possible output

9

(and larger than any input) computed, there are no more than (z + 1)3 triples possible, so
l + 1 ≤ (z + 1)3. Therefore, (2) yields

u ≤ · · · p〈z,z,z〉+1
r · · · p〈z,z,z〉+1

l

=
(

Πi≤lpi

)〈z,z,z〉+1

≤ p(l+1)(〈z,z,z〉+1)
l

≤ p((z+1)3+1)(〈z,z,z〉+1)
(z+1)3

Setting g = λz.p
((z+1)3+1)(〈z,z,z〉+1)
(z+1)3 we have g ∈ PR and we are done by (1):

An(x) = z ≡ (∃u)≤g(z)(Comp(u) ∧ 〈n, x, z〉 ∈ u) �

10

