
Chapter I

A Weak Post’s Theorem and the
Deduction Theorem Retold

This note retells
(1) A weak form of Post’s theorem: If Γ is finite and Γ |=taut A, then Γ ` A
and derives as a corollary the Deduction Theorem:
(2) If Γ, A ` B, then Γ ` A→ B.

1. Some tools

We will employ below the following Lemma.

1.1 Lemma. ¬A ∨ C,¬B ∨ C ` ¬(A ∨B) ∨ C.

Proof. Here Γ = {¬A ∨ C,¬B ∨ C}.

¬(A ∨B) ∨ C

⇔
〈

Leib: r ∨ C + deMorgan
〉

(¬A ∧ ¬B) ∨ C

⇔
〈

distrib. of ∨ over ∧
〉

(¬A ∨ C) ∧ (¬B ∨ C) bingo by “join”! �

1.2 Corollary. ` ¬(A ∨B) ∨ C ≡ (¬A ∨ C) ∧ (¬B ∨ C).

1.3 Main Lemma. Suppose that A contains none of the symbols >,⊥,→,∧,≡.
If |=taut A, then ` A.

Proof. Under the assumption, A is an ∨-chain, that is, it has the form

A1 ∨A2 ∨A3 ∨ . . . ∨Ai ∨ . . . ∨An (1)
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2 I. A Weak Post’s Theorem and the Deduction Theorem Retold

where none of the Ai has the form B ∨ C.
In (1) we assume without loss of generality that n > 1, due to the axiom

X ∨X ≡ X—that is, in the contrary case we can use A ∨ A instead, which is
a tautology as well. Moreover, (1), that is A, is written in least parenthesised
notation.

Let us call an Ai reducible iff it has the form ¬(C ∨D) or ¬(¬C). Otherwise
it is irreducible. Thus, the only possible irreducible Ai have the form p or ¬p
(where p is a variable). We say that p “occurs positively in . . . ∨ p ∨ . . .”, while
it “occurs negatively in . . . ∨ ¬p ∨ . . .”. In, for example, p ∨ ¬p it occurs both
positively and negatively.

By definition we will say that A is irreducible iff all the Ai are.

� We define the reducibility degree, of Ai —in symbols, rd(Ai)— to be the number
of ¬ or ∨ connectives in it, not counting a possible leading ¬. �

The reducibility degree of A is the sum of the reducibility degrees of all its Ai.

For example, rd(p) = 0, rd(¬p) = 0, rd(¬(¬p∨ q)) = 2, rd(¬(¬p∨¬q)) = 3,
rd(¬p ∨ q)) = rd(¬p) + rd(q)) = 0.

By induction on rd(A) we now prove the main lemma, on the stated hypoth-
esis that |=taut A.

For the basis, let A be an irreducible tautology (rd(A) = 0). It must be that
A is a string of the form “· · · ∨ p ∨ · · · ¬p ∨ · · · ” for some p, otherwise, if no p
appears both “positively” and “negatively”, then we can find a truth-assignment
that makes A false (f) —a contradiction to its tautologyhood. To see that we
can do this, just assign f to p’s that occur positively only, and t to those that
occur negatively only.

Now

A

⇔
〈

commuting terms of an ∨-chain
〉

p ∨ ¬p ∨B (what is “B”?)

⇔
〈

Leib: r ∨B + excluded middle, plus Red. > thm.
〉

> ∨B bingo!

Thus ` A which settles the Basis-case rd(A) = 0.

� We now argue the case where rd(A) = n+ 1, on the I.H. that for any formula Q
—restricted as in the lemma statement— with rd(Q) ≤ n, we have that |=taut Q
implies ` Q. �

By commutativity (symmetry) of “∨”, let us assume without restricting
generality that rd(A1) > 0.

We have two cases:
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1. Some tools 3

(1) A1 is the string ¬¬C, hence A has the form ¬¬C ∨ D. Clearly
|=taut C ∨D. Moreover, rd(C ∨D) < rd(¬¬C ∨D), hence

` C ∨D

by the I.H. But,

¬¬C ∨D

⇔
〈

Leib: r ∨D + ` ¬¬X ≡ X
〉

C ∨D bingo!

Hence, ` ¬¬C ∨D, that is, ` A in this case.

One more case to go:

(2) A1 is the string ¬(C ∨D), hence A has the form ¬(C ∨D) ∨ E.

We want: ` ¬(C ∨D) ∨ E (i)

By 1.2 and from |=taut ¬(C ∨D)∨E —this says |=taut A— we immediately get
that

|=taut ¬C ∨ E (ii)

and

|=taut ¬D ∨ E (iii)

from the ≡ and ∧ truth tables.

Since the rd of each of (ii) and (iii) is smaller than that of A, by I.H. we
obtain

` ¬C ∨ E

and

` ¬D ∨ E

which by 1.1 yield the validity of (i).

We are done, except for one small detail: If we had changed an “original”
A into A ∨ A, then we have proved ` A ∨ A. The idempotent axiom and Eqn
then yield ` A. �

We are now removing the restriction on A regarding its connectives and
costants:

1.4 Metatheorem. (Post’s Theorem) If |=taut A, then ` A.

Proof. First, we note the following equivalences. The ones to the left of “also”
follow from the ones to the right by soundness. The ones to the right are
known from class (or follow trivially thereoff): The first is the Excluded Middle
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4 I. A Weak Post’s Theorem and the Deduction Theorem Retold

Axiom augmented by “Redundant >”. The one below it follows from simple
manipulation and ` ⊥ ≡ ¬>. All the others have been explicitly covered.

|=taut > ≡ ¬p ∨ p, also ` > ≡ ¬p ∨ p

|=taut ⊥ ≡ ¬(¬p ∨ p), also ` ⊥ ≡ ¬(¬p ∨ p)

|=taut C → D ≡ ¬C ∨D, also ` C → D ≡ ¬C ∨D

|=taut C ∧D ≡ ¬(¬C ∨ ¬D), also ` C ∧D ≡ ¬(¬C ∨ ¬D)

|=taut (C ≡ D) ≡ ((C → D) ∧ (D → C)), also ` (C ≡ D) ≡ ((C → D) ∧ (D → C))

(I.1)

Using the I.1 above, we eliminate, in order, all the ≡, then all the ∧, then all
the → and finally all the ⊥ and all the >. Let us assume that our process
eliminates one unwanted symbol at a time.

� Thus, starting from A we will generate a sequence of formulae

F1, F2, F3, . . . , Fn

where Fn contains no >,⊥,∧,→,≡. �

I am using here F1 is an alias for A. We will also give to Fn an alias A′.
Now in view of the provable equivalences of I.1 (right column), each trans-

formation step is the result of a Leib application, thus we have

A

⇔
〈

Leib from I.1
〉

F2

⇔
〈

Leib from I.1
〉

F3

⇔
〈

Leib from I.1
〉

F4

...

⇔
〈

Leib from I.1
〉

A′

Thus, ` A′ ≡ A (∗)
By soundness, we also have |=taut A

′ ≡ A (∗∗)
So, say |=taut A. By (∗∗) we have |=taut A

′, and by 1.3 we obtain ` A′. By (∗)
and Eqn we get ` A. �

� Post’s theorem is often called the “Completeness Theorem”† of Propositional
Calculus. It shows that the syntactic manipulation apparatus certifies the
“whole truth” (tautologyhood) in the propositional case. �

†Which is really a Metatheorem, right?
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1.5 Corollary. If A1, . . . , An |=taut B, then A1, . . . , An ` B.

Proof. It is an easy semantic exercise to see that

|=taut A1 → . . .→ An → B.

By 1.4,
` A1 → . . .→ An → B

hence
A1, . . . , An ` A1 → . . .→ An → B (1)

Applying modus ponens n times to (1) we get

A1, . . . , An ` B �

� The above corollary is very convenient.
It says that any (correct) schema A1, . . . , An |= B leads to a derived rule of

inference, A1, . . . , An ` B. �

In particular, combining with the transitivity of ` metatheorem, we get

1.6 Corollary. If Γ ` Ai, for i = 1, . . . , n, and if A1, . . . , An |= B, then Γ ` B.

� Thus —unless otherwise requested!— we can, from now on, rigorously mix syn-
tactic with semantic justifications of our proof steps.

For example, we have at once A ∧B ` A, because (trivially) A ∧B |=taut A
(compare with our earlier, much longer, proof given in class). �

2. Deduction Theorem,
Proof by Contradiction

2.1 Metatheorem. (The Deduction Theorem) If Γ, A ` B, then Γ ` A→
B, where “Γ, A” means “all the assumptions in Γ, plus the assumption A” (in
set notation this would be Γ ∪ {A}).

Proof. Let G1, . . . , Gn ⊆ Γ be a finite set of formulae used in a (Γ, A)-proof of B.

Thus also G1, . . . , Gn, A ` B.

By soundness,
G1, . . . , Gn, A |=taut B (1)

But then,
G1, . . . , Gn |=taut A→ B

(Let a v make all Gi t. What does it do to the rhs of |=taut? If A is f then rhs
is t. If not, then (1) makes B t and we are done.)

Thus, by 1.5, G1, . . . , Gn ` A→ B. �
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6 I. A Weak Post’s Theorem and the Deduction Theorem Retold

� The mathematician, or indeed the mathematics practitioner, uses the Deduction
theorem all the time, without stopping to think about it. Metatheorem 2.1 above
makes an honest person of such a mathematician or practitioner.

The everyday “style” of applying the Metatheorem goes like this: Say we
have all sorts of assumptions (nonlogical axioms) and we want, under these
assumptions, to “prove” that “if A, then B” (verbose form of “A → B”). We
start by adding A to our assumptions, often with the words, “Assume A”. We
then proceed and prove just B (not A→ B), and at that point we rest our case.

Thus, we may view an application of the Deduction theorem as a simplifi-
cation of the proof-task. It allows us to “split” an implication A → B that we
want to prove, moving its premise to join our other assumptions. We now have
to prove a simpler formula, B, with the help of stronger assumptions (that is,
all we knew so far, plus A). That often makes our task so much easier! �

2.2 Definition. A set of formulas Γ is inconsistent or contradictory iff Γ proves
every formula A. �

� An inconsistent Γ proves all formulae. For example p ∧ ¬p. This justifies the
term “contradictory” in the definition. �

2.3 Lemma. Γ is inconsistent iff Γ ` ⊥.

Proof. only if-part. If Γ is as in 2.2, in particular it proves ⊥.

if-part. Say, conversely, that we have Γ ` ⊥. Then, since ⊥ ` A for any A
(see midterm solutions∗), we get Γ ` A for any A. �

2.4 Metatheorem. Γ ` A iff Γ,¬A is inconsistent.

Proof. if-part. So let (by 2.3)

Γ,¬A ` ⊥

Hence
Γ ` ¬A→ ⊥ (1)

by the Deduction theorem. However ¬A → ⊥ |=taut A (Why?), hence, by
Corollary 1.6 and (1) above, Γ ` A.

only if-part. So let
Γ ` A

Then also
Γ,¬A ` A (2)

Moreover, trivially,
Γ,¬A ` ¬A (3)

Since A,¬A |=taut ⊥, (2) and (3) yield Γ,¬A ` ⊥ via Corollary 1.6, and we are
done by 2.3. �
∗Or use 1.5 and the trivial fact that ⊥ |=taut A for any A.
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� 2.4 legitimizes the tool of “proof by contradiction” that goes all the way back
to the ancient Greek mathematicians: To prove A assume instead the opposite
(¬A). Proceed then to obtain a contradiction. This being accomplished, it is
as good as having proved A. �
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