
Contents

1 The Beginning 3
1.1 Russell’s Paradox . 3
1.2 Enters Logic! . 7
1.3 A look back at strings . 16

1.3.1 A Bad Alphabet . 17
1.4 The Formulas or well-formed-formulas (wff) . 24

2 Properties of the wff 31
2.1 Boolean Wff . 31
2.2 Boolean Semantics . 53

3 What makes our Logic “Classical” 59
3.1 States and Truth tables . 59
3.2 Finite States . 64
3.3 Tautologies and Tautological Implication . 67

4 Substitution and Schemata 73
4.1 Rules and Axioms of Boolean Logic . 82
4.2 Equational Proofs . 110

5 A Weak Post’s Theorem and the Deduction Theorem Retold 143
5.1 Soundness of Boolean Logic . 143
5.2 Completeness of Boolean logic (“Post’s Theorem”) 149
5.3 Deduction Theorem and Proof by Contradiction . 163

6 Resolution 169

7 Predicate Logic 175
7.1 The language of First-Order Logic . 178
7.2 Axioms and Rules for Predicate Logic . 206
7.3 First-order Proofs and Theorems . 207
7.4 Deduction Theorem . 211
7.5 Generalisation and “weak” Leibniz Rules . 214

7.5.1 Adding and Removing “(∀x)” . 214
7.5.2 Examples . 220

1

2 CONTENTS

7.5.3 A Few Memorable Examples . 221
7.6 Weak Leibniz . 225
7.7 Ad hoc Memorable Examples . 240
7.8 Adding and Removing the Quantifier“(∃x)” . 244
7.9 Interpretations . 259
7.10 Soundness in Predicate Logic . 277

Notes on Logic© G. Tourlakis

Chapter 1

The Beginning

1.1 Russell’s Paradox

. . . or, when things (in MATH) go “sideways” . . .

1.1.1 Example. (Briefly about set notation) We represent sets ei-
ther by explicit listing,

• {0}

• {$,#, 3, 42}

• {0, 1, 2, 3, 4, . . .}

or by some “defining property”: The set of all x∗ that make P (x)
true, in symbols

S = {x : P (x)} (1)

∗Strictly speaking you DON’T collect the various shapes and colours of the letter x. There is only ONE x. The
expression “set of all x such that P (x) is true” is sloppy for “the set of all VALUES of x such that P (x) is true”.

3

4 The Beginning

As we know from discrete MATHs, (1) says the same thing as the
statement

x ∈ S ≡ P (x) (2)

read “for any value of x, x ∈ S is equivalent to P (x)”

Why so? Because P (x) is an entrance condition! A value of x is
included in the set S IF and ONLY IF (iff) said value passes the test
P (x).

Wait! Shouldn’t I have written (2) as

x ∈ S ≡ P (x) is true (2′)

Nope. When mathematicians state P (x) for some unspecified fixed
x they mean “P (x) is true” for that value.

Notes on Logic© G. Tourlakis

1.1 Russell’s Paradox 5

Cantor believed (as did the philosopher Frege) that, for any prop-
erty P (x), (1) defines a set.

Which is neither here nor there because they never said what a set
is. They allowed ANY collection of (mathematical) objects to be set!

Notes on Logic© G. Tourlakis

6 The Beginning

Russell begged to differ, so he said: “Oh, yeah? How about”

R = {x : x /∈ x}

where the property “P (x)” here is “x /∈ x”

Now, by (2) we have
x ∈ R ≡ x /∈ x

If R IS a set, then we can plug it in the set variable x above to
obtain

R ∈ R ≡ R /∈ R

How do we avoid this contradiction?

By admitting that R is NOT a set so we do not allow the substitu-
tion! □

Notes on Logic© G. Tourlakis

1.2 Enters Logic! 7

1.2 Enters Logic!

So Cantor was sloppy about what a set is and how sets get formed.

Formal —meaning SYNTACTICALLY PERFORMED;
Based on FORM— logic was invented by Russell and Whitehead,
and Hilbert to salvage Mathematics from “antinomies” and “para-
doxes”, both words derived from Greek, and both meaning contra-
dictions.

� How does formal logic salvage Mathematics?

By helping you stay on track in your argumentation.

You cannot pull facts and fake facts off the air, but your facts MUST
be axioms or PREVIOUSLY proved theorems, and the rules of logic
that you useMUST NOT DEPEND on an Interpretation (your’s, Can-
tor’s or mine).

The rule is the rule: How helpful would an excuse like “but Officer,
I may have not stopped at the stop sign but it is the middle of nowhere
and nobody is here except you and me”.

Burned! You just interpreted the rule, didn’t you! �

Notes on Logic© G. Tourlakis

8 The Beginning

Connection of Formal Logic with Programming

(1) In programming we use syntactic rules to write a program in order
to solve some problem computationally.

(2) In logic you use the syntactic rules to write a proof that establishes
a theorem.

Notes on Logic© G. Tourlakis

1.2 Enters Logic! 9

Kinds of logic reasoning that we will thoroughly examine and use in
this course.

1. Equational logic —also known as calculational logic.

Introduced by [DS90] and simplified by [GS94] and later by [Tou08]
to make it accessible to undergraduates. Software Engineers like
it.

2. Hilbert-style logic. This is the logic which most people use to write
their mathematical arguments in publications, lectures, etc.

Notes on Logic© G. Tourlakis

10 The Beginning

Logic is meant to certify mathematical truths syntactically.

Logic is normally learnt by

• A LOT of practice.

• By presenting and teaching it gradually, namely

1. First, learning the Propositional Logic (also known as
Boolean Logic).

Here one learns how logical truths combine using connectives
familiar from programming like OR, AND, and NOT.

Boolean logic is not expressive enough to formulate statements
about mathematical objects. Naturally, if you cannot ask it
—a question about such objects— then you cannot answer it
either.

Notes on Logic© G. Tourlakis

1.2 Enters Logic! 11

2. Next, learning Predicate Logic (also known as First-
Order Logic).

This is the full logic of the mathematician and computer scien-
tist as it lets you formulate and explore statements that involve
mathematical objects like numbers, strings and trees, and many
others.

Notes on Logic© G. Tourlakis

12 The Beginning

The following is a fundamental BELIEF of the great David Hilbert,
which he formulated in the early 30s:

“We should be able to solve the Decision Problem ofMath-
ematical Theories by mechanical means”.

It triggered a lot of research in the 30s and also led to the birth
of “computability”, a branch of logic that studies “mechanical pro-
cesses” and their properties.

Decision Problem of Logic (Entscheidungsproblem of Hilbert’s):
It asks: Is this formula a theorem of logic?

� Here we are ahead of ourselves: What is a “formula”? What is a
“theorem”?

I will tell you soon!

But in short and superficially,

• A “formula” is a syntactically well-formed STATEMENT.

• A “theorem” is a statement of which I can certify its truth
syntactically. �

Notes on Logic© G. Tourlakis

1.2 Enters Logic! 13

BTW:

� Enclosing text between � symbols means that this text is impor-
tant; pay attention! �

while

� � means that this is rather esoteric and not pressing to learn; it can
be skipped. � �

Notes on Logic© G. Tourlakis

14 The Beginning

1. Boolean Logic: Its Decision Problem, because of Post’s theorem
that we will learn in this course, does have an algorithmic —or
“mechanical”— solution, for example, via truth tables.

There is a catch: The solution is in general useless because the
algorithm takes tons of time to give an answer.

I am saying that at the present state of our knowledge about algo-
rithms, the truth table method is unpractically slow. To get an
answer from a n× n table it takes 2n steps.

2. Predicate Logic: Things get desperate here: We have a totally
negative answer to the Decision Problem. There is NO algorithm
at all that will solve it! This result is due to Church ([Chu36])

Notes on Logic© G. Tourlakis

1.2 Enters Logic! 15

� So it makes sense to find ways to certify truth, which rely on human
ingenuity and sound methodology rather than on some machine and a
computer program, in short we must learn to work syntactically
BOTH in

• Boolean logic where the decision problem currently has an unfea-
sible algorithm that solves it,

and

• Predicate logic where the decision problem has provably no algo-
rithm waiting to be discovered —ever.

This we will learn in this course: How to certify truth by syntactic
means, through practice and sound methodology. �

Notes on Logic© G. Tourlakis

16 The Beginning

Sep. 12, 2022

1.3 A look back at strings

1.3.1 Definition. (Strings; also called Expressions)

1. What is a string over some alphabet of symbols?

It is an ordered finite sequence of symbols from the alphabet —
with no gaps between symbols.

1.3.2 Example. If the alphabet is {a, b} then here are a few strings:

(a) a

(b) aaabb

(c) bbaaa

(d) bbbbbbb

□

What do we mean by “ordered”? We mean that order matters!
For example, aaabb and bbaaa are different strings. We indicate
this by writing aaabb ̸= bbaaa.

� Two strings are equal iff † they have the same length n

and at each position —from 1 to n— both strings have
the same symbol. So, aba = aba, but aa ̸= a and aba ̸= baa. �

†If and only if.

Notes on Logic© G. Tourlakis

1.3 A look back at strings 17

1.3.1 A Bad Alphabet

Consider the alphabet B = {a, aa}.

This is bad. WHY?

Because if we write the string aaa over this alphabet we do not
know what we mean by just looking at the string!

Do we mean 3 a like
a a a

Or do we mean
a aa

Or perhaps
aa a

We say that alphabet B leads to ambiguity.

Since we use NO separators —like a space or a comma— between
symbols in denoting strings we MUST ALWAYS choose alphabets
with single-symbol items.

Notes on Logic© G. Tourlakis

18 The Beginning

2. Names of strings: A,A′′, A5, B, C, S, T .

What for? CONVENIENCE AND EASE OF EXPRESSION.

Thus A = bba gives the string bba the name A.

Names vs IS : Practicing mathematicians and computer scientists
take a sloppy attitude towards using the verb “IS”.

When they say “let A be a string” they mean “let A name a string”.

Same as in “let x be a rational number”. Well x is not a number
at all! It is a letter! We mean “let x STAND for, or NAME, a
rational number”

Notes on Logic© G. Tourlakis

1.3 A look back at strings 19

3. Operations on strings: Concatenation. From strings aab and baa,
concatenation in the order given yields the string aabbaa.

If A is a string (meaning names a string) and B is another, then
their concatenation AB is not a concatenation of the names but
is a concatenation of the contents. If A = aaaa and B = 101 then
AB = aaaa101.

Incidentally,

BA = 101aaaa ̸= aaaa101 = AB

Thus in general concatenation is not commutative as we say.

Why “in general”?

Well, if X = aa and Y = a then XY = aaa = Y X.

Special cases where concatenation commutes exist!

Notes on Logic© G. Tourlakis

20 The Beginning

4. Associativity of concatenation.

It is expressed as (AB)C = A(BC) where bracketing here denotes
invisible METAsymbols (they are NOT part of any string!) that
simply INDICATE the order in which we GROUP, from left to
right.

At the left of the “=” we first concatenate A and B and then glue
C at the right end.

A B C

if A = 1, B = 2, C = 3 then A(BC) = 123 NOT 1(23)

To the right of “=” we first glue B and C and then glue A to the
left of the result.

In either case we did not change the relative positions of
A, B and C.

The property is self-evident.

I can now skip brackets and write ABCD and you know what I
mean!

Notes on Logic© G. Tourlakis

1.3 A look back at strings 21

5. Empty string. A string with no symbols, hence with length 0.
Denoted by λ.

∅ ∩ A = ∅, λQ = Q

� How is λ different than ∅ the empty set?

Well one is of string type and the other is of set type. So? The
former is an ORDERED empty set, the latter is an UNORDERED
empty set that moreover is oblivious to repetitions.

I mean, aaa ̸= a but {a, a, a} = {a}. �

6. Clearly, for any string A we have Aλ = λA = A as concatenation
of λ adds nothing to either end.

Notes on Logic© G. Tourlakis

22 The Beginning

7. Substrings . A string A is a substring of B iff A appears as is as a
part of B.

So if A = aa and B = aba then A is NOT a substring of B.

Its members both appear in B (the two a) but are not together as
they are in A. A does not appear “as is”.

Can we get rid of all this bla-bla with a proper definition?
Sure:

1.3.3 Definition. A is a substring ofB iff for some strings (named)
U and V we have B = UAV . □

� We also say A is part of B. �

Notes on Logic© G. Tourlakis

1.3 A look back at strings 23

8. Prefix and suffix . A is a prefix of B if for some string V , B = AV .

So A is part of B up in front!

A is a suffix of B if for some string U , B = UA. □

Example: λ is a prefix and a suffix, indeed a part, of any string B.
Here are the “proofs” of the two cases I enumerated:

• B = λB

• B = Bλ

WHAT ABOUT THE THIRD CASE?

Split a sting A you got any way you please: Say, A = UV .

But you have also A = UλV .

Notes on Logic© G. Tourlakis

24 The Beginning

1.4 The Formulas or well-formed-formulas (wff)

The Syntax of logic. Boolean Logic at first!

Boolean logic is the “Algebra of statements”. We start with atomic
statements and build complex statements using “glue” as I call the
Boolean connectives ¬,∧,∨,→,≡.

� Atomic statements have NO glue! �

Examples of statements that Boolean logic can express:

p, (¬p) and also ((p ∨ q) ∧ r). And more!

Can I see inside atomic statements like p to see what they mean?

NO!! We cannot! But we can assign arbitrarily “true” or “false”
values to atomic statements and then proceed to see how these truth
values propagate when I apply glue.

That is all Boolean logic can do.

And this ends up being useful! Read on!

Notes on Logic© G. Tourlakis

1.4 The Formulas or well-formed-formulas (wff) 25

1.4.1 Definition. (Alphabet of Boolean Symbols)

A1. Names for variables, which we call “propositional” or “Boolean”
variables.

These are p, q, r, with or without primes or subscripts (indices)
(e.g., p, q, r, p′, q13, r

′′′
51 are all names for Boolean variables).

A2. Two symbols denote the Boolean constants, ⊤ and ⊥. We pro-
nounce them “top” and “bot” respectively.

What are ⊤ and ⊥ good for? We will soon see!

A3. (Round) brackets, i.e., “(” and “)” (employed without the quotes,
of course).

A4. Boolean “connectives” that I will usually call “glue”.

We use glue to put a formula together much like we do so when
we build model cars or airplanes or houses.

The symbols for Boolean connectives are

¬ ∧ ∨ → ≡ (1)

and are read from left to right as “negation, conjunction, disjunc-
tion, implication, equivalence”. □

Notes on Logic© G. Tourlakis

26 The Beginning

� We stick to the above symbols for glue (no pun!) in this
course! Just as in programming.

You cannot use any symbols you please or like.

SPEAKING BY ANALOGY, You use THE symbols of the pro-
gramming language as GIVEN.

If not, your program does NOT work and your GRADE bottoms!

Same holds for logic! �

Notes on Logic© G. Tourlakis

1.4 The Formulas or well-formed-formulas (wff) 27

1.4.2 Definition. (Formula Construction (process)) A formula con-
struction (in the text called “formula calculation”) is any finite (or-
dered) sequence of strings over the alphabet† of Boolean logic V that
obeys the following three specifications:

C1. At any step we may write precisely one symbol from categories
A1. or A2. above (1.4.1).

C2. At any step we may write precisely one string of the form (¬A),
as long as we have written the string (named) A already at a pre-
vious step.

So, “(¬A)” is a string that has “(¬” (no quotes) as a prefix, then
it has a part we named A, and then it has “)” (no quotes) as a
suffix.

� I must stress that the letterA names the string that we write down.
Just as in a program: When you issue the command “print X”
you mean to print what the X contains as value —what it names.
You do not mean to print the letter “X”! �

C3. At any step we may write precisely one of the strings (A ∧ B),
(A ∨ B), (A → B), (A ≡ B), as long as we have already written
each of the strings A and B earlier.

� We do not care which we wrote first, A or B. �

□

†“Over the Alphabet”: Using exclusively symbols from the Alphabet V that we adopted.

Notes on Logic© G. Tourlakis

28 The Beginning

1.4.3 Definition. (Boolean formulas (wff)) Any string A over the
alphabet V (A1.–A4.) is called a Boolean formula or propositional
formula —in short wff— iff A is a string that appears in some formula
construction. □

1.4.4 Example. First off, the above says more than it pretends to:

For example, it says that every string that appears in a formula
construction is a wff. The definition also says,

“do you want to know if A is a wff? Just make sure you can
build a formula construction where A appears.”

Notes on Logic© G. Tourlakis

1.4 The Formulas or well-formed-formulas (wff) 29

We normally write formula constructions vertically. Below I use
numbering and annotation (in “⟨. . .⟩” brackets) to explain each step.

•

(1) ⊥ ⟨C1⟩ “C” for Construction
(2) p ⟨C1⟩
(3) (¬⊥) ⟨(1) + (C2)⟩
(4) ⊥ ⟨C1⟩
(5) ⊤ ⟨C1⟩

Note that we can have redundancy and repetitions.

Ostensibly the only nontrivial info in the above is that (¬⊥) is a
formula. But it also establishes that ⊥ and ⊤ and p are formulas.

Notes on Logic© G. Tourlakis

30 The Beginning

•

(1) ⊥ ⟨C1⟩
(2) p ⟨C1⟩
(3) (¬⊤) ⟨oops!⟩
(4) ⊥ ⟨C1⟩
(5) ⊤ ⟨C1⟩

Why the “oops”? The above is wrong at step (3). I have not
written ⊤ in the construction before I attempted to use it!

□

Sep. 14, 2022

Notes on Logic© G. Tourlakis

Chapter 2

Properties of the wff

Here we speak about wff —and discover useful properties— before
we get to our main task, eventually, of USING wff in proofs.

2.1 Boolean Wff

Let us repeat

2.1.1 Definition. (Boolean formulas or wff) A string (or expres-
sion) A over the alphabet of Boolean symbols V is called a Boolean
formula or a Boolean well-formed formula (in short wff) iff prim-rec-
opit occurs in some formula construction.

The set of all wff we denote by the all-capitals WFF.

The wff that are either propositional variables p, q, p′′, r123, . . . or ⊥
or ⊤, in short, glue-less , we call Atomic wff. □

31

32 Properties of the wff

� Notation. We often want to say things such as “. . . bla-bla . . . all
variables p . . . ”.

▶ Well this is not exactly right! There is only ONE variable p!

We get around this difficulty by having informal names (in the
metatheory as we say) for Boolean variables: p,q, r′, etc.

Any such bold face informal variable can stand for any actual vari-
able of our alphabet V whatsoever.

So “all variables p” means “any of the actual variables p, q, r1110001, . . .
that p may stand for” while “all p” is meaningless ! �

Notes on Logic© G. Tourlakis

2.1 Boolean Wff 33

We can give a definition of formulas that is independent
from formula constructions: OK, the above Definition 1.4.3 says
that A is a wff iff it appears in a construction as

1. Atomic: ⊥,⊤,p

2. A negation (¬B), where B
︷ ︸︸ ︷
appeared earlier in the construction

3. An expression (B ∧C) or (B ∨C) or (B → C) or (B ≡ C), where

B and C
︷ ︸︸ ︷
appeared earlier in the construction and

� BUT we can say “B Appeared EARLIER” differently:

“B is a wff” �

So,

Notes on Logic© G. Tourlakis

34 Properties of the wff

we have

2.1.2 Definition. (The Inductive Definition of wff) An expres-
sion A over V is a wff just in case A is:

(1) Atomic (p,⊥,⊤)

or one of

(2) (¬B), (B ∧ C), (B ∨ C), (B → C), (B ≡ C), where B and C are
wff. □

Notes on Logic© G. Tourlakis

2.1 Boolean Wff 35

2.1.3 Remark. The formulas (¬A), (A ∧ B), (A ∨ B), (A → B),
(A ≡ B) are read in English, from left to right, “not A”, “A and B”,
“A or B”, “if A then B” (but also “ A implies B”), “A is equivalent
to B”.

((A→ B)

last
↓
∨ C)

The wff in the remark have the same names as their “last glue”,
namely, negation, conjunction, disjunction, implication and equiva-
lence.

Pause. Why did I say “LAST” glue?

□

Notes on Logic© G. Tourlakis

36 Properties of the wff

2.1.4� Example. Using 1.4.3 let us verify that ((p ∨ q) ∨ r) is a wff.
Well, here is a formula construction written with annotations:

(1) p ⟨atomic⟩
(2) q ⟨atomic⟩
(3) r ⟨atomic⟩
(4) (p ∨ q) ⟨1 + 2 + ∨-glue⟩
(5) ((p ∨ q) ∨ r) ⟨4 + 3 + ∨-glue⟩

Do we have to write down all the atomic wff at the very beginning?
Not really, but it is important to write them BEFORE they are used
in the construction!

So, this works too:

(1) p ⟨atomic⟩
(2) q ⟨atomic⟩
(3) (p ∨ q) ⟨1 + 2 + ∨-glue⟩
(4) r ⟨atomic⟩
(5) ((p ∨ q) ∨ r) ⟨4 + 3 + ∨-glue⟩

□ �

Notes on Logic© G. Tourlakis

2.1 Boolean Wff 37

Intuitively, immediate predecessors of a wff are the formu-
las on which we applied the last glue.

2.1.5 Definition. (Immediate predecessors (i.p.)) No atomic for-
mula has immediate predecessors.

Any of the following wff (A∧B), (A∨B), (A→ B), (A ≡ B) has as
i.p. A and B.

A is an i.p. of (¬A). □

2.1.6 Example.

• The i.p. of ((p ∨ q) ∨ r) are (p ∨ q) and r

• The i.p. of (p ∨ q) are p and q

• The only i.p. of (¬⊤) is ⊤

□

Notes on Logic© G. Tourlakis

38 Properties of the wff

2.1.7� Remark. (Priorities of glue (connectives)) The priorities of
glue, from left to right in (1) below, go from strongest to weakest.

¬,∧,∨,→,≡ (1)

□ �

Why do we care? What does “priority” do?

Well, suppose we do not want to always write wff down with all the
brackets that Definitions 1.4.3 and 2.1.2 require.

Why wouldn’t we? For better readability !

� Thus we agree to judiciously omit brackets in a manner that we can
reinsert them correctly if we are required to! �

� That is, we agree on how to write formulas sloppily and get away
with it!

Is there any other way to agree on priorities?

Yes, BUT: As it is with any agreement between any two par-
ties, there can be ONLY ONE agreement.

Remember. We are learning a “programming” language!!

So please do follow (1) above and the clarifications that follow below.
Anything else will be wrong. �

Notes on Logic© G. Tourlakis

2.1 Boolean Wff 39

The “algorithm” is that whenever two pieces of glue compete for a
variable as in, for example,

. . . ∨ p ∧ . . .

then the stronger glue wins (higher priority). In this case it is ∧ that
wins and “gets” the p.

This means brackets were intended —and hence are reinserted—
this way:

. . . ∨ (p ∧ . . .
What if we have the situation

. . . ∨ p ∨ . . . (2)

i.e., same glue left and right of p?
We have the agreement that all glue is right-associative, that is, in a

chain like (2) the glue on the right wins ! We insert brackets this way:

. . . ∨ (p ∨ . . .

In particular
¬¬¬p

means (
¬
(
¬(¬p)

))

Notes on Logic© G. Tourlakis

40 Properties of the wff

p→ q → r → ⊥
means

(p→ (q → (r → ⊥)))

In ((p→ q)→ r) cannot remove the brackets; all are needed.

Notes on Logic© G. Tourlakis

2.1 Boolean Wff 41

2.1.8 Definition. (Complexity of a wff) The complexity of a wff
is the number of occurrences of connectives (glue) in it. Counting
occurrences means that multiplicity matters and counts! □

2.1.9 Example. Clearly we can compute complexity correctly whether
we wrote a formula with all its brackets or not.

For example, the complexity of p → ⊥ → r is 2 whether we wrote
it with no brackets or wrote it as Definitions 1.4.3 and 2.1.2 want:
(p→ (⊥ → r)).

Directly from the definition above, every atomic formula has com-
plexity zero. □

Notes on Logic© G. Tourlakis

42 Properties of the wff

� All the theorems (and their corollaries) in this section are ABOUT
formulas of Boolean logic, and their FORM.

They are not theorems OF Boolean logic. This concept we have
not defined yet!!

Theorems that are ABOUT logic we call METAtheorems. �

2.1.10 Metatheorem. Every formula A has equal numbers of left and
right brackets.

Proof. Induction on the complexity, let’s call it n, of A.

1. Basis. n = 0. Then A has no glue, so it is atomic. But an atomic
formula has no left or right brackets!

Since 0=0 we are good!

2. Induction Hypothesis, in short “I.H.” Fix an n and assume the
statement for all A of complexity ≤ n.

3. Induction Step, in short “I.S.”, is for any A of complexity n + 1.
As n+ 1> 0, A is NOT atomic THEREFORE it has one of TWO
forms:

Notes on Logic© G. Tourlakis

2.1 Boolean Wff 43

(a) A is (¬B) —where B is a wff.

By I.H. —applicable since A has complexity n + 1 hence the
complexity of B is ≤ n— B has equal number of left and right
brackets. Forming A we added one left and one right. So, total
left=total right for A.

(b) A is (B ◦C), where we wrote “◦” as a metasymbol that stands
for any binary glue among ∧,∨,→,≡.

By I.H.

Blefts = k,Brights = k, Clefts = k′, Crights = k′

So, after gluing,

BandClefts = k + k′, BandCrights = k + k′

Overall (after adding external brackets for A),

we have k + k′ + 1 lefts and k + k′ + 1 rights. Bingo!

□

Notes on Logic© G. Tourlakis

44 Properties of the wff

� IMPORTANT! You will note that the induction for the for-
mula A above essentially went like this:

• Prove the property for the atomic formulas p,⊥,⊤

Then we assumed the I.H. that all the i.p. of A have the property.

and we proved (I.S.)

• If A is (¬B), then A has the property since the i.p. B does (WHY
B does?).

• If A is (B ◦ C), then A has the property since the two i.p. B and
C do.

The technique above is called Induction on (the shape of) formulas
and does not need the concept of complexity.

This is how we will do it in our inductions going forward. �

Notes on Logic© G. Tourlakis

2.1 Boolean Wff 45

2.1.11 Corollary. Every nonempty proper prefix of a wff A has an
excess of left (compared to right) brackets.

Proof. I will do induction on formulas A.

• Basis. A is atomic. Then we are done since A has NO nonempty
proper prefix!

People also say “then there is nothing to prove” or “the state-
ment is vacuously satisfied”.

� What just happened here?! Well, I am claiming “the statement
is true” and suppose that you are claiming “the statement is
false”.

It is for you to give me a counterexample to what I said in order
to show that you are right: Namely,

You must produce a nonempty proper prefix of A
that fails the property.

BUT there is no way! There is NO nonempty proper prefix of A!

So I win! �

• Assume the I.H. that all the i.p. of A have the property.

Notes on Logic© G. Tourlakis

46 Properties of the wff

• For the I.S. we examine ALL possible forms of nonempty proper
prefixes. These are:

1. Case where A is (¬B). A nonempty proper prefix of A has one
of the four forms below:

(a) (Then clearly we have an excess of “(” The I.H. was
NOT needed.

(b) (¬ Then clearly we have an excess of “(” The I.H. again
was NOT needed.

(c) (¬D, whereD is an nonempty proper prefix ofB. D

already has an excess of “(” by the I.H. that applies since
B is an i.p. of A.
So, adding to them the leading red “(” does no harm!

(d) (¬B Now (2.1.10)B has equal number of lefts and rights.
The leading (red)“(” contributes an excess. The I.H. again
was NOT needed.

Notes on Logic© G. Tourlakis

2.1 Boolean Wff 47

2. A is (B ◦C). A nonempty proper prefix of A has one of the six
forms below:

(a) (Then clearly we have an excess of “(” The I.H. was
NOT needed.

(b) (B′, where B′ is an nonempty proper prefix of B. B′

already has an excess of “(” by the I.H. that applies since
B is an i.p. of A. So, adding to them the leading “(” does
no harm!

(c) (B B has balanced bracket numbers by 2.1.10, thus the
leading “(” creates a majority of “(”.

(d) (B◦ As ◦ adds no brackets we are done by the previous
case.

(e) (B◦C ′ Here B is a formula so it contributes 0 excess. C ′

is a nonempty proper prefix of C and the I.H. applies
to the latter as it is an i.p. of A.

So C ′ has an excess of “(” and the leading “(” of A helps too.

(f) (B ◦ C Neither B nor C contribute an excess of “(” as
both are formulas. The leading red “(” breaks the balance
in favour of “(”. □

Notes on Logic© G. Tourlakis

48 Properties of the wff

This is easy:

2.1.12 Theorem. Every formula A begins with an atomic wff, or with
a “(”.

Proof. By 2.1.2, A is one of

• Atomic p,⊥,⊤

• (¬B)

• (B ◦ C) where ◦ ∈ {∧,∨,→,≡}

So, in the first case A begins with an atomic wff, and in the other two
begins with an “(”.

No Induction was used or needed! □

Notes on Logic© G. Tourlakis

2.1 Boolean Wff 49

Sep. 19, 2022

2.1.13 Theorem. (Unique Readability) The i.p. of any formula A
are unique.

� So we can “deconstruct” or “parse” a formula in a unique way: It is
exactly one of atomic, a negation, a disjunction, a conjunction, an
implication, an equivalence. �

Proof.

• Clearly no atomic formula can be read also as one of

a negation, a disjunction, a conjunction, an implication, an equiv-
alence

since the atomic contains no glue, but all the others do.

• Can we read a formula A as two distinct negations? That is, using
here “=” as equality of strings, can we have

A = (¬B) = (¬C)?

No, since (¬B) = (¬C) implies that after we match the first two
symbols (left to right) then we will continue matching all symbols
—by position— until we match all of B with C and finally match
the rightmost “)”.

• Can we read a formula A as a negation and as a disjunction, or a
conjunction, or an implication, or an equivalence? That is, can I
have

A = (¬B) = (C ◦D)?

No, since if we have (¬B) = (C ◦ D), then from left to right the
first position is OK (match) but the 2nd is NOT: C cannot begin

Notes on Logic© G. Tourlakis

50 Properties of the wff

with “¬” (see 2.1.12).

• Can we read a formula A as a (B ◦ C) and also differently as a
(D ⋄Q), where ⋄ stands for any binary glue (including “◦”)?

Let’s assume that we can and get a contradiction.

Well, note first that if (B ◦ C) = (D ⋄ Q) then if we have B = D
then this forces ◦ = ⋄ and hence also that C) = Q) which trivially
(remove the ending “)”) leads to C = Q.

BUT this is not the case that we are looking at.

So, assume that B ̸= D. There are two cases.

Case 1. B is shorter thanD, so is a nonempty proper prefix ofD. Then,
by 2.1.11, B has an excess of left brackets. But being a wff it
also has balanced numbers of left/right brackets. Contradic-
tion!

Case 2. D is shorter than B so is a nonempty proper prefix of B. Then,
by 2.1.11, D has an excess of left brackets. But being a wff it
also has balanced numbers of left/right brackets. Contradic-
tion!

□

Notes on Logic© G. Tourlakis

2.1 Boolean Wff 51

Why do we care about unique readability?

Well, there is an old programming language called “PL/1” (from
“Programming Language 1”).

The language defines “statement” to be any instruction.

It has two kinds of if-statements, namely

• IF Con THEN St

and

• IF Con THEN St1 ELSE St2

where “Con” stands for any condition and “St”, “St1” and “St2”
can be any statements.

So what does the following syntactically correct instruction do?

▶ Why is it “syntactically correct”?

IF Con1 THEN IF Con2 THEN St1 ELSE St2 (1)

We DON’T KNOW! The above is ambiguous ! (No unique way to
go backwards to figure out what it says)

So who cares? Not knowing which syntax is intended we do not
know what action is intended!

For example, say Con1 evaluates as false.

Notes on Logic© G. Tourlakis

52 Properties of the wff

Now, one meaning of (1) —i.e., ONE WAY to choose I.P.— is

IF Con1 THEN

{
IF Con2 THEN St1 ELSE St2

}
(2)

which does nothing (skips all) and control goes to the next statement,
whatever that is.

Another meaning of (1) —ANOTHER WAY TO CHOOSE I.P.— is

IF Con1 THEN

{
IF Con2 THEN St1

}
ELSE St2 (3)

which —still under the assumption that Con1 is false— causes the ex-
ecution of St2.

POSTSCRIPT The PL/1 language was NOT redefined/cor-
rected to remove the ambiguity ! Rather, the Compiler was pro-
grammed to “believe” that (2)) above was meant (that is, the keyword
“ELSE matches the closest IF”)

Notes on Logic© G. Tourlakis

2.2 Boolean Semantics 53

2.2 Boolean Semantics

Boolean Logic is about the behaviour of glue. That is, we use
Boolean logic to find out how glue influences the truth-value of a for-
mula, assuming values are arbitrarily assigned to the atomic formulas.

What values do we have in mind?

The so-called truth-values, true and false.

These values are OUTSIDE Boolean Logic.

Did you see them in the alphabet V? Nor did I!!

They are in the metatheory of Boolean Logic, that is, in the domain
where we are speaking about the logic, rather than using the logic.

2.2.1 Definition. A state v (or s) is a function that assigns the value
f (false) or t (true) to every Boolean variable, while the constants ⊥
and ⊤, necessarily, always get the values f and t respectively.

None of these symbols —v, s, t, f— are in the Boolean logic alpha-
bet V . They are all metasymbols in the metatheory.

The f and t we call truth values.

On paper or on the chalk board one usually underlines rather than
bolds —as bolding is cumbersome— so one denotes f as f and t as t

Notes on Logic© G. Tourlakis

54 Properties of the wff

respectively.

The fact that v gives (assigns) the value f to the variable q′′ is
denoted by v(q′′) = f. □

Notes on Logic© G. Tourlakis

2.2 Boolean Semantics 55

� Therefore a state v is (think of MATH 1019/1028 here!) an infinite
input/output table like the one below

input output

⊥ f
⊤ t
p t
q f
...

...

where no two rows can have the same input but different
outputs.

Again in the jargon of MATH1019/1028 the table is what we call a
function! This observation justifies the notation

function
↓
v (q′′

↑
input

) =

output
↓
f

in the last sentence of Definition 2.2.1.

▶ Why an infinite table?

Because our Boolean logic language has infinitely many variables
and a state, by definition, assigns a value to each of them. �

Notes on Logic© G. Tourlakis

56 Properties of the wff

Why are f , t outside logic? Aren’t they symbols?

• Yes, but not ALL symbols belong to our Boolean logic!!

• Compare: “3” and “5” are informal symbols standing for the
concepts “three objects” (or “3rd position”) and “5 objects ”(or
“fifth position”). Equally well the earlier used (by ancient Greeks)
γ, ε and III, V (by Romans) meant the same thing as three objects
(or 3rd position) and 5 objects (or fifth position) (respectively).

• Formally, in number theory, “3” is denoted by “SSS0” and “5” is
denoted by “SSSSS0”.

• Same here: ⊥,⊤ are our formal “false”, “true”, while f , t are our
informal ones. PL/1 uses 0B and 1B respectively (“B” stands for
“bit”) while C uses 0 and any nonzero number respectively.

Notes on Logic© G. Tourlakis

2.2 Boolean Semantics 57

2.2.2 Definition. (Truth tables) In themetatheory of Boolean logic
there are five operations we are interested in that can be applied on
the members of the set of truth values {t, f}.

Each operation takes its input(s) from the above set, and its outputs
are also in this set.

We have one operation for each connective (glue) and in order to
keep track of which is formal and which is not we use the generic let-
ter F (for “function”) subscripted by the name of the corresponding
glue.

These functions of the metatheory are called Boolean functions and
are the following.

F¬(x), F∨(x, y), F∧(x, y), F→(x, y), F≡(x, y)

� So, “∨” doesNOT operate on inputs f , t. F∨ does; in the metatheory!

What “∨” does operate on? What does it glue? FORMULAS! �

Notes on Logic© G. Tourlakis

58 Properties of the wff

The behaviour of these functions —input/output behaviour, that
is— is fully described by the following table that goes by the nickname
“truth table”.

x y F¬(x) F∨(x, y) F∧(x, y) F→(x, y) F≡(x, y)

f f t f f t t

f t t t f t f

t f f t f f f

t t f t t t t

□

Notes on Logic© G. Tourlakis

Chapter 3

What makes our Logic “Classical”

3.1 States and Truth tables

Refer to the truth table on p.58 and let us discuss the column of
F→(x, y).

The most “straightforward” entry in this column is arguably, the
one for input (t, f).

This function is describing the truth-value of implications, and the
x input is the hypothesis while the y input is the conclusion.

Thus having F→(t, f) = f can be interpreted as saying that the im-
plication cannot be RIGHT, i.e., t, IF we start with a true hypothesis
and end up with a false conclusion.

59

60 What makes our Logic “Classical”

We can easily agree with the statement in red above since our intu-
ition accepts that “→” preserves truth from left to right.

The same principle supports the behaviour of F→ in the other three
rows.

For example you would be wrong to tell me: “Hey, F→(f , t) is not
right”. I will respond: “Oh yea? Show me that it does not preserve
truth from hypothesis to conclusion! What truth?!”

So far, states give meaning (values) to atomic formulas only . Let us
extend this meaning-giving to any wff.

3.1.1 Definition. (The value of a wff in some state, v) We extend
any state v to be meaningful not only with atomic arguments but
also with any wff arguments.

We will call such an extension of v by the same letter, but will
“cap” it with a “hat”, v, since it is a different function!

Notes on Logic© G. Tourlakis

3.1 States and Truth tables 61

What IS an “extension” of v?

It is a function v that on the arguments that v is defined so is v
and gives the same output!

But v is defined on more inputs: On ALL wff found in WFF.

Notes on Logic© G. Tourlakis

62 What makes our Logic “Classical”

The definition of v is inductive:

The first three lines below simply say that v agrees with v on the
inputs that the latter is defined on.

The remaining lines trace along the inductive definition of wff,
and give the value of a wff using the values —via “recursive
calls”— of its UNIQUE i.p.

� You see now the significance of the uniqueness of i.p.!!! �

v(p) = v(p)

v(⊤) = t

v(⊥) = f

v
(
(¬A)

)
= F¬

(
v(A)

)
v
(
(A ∧B)

)
= F∧

(
v(A), v(B)

)
v
(
(A ∨B)

)
= F∨

(
v(A), v(B)

)
v
(
(A→ B)

)
= F→

(
v(A), v(B)

)
v
(
(A ≡ B)

)
= F≡

(
v(A), v(B)

)
□

Notes on Logic© G. Tourlakis

3.1 States and Truth tables 63

� Truth tables are more convenient to understand, AND misunderstand!

For example the 6-th equality in the previous definition can also be
depicted as:

A B A ∨B
f f f

f t t

t f t

t t t

Says
v((A ∨B)) = F∨(v(A), v(B))

At a glance the table says that to compute the value of A ∨B you just
utilise the values of the i.p. A and B as indicated.

The misunderstanding you MUST avoid is this: The two left columns
are NOT values you assign to A and B.

You can assign values ONLY to ATOMIC formulas!

What these two columns DO say is that the formulas A and B
have each two possible values.

That is 4 pairs of values, as displayed! �

Notes on Logic© G. Tourlakis

64 What makes our Logic “Classical”

3.2 Finite States

Sep. 21, 2022

� We say a variable p occurs in a formula meaning the obvious: It is,
as a string, a substring —a part— of the formula. �

3.2.1 Theorem. Given a formula A. Suppose that two states, v and
s agree on all the variables of A. Then v(A) = s(A).

Proof. We do induction on the formula A:

1. Case where A is atomic. Well if it is ⊤ or ⊥ then v(A) = s(A) is
true. If A is p, then

v(A) = v(A)
Hypothesis

= s(A) = s(A)

I.H.: Claim is true for all i.p. of A.

2. Case where A is (¬B). The value of A—whether under v or under
s— is determined by a recursive call to v(B) and s(B). Seeing that
all the variables of B are in A, the I.H. yields v(B) = s(B) and
hence v(A) = s(A).

3. Case where A is (B ◦ C). The value of A —whether under v or
under s— is determined by recursive calls to v(B) and v(C) on one

Notes on Logic© G. Tourlakis

3.2 Finite States 65

hand and s(B) and s(C) on the other.

Seeing that all the variables of B and C are in A, the I.H. yields

v(B) = s(B) and v(C) = s(C) (∗)

Hence no matter which one of the ∧,∨,→,≡ the symbol ◦ stands
for, it operating on v(B) and v(C) or on s(B) and s(C) will yield
the same result by (∗).

That is, v(A) = s(A). □

F (p, q, r), G(r, r′, p)keep only p, q, r, r′ in the state

Notes on Logic© G. Tourlakis

66 What makes our Logic “Classical”

3.2.2� Remark. (Finite “appropriate” States) A state v is by def-
inition an infinite table.

By the above theorem, the value of any wff A in a state v is deter-
mined only by the values of v ON THE VARIABLES OF A, since any
other state that agrees with v on said variables gives the same answer.

Thus, going forward we will be utilising finite appropriate states to
compute the truth values of any wff.

That is, we discard from the infinite state all the rows that contain
variables not occurring in the formulas of interest. □ �

Notes on Logic© G. Tourlakis

3.3 Tautologies and Tautological Implication 67

3.3 Tautologies and Tautological Implication

3.3.1 Definition. (Tautologies and other things. . .)

1. A Tautology is a formula A which is true in all states. That is, for
all v, we have v(A) = t.

We write “|=taut A” for “A is a tautology”.

2. A contradiction is a formulaA such that, for all v, we have v(A) = f .

Clearly, for all v, we have v(¬A) = t.

3. A is satisfiable iff for some v, we have v(A) = t.

We say that v satisfies A.

▶ Boolean logic for the user helps to discover tautologies.
□

Notes on Logic© G. Tourlakis

68 What makes our Logic “Classical”

We saw that WFF denotes the set of all (well-formed) formulas.

Capital Greek letters that are different from any Latin capital let-
ter are used to denote arbitrary sets of formulas. Such letters are
Γ,∆,Φ,Ψ,Ω,Π,Σ. As always, in the rare circumstance you run out of
such letters you may use primes and/or (natural number) subscripts.

3.3.2 Definition. (Tautological implication: binary |=taut)

1. Let Γ be a set of wff. We say that v satisfies Γ iff v satisfies every
formula in Γ.

2. We say that Γ tautologically implies A —and we write this as
Γ |=taut A— iff every state v that satisfies Γ also satisfies A.

The configuration

Γ |=taut A (1)

is called a tautological implication claim.

We call Γ the set of hypotheses or premises of the tautological
implication, while A is the conclusion. □

� IMPORTANT! The task to verify (1) needs work on our partONLY
with v that satisfy Γ.

Notes on Logic© G. Tourlakis

3.3 Tautologies and Tautological Implication 69

If there is NO such v then the claim (1) is VACUOUSLY valid! YOU
cannot contradict its validity for you will need a v that satisfies Γ
but NOT A.

You haveNO COUNTEREXAMPLE. �

3.3.3 Example.

(1) If |=taut A, then for any Σ, we have Σ |=taut A.

The converse is not valid:

(2) We have p |=taut p∨ q. Indeed, for any v such that v(p) = t we
compute v(p ∨ q) = t from the truth table for ∨.

Yet, p ∨ q is NOT a tautology. Just take v(p) = v(q) = f

Note also the obvious: A |=taut A ∨ B, for any wff A and B. Again
use the truth table of p.63. □

Notes on Logic© G. Tourlakis

70 What makes our Logic “Classical”

In view of 3.2.1 we can check all of satisfiability, tautology status,
and tautological implication with finite Γ using a finite truth table.

Notes on Logic© G. Tourlakis

3.3 Tautologies and Tautological Implication 71

Examples.

Example 1. ⊥ |=taut A.

Because no v satisfies the lhs of “|=taut” so according to
Definition, I rest my case.

Example 2. Let us build a truth table for A → B ∨ A and see what
we get.

I wrote sloppily, according to our priorities agreement.

I mean (A→ (B ∨ A)).

We align our part-work under the glue since it is the glue
that causes the output.

Here → is the last (applied) glue. Under it we write the
final results for this formula.

Since A and B are not necessarily atomic, the values un-
der A and B in the table below are possible values NOT
assigned values! So (A→ (B ∨ A)) is a tautology.

Notes on Logic© G. Tourlakis

72 What makes our Logic “Classical”

A B A → B ∨ A

f f t f
f t t t
t f t t
t t t t

Example 3. Here is another tautology. I will verify this by a shortcut
method, WITHOUT building a truth table.

I will show

|=taut ((A→ B)→ A)→ A (1)

I will do so by arguing that it is IMPOSSIBLE TO MAKE (1) FALSE.

• If (1) is false then A is false and (A→ B)→ A is true.

• Given the two blue statements above, it must be that A → B is
false. IMPOSSIBLE, since A is false!

Notes on Logic© G. Tourlakis

Chapter 4

Substitution and Schemata

4.0.1 Definition. (Substitution in Formulas)

The METAnotation

A[p := B] (1)

where A and B are formulas and p is any variable means

• As an Action: “Find and replace by B ALL occurrences of p in
A”.

• As a Result: The STRING resulting from the action described
in the previous bullet. □

73

74 Substitution and Schemata

�

1. In theMETAtheory of Logic where we use the exprssion “[p := B]”
we Agree to Give it The Highest priority: Thus, A ∧ B[q := C]

means A ∧
(
B[q := C]

)
and ¬A[p := B] means ¬

(
A[p := B]

)
2. Clearly if p does NOT occur in A, then the “action” found noth-

ing to replace, so the resulting string —according to (1)— in this case
is just A; NO CHANGE.

�

Notes on Logic© G. Tourlakis

75

We observe the following, according to the inductive definition of
formulas.

With reference to (1) of page 73, we prove that the result of (1) is a
wff.

1. A is atomic. In particular, using “=” for equality of strings,

• A is p. Then A[p := B] = B

• A is q —where by q we denote a variable other than the one
p stands for. Then A[p := B] = A —no change.

• A is ⊥ or ⊤. Then A[p := B] = A —no change.

But A,B are wff, thus so is A[p := B] for A atomic.

Now take an I.H. on the i.p. of A and argue two cases:

2. A is (¬C). Then all occurrences of p are in C. All Action
happens with C.

Thus A[p := B] is effected by doing first S = C[p := B].

Above I named the result S for convenience. This is a wff by I.H.

Notes on Logic© G. Tourlakis

76 Substitution and Schemata

Now A[p := B] is (¬S). A wff.

Notes on Logic© G. Tourlakis

77

Sep. 26, 2022

3. A is (C ◦D). Then all occurrences of p are in C or D.

All Substitution Action happens with C and also D.

Thus A[p := B] is effected by doing

(a) S = C[p := B]

(b) T = D[p := B]

Where I named the two above results S and T for convenience.

S and T are wff by the I.H.

(c) To conclude, use concatenation —in the order indicated below—
to obtain the wff

(S ◦ T)

Notes on Logic© G. Tourlakis

78 Substitution and Schemata

4.0.2 Proposition. For every wff A and wff B and any variable p,
A[p := B] is∗a wff.

Proof. See the preceding argument. □

� We are poised to begin describing the proof system of Boolean logic.

To this end we will need the notation that is called formula schemata
or formula schemas (if you consider “schema” an English word —but
it is not!).

(A ∨ (B → p))

A[p := B]

4.0.3 Definition. (Schema, Schemata) Add to the alphabet V the
following symbols:

1. “[”, “]”, and “:=”

2. All NAMES of formulas: A,B,C, . . ., with or without primes and/or
subscripts.

3. Allmetasymbols for variables: p,q, r, with or without primes and/or
subscripts.

Then a formula schema is a STRING over the augmented alphabet,
which becomes a wff whenever all metasymbols of types 2 and 3 above,
which occur in the string, are replaced by wff and actual variables (like

∗We are purposely sloppy with jargon here —like everybody else in the literature: “IS” means “results into”.

Notes on Logic© G. Tourlakis

79

non bold p, q, r′′, q′′′13) respectively, and all actions indicated by [p := B]
are performed.

A formula that we obtain by the process described in the paragraph
above is called an Instance of the Schema. □

� Three examples of schemata.

(1) A: This Schema stands (is a placeholder) for a wff! So trivially,
if I plug into A an actual wff, I get that wff as an instance!

(2) (A ≡ B): Well, whatever formulas I substitute into A and B

(metavariables) I get a wff by the inductive definition of wff.

(3) A[p := B]: We know that if I substitute A and B by formulas
and p by a Boolean variable I get a wff (4.0.2). �

Notes on Logic© G. Tourlakis

80 Substitution and Schemata

Next stop is Proofs!

In proofs we use Axioms and Rules (of Inference).

It is the habit in the literature to write Rules as fractions:

P1, P2, . . . , Pn

Q
(R)

where all of P1, . . . , Pn, Q are schemata.

Example,
p

(p→ q)

I note that the fraction (R) above, the RULE, is meant as an input
/ output device.

▶ An Instance of the Rule is a common instance of all P1, . . . , Pn, Q,
that is, every wff-metavariable A and variable-metavariable p are
replaced by the same wff and actual variable throughout respec-
tively.

Jargon. We call the schema (if one, or schemata if many) on the
numerator the premise(s) but also hypothes(is/es).

Notes on Logic© G. Tourlakis

81

Jargon. The single schema in the denominator we call the conclu-
sion (also “result” or “output”).

▶ More Jargon. For every instance of (R)

all the Pi and the Q become wff P ′1, . . . , P
′
n, Q

′

We say

the Rule, with input P ′1, . . . , P
′
n yields output (result, conclusion) Q′.

▶ We also say that Q′ is the result of the application of (R) to
P ′1, . . . , P

′
n.

Notes on Logic© G. Tourlakis

82 Substitution and Schemata

4.1 Rules and Axioms of Boolean Logic

4.1.1 Definition. (Rules of Inference of Boolean Logic) There are
just two:

Rule1
A ≡ B

C[p := A] ≡ C[p := B]
(Leibniz)

There are NO restrictions in the use of “Leibniz”.

In particular,

(a) it is NOT required that p actually occurs in C.

� If it does not, then the denominator is C ≡ C. �

(b) The single hypothesis can be ANY equivalence.

Notes on Logic© G. Tourlakis

4.1 Rules and Axioms of Boolean Logic 83

Rule2 “Equanimity” Rule.
A,A ≡ B

B
(Eqn)

There are NO restrictions in the use of “Equanimity” other
than

“A” must be the left part of the equivalence on the numer-
ator.

� Does it matter “left” or “right”? FOR NOW YES!, as we have
NO basis to decide otherwise and will NOT be caught “import-
ing” so-called “knowledge” (from other courses) whose valid-
ity we did NOT prove in our Logic; YET!!! �

□

4.1.2 Definition. (Axioms of Boolean Logic) In the following, (1)–
(11), A,B,C name or stand for arbitrary wff.

Properties of ≡
Associativity of ≡ ((A ≡ B) ≡ C) ≡ (A ≡ (B ≡ C)) (1)

Commutativity of ≡ (A ≡ B) ≡ (B ≡ A) (2)

Properties of ⊥,⊤
⊤ and ⊥ ⊤ ≡ ⊥ ≡ ⊥ (3)

Properties of ¬
Introduction of ¬ ¬A ≡ A ≡ ⊥ (4)

Properties of ∨
Associativity of ∨ (A ∨B) ∨ C ≡ A ∨ (B ∨ C) (5)

Commutativity of ∨ A ∨B ≡ B ∨ A (6)

Idempotency of ∨ A ∨ A ≡ A (7)

Notes on Logic© G. Tourlakis

84 Substitution and Schemata

Distributivity of ∨ over ≡ A ∨ (B ≡ C) ≡ A ∨B ≡ A ∨ C (8)

“Excluded Middle” A ∨ ¬A (9)

Properties of ∧
“Golden Rule” A ∧B ≡ A ≡ B ≡ A ∨B (10)

Properties of →
Implication A→ B ≡ A ∨B ≡ B (11)

All of the above (1)–(11) except (3) are schemata for axioms. We call
them Axiom Schemata, while (3) is an Axiom. Each axiom schema
above defines infinitely many axioms that are its Instances.

So our axioms are (3) and all the instances of the Axiom Schemata
(1), (2), (4)–(11).

We reserve the Greek letter Λ for the set of all Axioms of Boolean
Logic. □

Notes on Logic© G. Tourlakis

4.1 Rules and Axioms of Boolean Logic 85

4.1.3 Definition. (Proofs) Let Γ (could use Σ,Θ,Ψ etc., instead of
Γ —there is nothing special about the letter Γ!) be some set of wff.

A proof from Γ is any finite ordered sequence of formulas that sat-
isfy the following two specifications:

At every step of the Construction (that we call “Proof”) we may
write

Proof 1. Any ONE formula from Λ or Γ.

Proof 2. Any wff A which is the RESULT of an Application of the
rule Leib or rule Eqn to wff(s) that appeared in THIS proof
before A.

A proof from Γ is also called “Γ-proof”. □

Notes on Logic© G. Tourlakis

86 Substitution and Schemata

4.1.4� Remark. (1) So, a proof is a totally syntactic construct, totally
devoid of semantic concepts.

(2) Γ is a convenient set of “additional hypotheses”.

Syntactically the elements of Γ “behave” like the Axioms from Λ—as
it is clear from 4.1.3, item 1— but semantically they are NOT the same:

While every member of Λ is a tautology by choice,

this need NOT be the case for the members of Γ.

(3) Since every proof (from some Γ) has finite length,

only a finite part of Γ and Λ can ever appear in some proof.

□ �

Notes on Logic© G. Tourlakis

4.1 Rules and Axioms of Boolean Logic 87

4.1.5 Definition. (Theorems) Any wff A that appears in a Γ-proof
is called a Γ-theorem.

We also say, “A is a theorem from Γ”.

In symbols, the sentence “A is a Γ-theorem”, is denoted by “Γ ⊢ A”.

If Γ = ∅ then we write ⊢ A.

� That is, Λ never appears to the left of the turnstile “⊢”. �

We call an A such that ⊢ A an absolute or logical theorem. □

Notes on Logic© G. Tourlakis

88 Substitution and Schemata

4.1.6� Remark. That A is a Γ-theorem is certified by a Γ-proof like
this

B1, . . . , Bn, A, C1, . . . , Cm (1)

the sequence (1) obeying the specifications of 4.1.3.

Clearly, the sequence (2) below also satisfies the specifications, since
each specification for a Bi or A that utilises rules refers to formulas to
the left only.

Thus the sequence (2) is also a Γ-proof of A!

B1, . . . , Bn, A (2)

The bottom line of this story is expressed as either

1. If you are proving a theorem A, just stop as soon as you wrote it
down with justification in a proof!

OR

2. A Γ-theorem is a wff that appears at the end of some proof. □ �

Notes on Logic© G. Tourlakis

4.1 Rules and Axioms of Boolean Logic 89

Concatenating two Γ-proofs

A1, . . . , An

and
B1, B2, . . . , Br

results in a Γ-proof.

Indeed, checking

B1, B2, . . . , Br, A1, . . . , An

from left to right we give EXACTLY the same reasons that we gave for
writing the formulas down in each standalone proof.

Notes on Logic© G. Tourlakis

90 Substitution and Schemata

The reader did not miss to note the similarity between a Γ-proof and
a formula construction.

Let us develop an Inductive definition for the concept “theorem”
just as we did before for the concept “wff”.

Notes on Logic© G. Tourlakis

4.1 Rules and Axioms of Boolean Logic 91

So we learnt that a Γ-theorem, let’s call it A, satisfies

1. A is member of Λ or Γ

2. A appears in a Γ-proof as the result of an application of Eqn to
wff to its left in the proof.

3. A appears in a Γ-proof as the result of an application of Leib to
wff to its left in the proof.

Let us rephrase the blue “appears” above, remembering that a Γ-
theorem IS a formula that appears in a Γ-proof.

1. A is member of Λ or Γ

2. A is the result of an application of Eqn to two Γ-theorems.

3. A is the result of an application of Leib to one Γ-theorem.

Notes on Logic© G. Tourlakis

92 Substitution and Schemata

Sep. 28, 2022

4.1.7 Exercise. How do we do this?
By providing a Γ-proof where our target theorem appears, OR by

using the Inductive Definition of the previous page.

(1) A,B,C ⊢ A, for any wff A
(2) More generally, if A ∈ Σ, then Σ ⊢ A
(3) ⊢ B, for all B ∈ Λ

□

Notes on Logic© G. Tourlakis

4.1 Rules and Axioms of Boolean Logic 93

4.1.8� Remark. (Hilbert-style Proofs)
A Γ-proof is also called a “Hilbert-style proof” —in honour of the

great mathematician David Hilbert, who was the first big supporter of
the idea to use SYNTACTIC (FORMAL) logic as a TOOL in order
to do CORRECT mathematics.

We arrange Hilbert proofs vertically, one formula per line, numbered
by its position number, adding “annotation ” to the right of the formula
we just wrote, articulating briefly HOW exactly we followed the spec
of Definition 4.1.3.

Practical Note. Forget numbering or annotation, or that each line
contains ONE wff ONLY and the result is a very bad grade! :) □ �

Notes on Logic© G. Tourlakis

94 Substitution and Schemata

4.1.9 Example. (Some very simple Hilbert Proofs)
(a) We verify that “A,A ≡ B ⊢ B” (goes without saying, for all wff

A and B).

Well, just write a proof of B with “Γ” being {A,A ≡ B}.

BTW, we indicate a finite “Γ” like {A,A ≡ B} without the braces
“{ }” when writing it to the left of “⊢”.

(1) A ⟨hypothesis⟩
(2) A ≡ B ⟨hypothesis⟩
(3) B ⟨(1) + (2) + (Eqn)⟩

� Incidentally, members of Γ are annotated as “hypotheses” and going
forward we just write “ hyp”.

Members of Λ we annotate as “Axioms”. �

Notes on Logic© G. Tourlakis

4.1 Rules and Axioms of Boolean Logic 95

� Since A and B are arbitrary undisclosed wff, the expression A,A ≡
B ⊢ B is a Theorem Schema (a theorem, no matter what formulas we
plug into A and B). �

Notes on Logic© G. Tourlakis

96 Substitution and Schemata

(b) Next verify the Theorem Schema

A ≡ B ⊢ C[p := A] ≡ C[p := B]

Here you go:

(1) A ≡ B ⟨hyp⟩
(2) C[p := A] ≡ C[p := B] ⟨(1) + Leib⟩

C can be any wff (and p any actual Boolean variable) so from ONE
hypothesis for fixed A and B we can derive an infinite number of
theorems of the “shape” C[p := A] ≡ C[p := B].

Notes on Logic© G. Tourlakis

4.1 Rules and Axioms of Boolean Logic 97

(c) Something more substantial. Our First Derived Rule!

We establish the following Theorem Schema that we will refer to as
Transitivity of≡—or simply “Trans”. How? We write a Hilbert proof !

A ≡ B,B ≡ C ⊢ A ≡ C (Trans)

(1) A ≡ B ⟨hyp⟩
(2) B ≡ C ⟨hyp⟩
(3) (A ≡ B) ≡ (A ≡ C) ⟨(2) + (Leib), Denom. “A ≡ p” where p is “fresh”⟩
(4) A ≡ C ⟨(1) + (3) + (Eqn)⟩

Why must p be fresh?

Say A is p ∧ q.

Then, feeding B to p, “A ≡ p” becomes B ∧ q ≡ B,
which is NOT the SAME STRING AS A ≡ B.

this is NOT A︷ ︸︸ ︷
B ∧ q ≡ B

Notes on Logic© G. Tourlakis

98 Substitution and Schemata

(d) And a Tricky One! Verify that “A ≡ A” is an absolute theorem
for all A. That is,

⊢ A ≡ A

No “HYP” in the proof below!!

(1) A ∨ A ≡ A ⟨axiom⟩
(2) A ≡ A ⟨(1) + (Leib): A[p := A ∨ A] ≡ A[p := A]

where p is “fresh”⟩

A shorter way to say this might be to invoke the �-remark after
Leibniz in 4.1.1. I can prove

A ≡ B ⊢ C ≡ C

if C has no free p.

Well, if I take, say “A ≡ B” to be

A︷︸︸︷
⊤ ≡

B︷ ︸︸ ︷
(⊥ ≡ ⊥) then I get

⊢ C ≡ C. □

Notes on Logic© G. Tourlakis

4.1 Rules and Axioms of Boolean Logic 99

4.1.10 Metatheorem. (Hypothesis Strengthening) If Γ ⊢ A and
Γ ⊆ ∆, then also ∆ ⊢ A.

Proof. A Γ-proof for A is also a ∆-proof, since every time we say about
a formula B in the proof “legitimate since B ∈ Γ” we can say instead
“legitimate since B ∈ ∆”. □

Notes on Logic© G. Tourlakis

100 Substitution and Schemata

4.1.11 Metatheorem. (Transitivity of ⊢) Assume Γ ⊢ B1, Γ ⊢
B2, . . . ,Γ ⊢ Bn. Let also B1, . . . , Bn ⊢ A. Then we have Γ ⊢ A.

Proof.

We have Γ-proofs

. . . , B1 (1)

. . . , B2 (2)

...

. . . , Bn (n)

We also have a {B1, . . . , Bn}-proof

. . . , Bi, . . . , A (n+ 1)

Concatenate all proofs (1)–(n) (in any order) and to the right of the
result glue the proof (n+ 1).

Notes on Logic© G. Tourlakis

4.1 Rules and Axioms of Boolean Logic 101

We have the following proof:

DON’T say “hyp”
↓

. . . , B1 , . . . , B2 , . . . , . . . , Bn , . . . , Bi, . . . , A

↑
SAY: obtained earlier; see box i

□

So if we view B1, . . . , Bn ⊢ A as a (derived or “macro” rule) then
this “rule” is applicable!

If the Bi are Γ-theorems and B1, . . . , Bn ⊢ A, then we can apply
the latter as a “rule” to obtain the Γ-theorem A.

4.1.12 Corollary. If Γ ⊢ A and also Γ ∪ {A} ⊢ B, then Γ ⊢ B.

� In words, the conclusion says that A drops out as a hypothesis and we
get Γ ⊢ B.

That is, a THEOREM A can be invoked just like an axiom OR a
hyp in a proof! �

Notes on Logic© G. Tourlakis

102 Substitution and Schemata

Proof. We have two proofs:

from Γ︷︸︸︷
. . . A

and

from Γ ∪ {A}︷ ︸︸ ︷
. . . A . . . B

When the second box is standalone, the justification for A is “hyp”.

Now concatenate the two proofs above in the order

from Γ︷︸︸︷
. . . A

from Γ ∪ {A}︷ ︸︸ ︷
. . . A . . . B

Now change all the justifications for the red A in the right box from
“hyp” to the same exact reason you gave to the A in box one —OR, as
in the proof of 4.1.11 say about the red A: “obtained earlier in box 1”.

Thus, the status of A as “hyp” is removed and B is proved from Γ
alone. □

Notes on Logic© G. Tourlakis

4.1 Rules and Axioms of Boolean Logic 103

4.1.13 Corollary. If Γ ∪ {A} ⊢ B and ⊢ A, then Γ ⊢ B.

Proof. By hyp strengthening, I have Γ ⊢ A. Now apply the previous
corollary. □

Notes on Logic© G. Tourlakis

104 Substitution and Schemata

4.1.14 Theorem. A ≡ B ⊢ B ≡ A

Proof.

(1) A ≡ B ⟨hyp⟩
(2) (A ≡ B) ≡ (B ≡ A) ⟨axiom⟩
(3) B ≡ A ⟨(1,2) + Eqn⟩

Notes on Logic© G. Tourlakis

4.1 Rules and Axioms of Boolean Logic 105

4.1.15 Theorem. ⊢ (A ≡ (B ≡ C)) ≡ ((A ≡ B) ≡ C)

NOTE. This is the mirror image of Axiom (1).

Proof.

(1) ((A ≡ B) ≡ C) ≡ (A ≡ (B ≡ C)) ⟨axiom⟩
(2) (A ≡ (B ≡ C)) ≡ ((A ≡ B) ≡ C) ⟨(1)+4.1.14⟩ □

4.1.16� Remark. Thus, in a chain of two “≡” we can shift brackets
from left to right (axiom) but also right to left (above theorem).

So it does not matter how brackets are inserted in such chain.

An induction proof on chain length (see course URL, bullet #4 un-
der Notes:

http: // www. cs. yorku. ca/ ~ gt/ courses/ MATH1090F22/ 1090.

html) extends this remark to any chain of “≡”, of any length. □ �

Notes on Logic© G. Tourlakis

http://www.cs.yorku.ca/~gt/courses/MATH1090F22/1090.html
http://www.cs.yorku.ca/~gt/courses/MATH1090F22/1090.html

106 Substitution and Schemata

4.1.17 Theorem. (The other (Eqn)) B,A ≡ B ⊢ A

Proof.

(1) B ⟨hyp⟩
(2) A ≡ B ⟨hyp⟩
(3) B ≡ A ⟨(2) + 4.1.14⟩
(4) A ⟨(1, 3) + (Eqn)⟩ □

4.1.18 Corollary. ⊢ ⊤

Proof.

(1) ⊤ ≡ ⊥ ≡ ⊥ ⟨axiom⟩
(2) ⊥ ≡ ⊥ ⟨theorem⟩
(3) ⊤ ⟨(1, 2) + (Eqn)⟩ □

Notes on Logic© G. Tourlakis

4.1 Rules and Axioms of Boolean Logic 107

Oct. 3, 2022

4.1.19 Theorem. ⊢ A ≡ A ≡ B ≡ B

(1) (A ≡ B ≡ B) ≡ A ⟨axiom; brackets as I please!⟩
(2) A ≡ (A ≡ B ≡ B) ⟨(1) + 4.1.14⟩ □

4.1.20 Corollary. ⊢ ⊥ ≡ ⊥ ≡ B ≡ B and ⊢ A ≡ A ≡ ⊥ ≡ ⊥

NOTE absence of brackets in theorem AND corollary!

Notes on Logic© G. Tourlakis

108 Substitution and Schemata

4.1.21 Corollary. (Redundant ⊤ Theorem)
⊢ ⊤ ≡ A ≡ A and ⊢ A ≡ A ≡ ⊤.

Proof.

(1) ⊤ ≡ ⊥ ≡ ⊥ ⟨axiom⟩
(2) ⊥ ≡ ⊥ ≡ A ≡ A ⟨absolute theorem 4.1.20⟩
(3) ⊤ ≡ A ≡ A ⟨(Trans) + (1, 2)⟩

Notes on Logic© G. Tourlakis

4.1 Rules and Axioms of Boolean Logic 109

4.1.22 Metatheorem. (Redundant ⊤ METAtheorem) For any Γ
and A, we have Γ ⊢ A iff Γ ⊢ A ≡ ⊤.

Proof. Say Γ ⊢ A.

Thus

Γ
...

(1) A ⟨Γ-theorem⟩
(2) A ≡ A ≡ ⊤⟨Red. ⊤ theorem; 4.1.21⟩
(3) A ≡ ⊤ ⟨(1, 2) +Eqn⟩

The other direction is similar. □

Notes on Logic© G. Tourlakis

110 Substitution and Schemata

4.2 Equational Proofs

Example from high school trigonometry.

Prove that 1 + (tanx)2 = (secx)2 given the identities

tanx =
sinx

cosx
(i)

secx =
1

cosx
(ii)

(sinx)2 + (cosx)2 = 1 (Pythagoras’ Theorem) (iii)

Notes on Logic© G. Tourlakis

4.2 Equational Proofs 111

Equational proof with annotation

1 + (tan x)2

= ⟨by (i)⟩
1 + (sin x/ cosx)2

= ⟨arithmetic⟩
(sinx)2 + (cosx)2

(cosx)2
(E)

= ⟨by (iii)⟩
1

(cosx)2

= ⟨by (ii)⟩
(secx)2

Notes on Logic© G. Tourlakis

112 Substitution and Schemata

An equational proof looks like:

reason︷ ︸︸ ︷
A1 ≡ A2,

reason︷ ︸︸ ︷
A2 ≡ A3,

reason︷ ︸︸ ︷
A3 ≡ A4 . . . ,

reason︷ ︸︸ ︷
An ≡ An+1 (1)

4.2.1 Metatheorem. (Important!)

A1 ≡ A2, A2 ≡ A3, . . . , An−1 ≡ An, An ≡ An+1 ⊢ A1 ≡ An+1 (2)

Proof. By repeated application of (derived) rule (Trans).

For example to show the “special case”

A ≡ B,B ≡ C,C ≡ D,D ≡ E ⊢ A ≡ E (3)

the proof is

(1) A ≡ B ⟨hyp⟩
(2) B ≡ C ⟨hyp⟩
(3) C ≡ D ⟨hyp⟩
(4) D ≡ E ⟨hyp⟩
(5) A ≡ C ⟨1 + 2 + Trans⟩
(6) A ≡ D ⟨3 + 5 + Trans⟩
(7) A ≡ E ⟨4 + 6 + Trans⟩

For the “general case (2)” do induction on n with Basis at n = 1
(see text; better still do it without looking!) □

Notes on Logic© G. Tourlakis

4.2 Equational Proofs 113

All Equational Proofs are based on Metatheorem 4.2.1:

4.2.2 Corollary. In an Equational proof (from Γ) like the one in (1)
of p.112 we have Γ ⊢ A1 ≡ An+1.

Proof. So we have n Γ-proofs, for i = 1, . . . , n,

. . . Ai ≡ Ai+1

Concatenate them all to get ONE Γ-proof

. . . A1 ≡ A2 Ai ≡ Ai+1 An ≡ An+1

By the DERIVED RULE 4.2.1 the following is a Γ-proof of A1 ≡ An+1

. . . A1 ≡ A2 Ai ≡ Ai+1 An ≡ An+1 A1 ≡ An+1

□

Notes on Logic© G. Tourlakis

114 Substitution and Schemata

4.2.3 Corollary. In an Equational proof (from Γ) like the one in (1)
of p.112 we have Γ ⊢ A1 iff Γ ⊢ An+1.

Proof. From the above Corollary we have

Γ ⊢ A1 ≡ An+1 (†)

Now split the “iff” in two directions:

• IF: So we have
Γ ⊢ An+1

This plus (†) plus Eqn yield Γ ⊢ A1.

• ONLY IF: So we have
Γ ⊢ A1

This plus (†) plus Eqn yield Γ ⊢ An+1.

□

Notes on Logic© G. Tourlakis

4.2 Equational Proofs 115

Equational Proof Layout

Successive equivalences like “Ai ≡ Ai+1 and Ai+1 ≡ Ai+2” we write
vertically, without repeating the shared formula Ai+1.

WITH annotation in ⟨. . .⟩ brackets

A1

≡ ⟨annotation⟩
A2

≡ ⟨annotation⟩
... (ii)

An−1

≡ ⟨annotation⟩
An

≡ ⟨annotation⟩
An+1

EXCEPT FOR ONE THING!

(ii) is just ONE FORMULA, namely

A1 ≡ A2 ≡ . . . ≡ An ≡ An+1

where I can put brackets anywhere I please.

which is NOT the same as (1) of p.112.

Notes on Logic© G. Tourlakis

116 Substitution and Schemata

For example, “⊤ ≡ ⊥ ≡ ⊥” is NOT the same as “⊤ ≡ ⊥
AND ⊥ ≡ ⊥”

The former (blue) is true but the latter (red) is false.

Notes on Logic© G. Tourlakis

4.2 Equational Proofs 117

What do we do?

We introduce a metasymbol for an equivalence that acts ONLY on TWO formulas!

AND

Cannot be chained to form ONE formula.

The symbol is “⇔” and thus

“A⇔ B ⇔ C” MEANS “A ≡ B AND B ≡ C”.

We say that “⇔” is CONJUNCTIONAL while “≡” is associative.

Notes on Logic© G. Tourlakis

118 Substitution and Schemata

So the final layout is:

A1

⇔ ⟨annotation⟩
A2

⇔ ⟨annotation⟩
...

An−1

⇔ ⟨annotation⟩
An

⇔ ⟨annotation⟩
An+1

Notes on Logic© G. Tourlakis

4.2 Equational Proofs 119

Examples.

4.2.4 Theorem. ⊢ ¬(A ≡ B) ≡ ¬A ≡ B

Proof. (Equational)

¬(A ≡ B)

⇔ ⟨axiom⟩
A ≡ B ≡ ⊥

⇔ ⟨(Leib) + axiom: B ≡ ⊥ ≡ ⊥ ≡ B; Denom: A ≡ p; p fresh⟩
A ≡ ⊥ ≡ B

⇔ ⟨(Leib) + axiom: A ≡ ⊥ ≡ ¬A; Denom: q ≡ B; q fresh⟩
¬A ≡ B □

Why do I need Leib above? Why not just use the Axiom?

4.2.5 Corollary. ⊢ ¬(A ≡ B) ≡ A ≡ ¬B

Proof. (Equational)

¬(A ≡ B)

⇔ ⟨axiom⟩
A ≡ B ≡ ⊥

⇔ ⟨(Leib) + axiom: B ≡ ⊥ ≡ ¬B; Denom: A ≡ p; p fresh⟩
A ≡ ¬B □

Notes on Logic© G. Tourlakis

120 Substitution and Schemata

4.2.6 Theorem. (Double Negation) ⊢ ¬¬A ≡ A

Proof. (Equational)

¬¬A
⇔ ⟨axiom “¬X ≡ X ≡ ⊥”⟩
¬A ≡ ⊥

⇔ ⟨(Leib) + axiom: ¬A ≡ A ≡ ⊥; Denom: p ≡ ⊥ ⟩
A ≡ ⊥ ≡ ⊥

⇔ ⟨(Leib) + axiom: ⊤ ≡ ⊥ ≡ ⊥; Denom: A ≡ q; q fresh⟩
A ≡ ⊤

⇔ ⟨red. ⊤ thm.⟩
A □

Notes on Logic© G. Tourlakis

4.2 Equational Proofs 121

4.2.7 Theorem. ⊢ ⊤ ≡ ¬⊥

Proof. (Equational)

⊤
⇔ ⟨axiom⟩
⊥ ≡ ⊥

⇔ ⟨axiom⟩
¬⊥ □

4.2.8 Theorem. ⊢ ⊥ ≡ ¬⊤

Proof. (Equational)

¬⊤
⇔ ⟨axiom⟩
⊤ ≡ ⊥

⇔ ⟨red. ⊤⟩
⊥ □

� Practical Advise. In Equational Proofs move from the most complex
side towards the least complex one. �

Notes on Logic© G. Tourlakis

122 Substitution and Schemata

4.2.9 Theorem. ⊢ A ∨ ⊤

Proof.

A ∨ ⊤
⇔ ⟨(Leib) + axiom: ⊤ ≡ ⊥ ≡ ⊥; “Denom:” A ∨ p; Mind the brackets!⟩

A ∨ (⊥ ≡ ⊥)
⇔ ⟨axiom⟩

A ∨ ⊥ ≡ A ∨ ⊥ Bingo! □

Notes on Logic© G. Tourlakis

4.2 Equational Proofs 123

Recall about ≡ that, by axiom (1) and a theorem we proved in the
NOTES posted in http://www.cs.yorku.ca/~gt/courses/MATH1090F22/
1090.html (4th bullet), we have that

in a chain of any number of ≡ we may omit brackets.

The same holds for a chain of ∨ (and ∧) using the same kind of
proof, in the same source mentioned above.:

That is,

we do not need to show bracketing in a chain of ∨.

How about moving formulas around in such a chain? (Permuting
them).

It is OK! I prove this for ∨-chains HERE. The proof is identical for
≡-chains and ∧-chains (EXERCISE!!)

Prove first this theorem:

⊢ B ∨ C ∨D ≡ D ∨ C ∨B

Notes on Logic© G. Tourlakis

http://www.cs.yorku.ca/~gt/courses/MATH1090F22/1090.html
http://www.cs.yorku.ca/~gt/courses/MATH1090F22/1090.html

124 Substitution and Schemata

Indeed here is a proof:

B ∨ C ∨D
⇔ ⟨∨ commutes axiom⟩

D ∨B ∨ C (∗)
⇔ ⟨(Leib) + ∨ commutes axiom. “Denom:” D ∨ p⟩

D ∨ C ∨B

Notes on Logic© G. Tourlakis

4.2 Equational Proofs 125

More generally we CAN DO an arbitrary swap (not only the END-
FORMULAS), that is, we have the theorem

⊢ A ∨B ∨ C ∨D ∨ E ≡ A ∨D ∨ C ∨B ∨ E

Follows by an application of the previous special case:

A ∨
︷ ︸︸ ︷
B ∨ C ∨D∨E

⇔ ⟨(Leib) + special case. “Denom:” A ∨ p ∨ E⟩
A ∨D ∨ C ∨B︸ ︷︷ ︸∨E

Notes on Logic© G. Tourlakis

126 Substitution and Schemata

Oct. 5, 2022

4.2.10 Theorem. ⊢ A ∨ ⊥ ≡ A

Proofs. (Equational)

This time we work with the entire formula, not just one of the sides
of “≡”.

� How do we know? We don’t! It is just a matter of practice. �

A ∨ ⊥ ≡ A

⇔ ⟨(Leib) + axiom A ≡ A ∨ A; “Denom:” A ∨ ⊥ ≡ p⟩
A ∨ ⊥ ≡ A ∨ A

⇔ ⟨axiom ∨ over ≡⟩
A ∨ (⊥ ≡ A)

⇔ ⟨(Leib) + axiom: ⊥ ≡ A ≡ ¬A; “Denom:” A ∨ p⟩
A ∨ ¬A Bingo! □

Comment on “same mouth” p in above proof.

Notes on Logic© G. Tourlakis

4.2 Equational Proofs 127

4.2.11 Theorem. ⊢ A→ B ≡ ¬A ∨B

Proof.

A→ B

⇔ ⟨axiom⟩
A ∨B ≡ B HERE

⇔ ⟨(Leib) + 4.2.10; “Denom:” A ∨B ≡ p⟩
A ∨B ≡ ⊥ ∨B

⇔ ⟨axiom⟩
(A ≡ ⊥) ∨B

⇔ ⟨(Leib) + axiom; “Denom:” p ∨B⟩
¬A ∨B □

4.2.12 Corollary. ⊢ ¬A ∨B ≡ A ∨B ≡ B

Proof. Start the above proof from “HERE”. □

Notes on Logic© G. Tourlakis

128 Substitution and Schemata

4.2.13 Theorem. (de Morgan 1)
⊢ A ∧B ≡ ¬(¬A ∨ ¬B)

Proof.

Long but obvious. Start with the most complex side!

¬(¬A ∨ ¬B)

⇔ ⟨axiom⟩
¬A ∨ ¬B ≡ ⊥

⇔ ⟨(Leib) + 4.2.12; “Denom:” p ≡ ⊥⟩
A ∨ ¬B ≡ ¬B ≡ ⊥

⇔ ⟨(Leib) + axiom; “Denom:” A ∨ ¬B ≡ p —order does not matter!⟩
A ∨ ¬B ≡ B

⇔ ⟨(Leib) + 4.2.12; “Denom:” p ≡ B⟩
A ∨B ≡ A ≡ B

⇔ ⟨GR axiom —order does not matter⟩
A ∧B □

4.2.14 Corollary. (de Morgan 2) ⊢ A ∨B ≡ ¬(¬A ∧ ¬B)

Proof. See Text. Better still, EXERCISE!

Notes on Logic© G. Tourlakis

4.2 Equational Proofs 129

MORE About “∧”

4.2.15 Theorem. ⊢ A ∧ A ≡ A

Proof.

A ∧ A ≡ A

⇔ ⟨GR axiom —order does not matter⟩
A ∨ A ≡ A Bingo! □

4.2.16 Theorem. ⊢ A ∧ ⊤ ≡ A

Proof.

A ∧ ⊤ ≡ A

⇔ ⟨GR axiom⟩
A ∨ ⊤ ≡ ⊤

⇔ ⟨Red. ⊤ Thm.⟩
A ∨ ⊤ Bingo! □

4.2.17 Theorem. ⊢ A ∧ ⊥ ≡ ⊥

Proof.

A ∧ ⊥ ≡ ⊥
⇔ ⟨GR axiom⟩

A ∨ ⊥ ≡ A Bingo! □

READ this theorem and its proof!

Notes on Logic© G. Tourlakis

130 Substitution and Schemata

4.2.18 Theorem. (Distributive Laws)

(i) ⊢ A ∨B ∧ C ≡ (A ∨B) ∧ (A ∨ C)

and

(ii) ⊢ A ∧ (B ∨ C) ≡ A ∧B ∨ A ∧ C

� The above are written in least parenthesised notation! �

Proof.

We just prove (i).

(A ∨B) ∧ (A ∨ C)
⇔ ⟨GR⟩

A ∨B ∨ A ∨ C ≡ A ∨B ≡ A ∨ C
⇔ ⟨(Leib) + scramble an ∨-chain; “Denom:” p ≡ A ∨B ≡ A ∨ C⟩

A ∨ A ∨B ∨ C ≡ A ∨B ≡ A ∨ C
⇔ ⟨(Leib) + axiom; “Denom:” p ∨B ∨ C ≡ A ∨B ≡ A ∨ C⟩

A ∨B ∨ C ≡ A ∨B ≡ A ∨ C

HERE WE STOP, and try to reach this result from the other side:
A ∨B ∧ C.

Notes on Logic© G. Tourlakis

4.2 Equational Proofs 131

A ∨B ∧ C
⇔ ⟨(Leib) + GR; “Denom:” A ∨ p; mind brackets!⟩

A ∨ (B ∨ C ≡ B ≡ C)

⇔ ⟨axiom⟩
A ∨B ∨ C ≡ A ∨ (B ≡ C)

⇔ ⟨(Leib) + axiom; “Denom:” A ∨B ∨ C ≡ p⟩
A ∨B ∨ C ≡ A ∨B ≡ A ∨ C

□

Notes on Logic© G. Tourlakis

132 Substitution and Schemata

4.2.19 Theorem. (“Proof by cases”)
⊢ A ∨B → C ≡ (A→ C) ∧ (B → C)

Proof.

A ∨B → C

⇔ ⟨4.2.11⟩
¬(A ∨B) ∨ C

⇔ ⟨(Leib) + 4.2.14; “Denom:” ¬p ∨ C⟩
¬¬(¬A ∧ ¬B) ∨ C

⇔ ⟨(Leib) + double neg.; “Denom:” p ∨ C⟩
(¬A ∧ ¬B) ∨ C

⇔ ⟨4.2.18⟩
(¬A ∨ C) ∧ (¬B ∨ C)

⇔ ⟨obvious (Leib), twice + 4.2.11⟩
(A→ C) ∧ (B → C) □

Notes on Logic© G. Tourlakis

4.2 Equational Proofs 133

Until now we only proved absolute theorems Equationally.

How about theorems with HYPOTHESES?

To do so we use the Redundant ⊤ METAtheorem:

Γ ⊢ A iff Γ ⊢ A ≡ ⊤

The Technique is demonstrated via Examples!

4.2.20 Example. (1) A,B ⊢ A ∧B

(2) A ∨ A ⊢ A

(3) A ⊢ A ∨B

(4) A ∧B ⊢ A
For (1):

A ∧B
⇔ ⟨(Leib) + hyp B + Red. ⊤ META; “Denom:” A ∧ p⟩

A ∧ ⊤
⇔ ⟨4.2.16⟩

A Bingo!

NOTES:
▶ A,B ⊢ B. Hence A,B ⊢ B ≡ ⊤

Notes on Logic© G. Tourlakis

134 Substitution and Schemata

For (2):

A

⇔ ⟨axiom⟩
A ∨ A Bingo!

For (3):

A ∨B
⇔ ⟨(Leib) + Hyp A + Red-⊤-META; “Denom:” p ∨B⟩
⊤ ∨B ⟨Bingo!⟩

Notes on Logic© G. Tourlakis

4.2 Equational Proofs 135

(4) is a bit trickier:

A

⇔ ⟨4.2.16⟩
A ∧ ⊤

⇔ ⟨(Leib) + Hyp A ∧B + Red-⊤-META; “Denom:” A ∧ p⟩
A ∧ A ∧B

⇔ ⟨(Leib) + 4.2.15; “Denom:” p ∧B⟩
A ∧B Bingo! □

Notes on Logic© G. Tourlakis

136 Substitution and Schemata

4.2.21� Metatheorem. (Hypothesis splitting/merging)
For any wff A,B,C and hypotheses Γ, we have Γ ∪ {A,B} ⊢ C iff

Γ ∪ {A ∧B} ⊢ C.

Proof. (Hilbert-style)
(I) ASSUME Γ ∪ {A,B} ⊢ C and PROVE Γ ∪ {A ∧B} ⊢ C.

So, armed with Γ and A ∧B as hypotheses I have to prove C.

(1) A ∧B ⟨hyp⟩
(2) A ⟨(1) + A ∧B ⊢ A rule ⟩
(3) B ⟨(1) + A ∧B ⊢ B rule ⟩
(4) C ⟨using HYP Γ + (2) and (3) ⟩

(II) ASSUME Γ ∪ {A ∧B} ⊢ C and PROVE Γ ∪ {A,B} ⊢ C.

Exercise, or see Text. □ �

Notes on Logic© G. Tourlakis

4.2 Equational Proofs 137

4.2.22 Theorem. (Modus Ponens) A,A→ B ⊢ B

Proof.

A→ B

⇔ ⟨¬∨-theorem⟩
¬A ∨B

⇔ ⟨(Leib) + hyp A + Red-⊤-META; “Denom:” ¬p ∨B⟩
¬⊤ ∨B

⇔ ⟨(Leib) + theorem from class; “Denom:” p ∨B⟩
⊥ ∨B

⇔ ⟨thm from class⟩
B □

Notes on Logic© G. Tourlakis

138 Substitution and Schemata

Oct. 17, 2022

4.2.23 Theorem. (Cut Rule) A ∨B,¬A ∨ C ⊢ B ∨ C

Proof. We start with an AUXILIARY theorem—a Lemma— which
makes the most complex hypothesis ¬A ∨ C usable (an EQUIVA-
LENCE).

¬A ∨ C
⇔ ⟨how to lose a NOT⟩

A ∨ C ≡ C

Since ¬A ∨ C is a HYP hence also a THEOREM, the same is true
for A ∨ C ≡ C from the Equational proof above.

B ∨ C
⇔ ⟨(Leib) + Lemma; “Denom:” B ∨ p⟩

B ∨ (A ∨ C)
⇔ ⟨shifting brackets to our advantage AND swapping wff⟩

(A ∨B) ∨ C
⇔ ⟨(Leib) + HYP A ∨B + Red-⊤-Meta; “Denom:” p ∨ C⟩
⊤ ∨ C Bingo! □

Notes on Logic© G. Tourlakis

4.2 Equational Proofs 139

SPECIAL CASES of CUT:

4.2.24 Corollary. A ∨B,¬A ∨B ⊢ B

Proof. From 4.2.23 we get A ∨B,¬A ∨B ⊢ B ∨B.

We have also learnt the rule B ∨B ⊢ B.

Apply this rule to the proof above that ends with “B ∨ B” to get
B. □

4.2.25 Corollary. A ∨B,¬A ⊢ B

Proof. Apply the rule ¬A ⊢ ¬A ∨B.

We now can use the above Corollary! □

Notes on Logic© G. Tourlakis

140 Substitution and Schemata

4.2.26 Corollary. A,¬A ⊢ ⊥

Proof. Hilbert-style.

(1) A ⟨hyp⟩
(2) ¬A ⟨hyp⟩
(3) A ∨ ⊥ ⟨1 + rule X ⊢ X ∨ Y ⟩
(4) ¬A ∨ ⊥ ⟨2 + rule X ⊢ X ∨ Y ⟩
(5) ⊥ ⟨3 + 4 + rule 4.2.24⟩

□

Notes on Logic© G. Tourlakis

4.2 Equational Proofs 141

Skip this proof, but memorise the result!

4.2.27 Corollary. (Transitivity of →) A→ B,B → C ⊢ A→ C

Proof. (Hilbert style)

(1) A→ B ⟨hyp⟩
(2) B → C ⟨hyp⟩
(3) A→ B ≡ ¬A ∨B ⟨¬∨ thm⟩
(4) B → C ≡ ¬B ∨ C ⟨¬∨ thm⟩
(5) ¬A ∨B ⟨(1, 3) + (Eqn)⟩
(6) ¬B ∨ C ⟨(2, 4) + (Eqn)⟩
(7) ¬A ∨ C ⟨(5, 6) + CUT⟩ □

The last line is provably equivalent to A→ C by the ¬∨ theorem.

Notes on Logic© G. Tourlakis

142 Substitution and Schemata

Notes on Logic© G. Tourlakis

Chapter 5

A Weak Post’s Theorem and the
Deduction Theorem Retold

This note is about the Soundness and Completeness (the latter is also
known as “Post’s Theorem”) in Boolean logic.

5.1 Soundness of Boolean Logic

Soundness is the Property expressed by the statement of themetathe-
ory below —which in English says “Boolean Logic tells ONLY the
truth”:

If Γ ⊢ A, then Γ |=taut A (1)

143

144 A Weak Post’s Theorem and the Deduction Theorem Retold

5.1.1 Definition. The statement “Boolean logic is Sound” means that
Boolean logic satisfies (1). □

Notes on Logic© G. Tourlakis

5.1 Soundness of Boolean Logic 145

To prove soundness is an easy induction on the length of Γ-proofs:

We prove that proofs preserve truth.

Notes on Logic© G. Tourlakis

146 A Weak Post’s Theorem and the Deduction Theorem Retold

5.1.2 Lemma. Eqn and Leib preserve truth, that is,

A,A ≡ B |=taut B (2)

and
A ≡ B |=taut C[p := A] ≡ C[p := B] (3)

Proof. (2) is trivial.

We prove (3) here:

So, let a state s make A ≡ B true (t).

Thus,
s(A) = s(B)

We will show that

C[p := A] ≡ C[p := B] is t in state s (4)

If p is not in C then (4) is C ≡ C, a tautology, so is true under s
in particular.

Let then the distinct p,q, r, r′, r′′, . . . all occur in C.

Now in the lhs of (4) p gets the value s(A), while q, r, r′, r′′, . . . get
their values DIRECTLY from s.

Similarly, in the RHS of (4) p gets the value s(B), while q, r, r′, r′′, . . .
STILL get their values DIRECTLY from s.

▶ But s(A) = s(B).

So both the lhs and rhs variables of (4) end up with the same truth
value assignments after the indicated substitutions, and from s.

Then the computed values of lhs and rhs in (4) are the same.
In short, the equivalence is true. □

Notes on Logic© G. Tourlakis

5.1 Soundness of Boolean Logic 147

We can now prove:

5.1.3 Metatheorem. Boolean logic is Sound, that is, (1) on p.143
holds.

Proof. By induction on the length of proof, n, needed to obtain Γ ⊢ A
we prove

Γ |=taut A (†)

So pick a state s that satisfies Γ. (‡)

1. Basis. n = 1. Then we have just A in the proof.

If A ∈ Λ, then it is a tautology, so in particular is true under s.
We have (†).
If A ∈ Γ, then s satisfies A by (‡). Again we have (†).
I.H. Assume claim for all proofs of length ≤ n.

I.S. Prove the theorem in the case Γ ⊢ A needed a proof of length
n+ 1:

length =n︷︸︸︷. . . , A︸ ︷︷ ︸
length =n+1

Now if A is in Λ ∪ Γ we are back to the Basis. Done.

Notes on Logic© G. Tourlakis

148 A Weak Post’s Theorem and the Deduction Theorem Retold

If not

• Case where A is the result of EQN on X and X ≡ Y that are
in the “. . .-area”.

By the I.H. s satisfies X and X ≡ Y hence, by the Lemma,
satisfies A.

• Case where A is the result of LEIB on X ≡ Y that is in the
“. . .-area”.

By the I.H. s satisfies X ≡ Y hence, by the Lemma, satisfies
A. □

5.1.4 Corollary. If ⊢ A then |=taut A. A is a tautology.

Proof. Γ = ∅ here. By the above, ∅ |=taut A.
BUT, ∅ |=taut A says EXACTLY |=taut A (EXERCISE). □

5.1.5� Example. Soundness allows us to disprove formulas: To show
they are NOT theorems.

• The statement “⊢ p” is false. If this were true, then p would be a
tautology!

• The statement “⊢ ⊥” is false! Because ⊥ is not a tautology!

• The statement “p ⊢ p∧ q” is false. Because if it were true I’d have
to have p |=taut p ∧ q.
Not so: Take a state s such that s(p) = t and s(q) = f . □ �

Notes on Logic© G. Tourlakis

5.2 Completeness of Boolean logic (“Post’s Theorem”) 149

5.2 Completeness of Boolean logic (“Post’s Theorem”)

We prove here

(1) A weak form of Post’s theorem: If Γ is finite and Γ |=taut A, then
Γ ⊢ A
and derive as a corollary the Deduction Theorem:

(2) If Γ, A ⊢ B, then Γ ⊢ A→ B.

Notes on Logic© G. Tourlakis

150 A Weak Post’s Theorem and the Deduction Theorem Retold

We will employ ONE TOOL from class below:

5.2.1 Theorem. ¬C ∨ E,¬D ∨ E ⊢ ¬(C ∨D) ∨ E.

Proof. Translating via the “¬∨-theorem”, the above says

C → E,D → E ⊢ (C ∨D)→ E (†)

Here is an Equational proof of (†):

(C ∨D)→ E

⇐⇒⟨4.2.19⟩
(C → E) ∧ (D → E)

⇐⇒⟨Leib + Red. ⊤ META + hyp C → E; Denom:p ∧ (D → E)⟩
⊤ ∧ (D → E)

⇐⇒⟨thm⟩
D → E bingo!

□

Notes on Logic© G. Tourlakis

5.2 Completeness of Boolean logic (“Post’s Theorem”) 151

5.2.2 Main Lemma. Suppose that A contains none of the symbols
⊤,⊥,→,∧,≡. If |=taut A, then ⊢ A.

Proof. The proof is long but easy!

Under the assumption, A is an ∨-chain, that is, it has the form

A1 ∨ A2 ∨ A3 ∨ . . . ∨ Ai ∨ . . . ∨ An (1)

where none of the Ai has the form B ∨ C.

In (1) we assume without loss of generality that n > 1, due to the
axiom X ∨ X ≡ X —that is, in the contrary case we can use A ∨ A
instead, which is a tautology as well.

Moreover, (1), that is, A, is written in least parenthesised notation.

Notes on Logic© G. Tourlakis

152 A Weak Post’s Theorem and the Deduction Theorem Retold

Let us call an Ai reducible iff it has the form ¬(C ∨D) or ¬(¬C).
� “Reducible”, since Ai is not alone in the ∨-chain, will be synonymous

to simplifiable without changing the meaning of Ai. �

Otherwise Ai is irreducible. Not simplifiable.

Thus, the only possible irreducible Ai have the form p or ¬p (where
p is a variable).

By definition we will say that A is irreducible iff all its Ai are.

� We define the reducibility degree, of EACH Ai —in symbols, rd(Ai)—
to be the total number, counting repetitions of the ¬ and ∨ connectives
in it, not counting a possible leading ¬. �

Notes on Logic© G. Tourlakis

5.2 Completeness of Boolean logic (“Post’s Theorem”) 153

The reducibility degree of the entire A is the sum of the reducibility
degrees of all its Ai.

For example, rd(p) = 0, rd(¬p) = 0, rd(¬(¬p ∨ q)) = 2, rd(¬(¬p ∨
¬q)) = 3, rd(¬p ∨ q) = 0.

Notes on Logic© G. Tourlakis

154 A Weak Post’s Theorem and the Deduction Theorem Retold

We say that p “occurs positively in . . . ∨ p ∨ . . .”, while it “occurs
negatively in . . . ∨ ¬p ∨ . . .”.

In, for example, p ∨ ¬p it occurs both positively and negatively.

By induction on rd(A) we now prove the main lemma, that ⊢ A follows
the stated hypothesis that |=taut A.

For the Basis, let A be an irreducible tautology —so, rd(A) = 0.

It must be that A is a string of the form

“· · · ∨ p ∨ · · · ¬p ∨ · · · ”

for some p, otherwise,

if no p appears both “positively” and “negatively”,

then we can find a truth-assignment that makes A false (f) —a con-
tradiction to its tautologyhood.

To see that we can do this, just assign f to p’s that occur positively
only, and t to those that occur negatively only.

Now

A

⇔
〈
commuting the terms of an ∨-chain

〉
p ∨ ¬p ∨B (what is “B”?)

⇔
〈
Leib + axiom + Red. ⊤ META; Denom: r ∨B; fresh r

〉
⊤ ∨B bingo!

Notes on Logic© G. Tourlakis

5.2 Completeness of Boolean logic (“Post’s Theorem”) 155

Oct. 19, 2022

Thus ⊢ A, which settles the Basis-case: rd(A) = 0.

� We now argue the case where rd(A) = m+ 1, on the I.H. that for any
formula Q with rd(Q) ≤ m, we do have that |=taut Q implies ⊢ Q. �

Since we can shufle an ∨-chain any way we please, we assume with-
out restricting generality that rd(A1) > 0.

We have two cases:

(1) A1 is the string ¬¬C, hence A has the form ¬¬C ∨D.

Clearly |=taut C ∨D as well.

Moreover, rd(C ∨D) < rd(¬¬C ∨D), hence (by I.H.)

⊢ C ∨D (†)

But,

¬¬C ∨D

⇔
〈
Leib + ⊢ ¬¬X ≡ X; Denom: r ∨D; fresh r

〉
C ∨D “bingo” by (†) above!

Hence, ⊢ ¬¬C ∨D, that is, ⊢ A in this case.

Notes on Logic© G. Tourlakis

156 A Weak Post’s Theorem and the Deduction Theorem Retold

One more case to go:

(2) A1 is the string ¬(C∨D), hence A has the form ¬(C∨D)∨E.

We want: ⊢ ¬(C ∨D) ∨ E (i)

We are given
|=taut ¬(C ∨D) ∨ E (i′)

which says |=taut A. We immediately get that

|=taut ¬C ∨ E (ii)

and
|=taut ¬D ∨ E (iii)

from truth tables.

Check it!!!

Hint. To show (ii) let v be any state. Consider cases: (1) where
v(C) = f and (2) where v(C) = t. In the second case use (i′) to
show v(E) = t.

Since the rd of each of (ii) and (iii) is < rd(A), the I.H. yields
⊢ ¬C ∨ E AND ⊢ ¬D ∨ E.

Apply the TOOL 5.2.1 to the above two theorems to get (i).

Notes on Logic© G. Tourlakis

5.2 Completeness of Boolean logic (“Post’s Theorem”) 157

We are done, except for one small detail:

If we had changed the “original” A into A ∨ A (cf. the “without
loss of generality” remark just below (1) on p.151), then all we proved
above is ⊢ A ∨ A.

The contraction rule from Notes, and Text then yield ⊢ A. □

� Do you see now why we wanted n ≥ 2? �

But ALL this only proves “|=taut A implies ⊢ A”

▶ when A does not contain any of ∧,→,≡,⊥,⊤.

WHAT IF IT DOES?

Notes on Logic© G. Tourlakis

158 A Weak Post’s Theorem and the Deduction Theorem Retold

We are now removing the restriction on A regarding its connectives
and constants:

5.2.3 Metatheorem. (Post’s Theorem) If |=taut A, then ⊢ A.

Proof. First, we note the following theorems stating equivalences, where
p is fresh for A.

The proof of the last one is in the notes and text but it was too long
(but easy) to cover in class.

⊢ ⊤ ≡ ¬p ∨ p

⊢ ⊥ ≡ ¬(¬p ∨ p)

⊢ C → D ≡ ¬C ∨D
⊢ C ∧D ≡ ¬(¬C ∨ ¬D)

⊢ (C ≡ D) ≡ ((C → D) ∧ (D → C))

(2)

Using (2) above, we eliminate, in order, all the ≡, then all the ∧,
then all the → and finally all the ⊥ and all the ⊤.

Notes on Logic© G. Tourlakis

5.2 Completeness of Boolean logic (“Post’s Theorem”) 159

Let us assume that our process eliminates one unwanted symbol at
a time.

� This leads to the Equational Proof below.

Starting from A we will generate a sequence of formulae

F1 (A), F2, F3, . . . , Fn (A
′)

where the last, Fn, contains no ⊤,⊥,∧,→,≡. �

I am using here F1 as an alias for A. We will also give to Fn an alias
A′.

A

⇔
〈
Leib from (2)

〉
F2

⇔
〈
Leib from (2)

〉
F3

⇔
〈
Leib from (2)

〉
F4
...

⇔
〈
Leib from (2)

〉
A′ (Fn)

Notes on Logic© G. Tourlakis

160 A Weak Post’s Theorem and the Deduction Theorem Retold

Thus, ⊢ A′ ≡ A (∗)

By soundness, we also have |=taut A
′ ≡ A (∗∗)

So, say |=taut A. By (∗∗) we have |=taut A
′ as well, and by the Main

Lemma 5.2.2 we obtain ⊢ A′.

So bottom line, A′, being a theorem is a “bingo!” hence the top line,
A, is also a theorem. □

� Post’s theorem is the “Completeness Theorem”† of Boolean Logic.

It shows that the syntactic manipulation apparatus —proofs—DOES
certify the “whole truth” (tautologyhood) in the Boolean case. �

†Which is really a Metatheorem, right?

Notes on Logic© G. Tourlakis

5.2 Completeness of Boolean logic (“Post’s Theorem”) 161

5.2.4 Corollary. If
finite Γ︷ ︸︸ ︷

A1, . . . , An |=taut B

then
A1, . . . , An ⊢ B

Proof. It is an easy semantic exercise to see that the assumption im-
plies

|=taut A1 → . . .→ An → B

By 5.2.3,
⊢ A1 → . . .→ An → B

hence (hypothesis strengthening)

A1, A2 . . . , An ⊢ A1 → A2 → . . .→ An → B (1)

Applying modus ponens n times to (1) we get

A1, . . . , An ⊢ B □

� The above corollary is very convenient.
It says that every (correct) schema A1, . . . , An |=taut B leads to a

derived rule of inference, A1, . . . , An ⊢ B. �

In particular, combining with the transitivity of ⊢ metatheorem, we
get

5.2.5 Corollary. If Γ ⊢ Ai, for i = 1, . . . , n, and if A1, . . . , An |=taut

B, then Γ ⊢ B.

Notes on Logic© G. Tourlakis

162 A Weak Post’s Theorem and the Deduction Theorem Retold

� Thus —unless otherwise required!— we can, from now on, rigorously
mix syntactic with semantic justifications of our proof steps.

For example, we have at once A ∧ B ⊢ A, because (trivially) A ∧
B |=taut A (compare with our earlier, much longer, proof given in class). �

Notes on Logic© G. Tourlakis

5.3 Deduction Theorem and Proof by Contradiction 163

5.3 Deduction Theorem and Proof by Contradiction

5.3.1 Metatheorem. (The Deduction Theorem) If Γ, A ⊢ B, then
Γ ⊢ A → B, where “Γ, A” means “all the assumptions in Γ, plus the
assumption A” (in set notation this would be Γ ∪ {A}).∗

Proof. Let G1, . . . , Gn ⊆ Γ be a finite set of formulae used in a Γ, A-
proof of B.

Thus we also have G1, . . . , Gn, A ⊢ B.

By soundness, G1, . . . , Gn, A |=taut B.
But then,

finite!︷ ︸︸ ︷
G1, . . . , Gn |=taut A→ B

By 5.2.4, G1, . . . , Gn ⊢ A → B and hence Γ ⊢ A → B by hypothesis
strengthening. □

∗We can also write Γ +A.

Notes on Logic© G. Tourlakis

164 A Weak Post’s Theorem and the Deduction Theorem Retold

� The mathematician, or indeed the mathematics practitioner, uses the
Deduction theorem all the time, without stopping to think about it.
Metatheorem 5.3.1 above makes an honest person of such a mathe-
matician or practitioner.

The everyday “style” of applying the Metatheorem goes like this:

Say we have all sorts of assumptions and we want, under these as-
sumptions, to “prove” that “if A, then B” (verbose form of “A→ B”).

We start by adding A to our assumptions, often with the words,
“Assume A”. We then proceed and prove just B (not A→ B), and at
that point we rest our case.

Thus, we may view an application of the Deduction theorem as a
simplification of the proof-task. It allows us to “split” an implication
A → B that we want to prove, moving its premise to join our other
assumptions. We now have to prove a simpler formula, B, with the
help of stronger assumptions (that is, all we knew so far, plus A). That
often makes our task so much easier! �

Notes on Logic© G. Tourlakis

5.3 Deduction Theorem and Proof by Contradiction 165

An Example. Prove

⊢ (A→ B)→ A ∨ C → B ∨ C

By DThm, suffices to prove

A→ B ⊢ A ∨ C → B ∨ C

instead.

Again By DThm, suffices to prove

A→ B,A ∨ C ⊢ B ∨ C

instead.

Let’s do it:

1. A→ B ⟨hyp⟩
2. A ∨ C ⟨hyp⟩
3. A→ B ≡ ¬A ∨B ⟨¬∨ thm⟩
4. ¬A ∨B ⟨1 + 3 + Eqn⟩
5. B ∨ C ⟨2 + 4 + Cut⟩

□

Notes on Logic© G. Tourlakis

166 A Weak Post’s Theorem and the Deduction Theorem Retold

5.3.2 Definition. A set of formulas Γ is inconsistent or contradictory
iff Γ proves every A in WFF. □

� Why “contradictory”? For if Γ proves everything, then it also proves
p ∧ ¬p. �

5.3.3 Lemma. Γ is inconsistent iff Γ ⊢ ⊥

Proof. only if-part. If Γ is as in 5.3.2, then, in particular, it proves ⊥
since the latter is a well formed formula.

if-part. Say, conversely, that we have

Γ ⊢ ⊥ (9)

Let now A be any formula in WFF whatsoever. We have

⊥ |=taut A (10)

Pause. Do you believe (10)?

By 5.2.5, Γ ⊢ A follows from (9) and (10). □

5.3.4 Metatheorem. (Proof by contradiction) Γ ⊢ A iff Γ∪{¬A}
is inconsistent.

Proof. if-part. So let (by 5.3.3)

Γ,¬A ⊢ ⊥

Hence
Γ ⊢ ¬A→ ⊥ (1)

by the Deduction theorem. However ¬A → ⊥ |=taut A, hence, by
Corollary 5.2.5 and (1) above, Γ ⊢ A.

Notes on Logic© G. Tourlakis

5.3 Deduction Theorem and Proof by Contradiction 167

only if-part. So let
Γ ⊢ A

By hypothesis strengthening,

Γ,¬A ⊢ A (2)

Moreover, trivially,
Γ,¬A ⊢ ¬A (3)

Since A,¬A |=taut ⊥, (2) and (3) yield Γ,¬A ⊢ ⊥ via Corollary 5.2.5,
and we are done by 5.3.3. □

� 5.3.4 legitimises the tool of “proof by contradiction” that goes all the
way back to the ancient Greek mathematicians: To prove A assume
instead the “opposite”, ¬A. Proceed then to obtain a contradiction.
This being accomplished, it is as good as having proved A. �

Notes on Logic© G. Tourlakis

168 A Weak Post’s Theorem and the Deduction Theorem Retold

Notes on Logic© G. Tourlakis

Chapter 6

Resolution

Proof by Resolution is an easy and self-documenting 2-dimensional
proof style.

It is essentially a Hilbert style proof that needs no numbering and
the annotation is depicted by drawing certain lines.

The technique is used in “automatic theorem proving”, i.e., special
computer systems (programs) that prove theorems.

It is based on the proof by contradiction metatheorem:

6.0.1 Metatheorem.
Γ,¬A ⊢ ⊥ (1)

iff
Γ ⊢ A (2)

Thus, instead of proving (2) prove (1).

(1) is proved using (almost) exclusively the CUT Rule.

169

170 Resolution

The self-annotating diagram below says “apply the CUT rule to
premises A ∨B and ¬A ∨ C to obtain B ∨ C”.

The technique can be best learnt via examples:

Notes on Logic© G. Tourlakis

171

6.0.2 Example. Use Resolution to prove (1) below:

A→ B,C → D ⊢ A ∨ C → B ∨D (1)

by DThm prove instead:

A→ B,C → D,A ∨ C ⊢ B ∨D

By 6.0.1 prove instead that the “Γ” in the top line below proves ⊥

□

Notes on Logic© G. Tourlakis

172 Resolution

6.0.3 Example. Next prove

⊢ (A→ (B → C))→ ((A→ B)→ (A→ C))

By the DThm prove instead

A→ (B → C) ⊢ (A→ B)→ (A→ C)

Two more applications of the DThm simplify what we will prove into
the following:

A→ (B → C), A→ B,A ⊢ C
By 6.0.1, prove instead that Γ ⊢ ⊥ where

Γ = {¬A ∨ ¬B ∨ C,¬A ∨B,A,¬C}

□

Notes on Logic© G. Tourlakis

173

6.0.4 Example. Prove

⊢ (A ∧ ¬B)→ ¬(A→ B)

By DThm do instead: A ∧ ¬B ⊢ ¬(A→ B).

By 6.0.1 do instead

A ∧ ¬B,A→ B ⊢ ⊥

or
A ∧ ¬B,¬A ∨B ⊢ ⊥

Use HYP Splitting, so do instead

A,¬B,¬A ∨B ⊢ ⊥

A,¬B,¬A ∨B
To this end, cut 1st and 3rd to get B.

Cut the latter with ¬B to get ⊥.
□

6.0.5 Example. Annotating hypothesis splitting and equivalence graph-
ically: We do not annotate the equivalence or split lines any more
than we annotate the CUT lines! □

Notes on Logic© G. Tourlakis

174 Resolution

Notes on Logic© G. Tourlakis

Chapter 7

Predicate Logic

Extending Boolean Logic

Boolean Logic can deal only with the Boolean glue: properties and behaviour.

Can certify tautologies, but it misses many other truths as we will
see, like x = x where x stands for a mathematical object like a matrix,
string, array, number, etc.

One of the obvious reasons is that Boolean logic cannot even “see”
or “speak” about mathematical objects.

� If it cannot see or speak about them, then naturally cannot reason about
them either! �

175

176 Predicate Logic

E.g, we cannot even state inside Boolean logic the sentence “every
natural number greater than 1 has a prime factor”.

Boolean Logic does not know what “every” means or what a “num-
ber” is, what “natural” means, what is “1”, what “greater” means,
what “prime” is, or what “factor” is.

In fact it is worse than not “knowing”: It cannot even say any one
of the concepts listed above.

Its alphabet and language are extremely limited.

We need a richer language!

Notes on Logic© G. Tourlakis

177

7.0.1 Example. Look at these two math statements. The first says
that two sets are equal IF they have the same elements. The second
says that any object is equal to itself.

We read “(∀x)” below as “for all values of x”, usually said MORE
SIMPLY as, “for all x”.

(∀y)(∀z)
(
(∀x)(x ∈ y ≡ x ∈ z)→ y = z

)
(1)

and
x = x (2)

Boolean Logic is a very high level (= very non-detailed) abstraction
of Mathematics.

Since Boolean Logic cannot see object variables x, y, z, cannot see ∀
or =, nor can penetrate inside the so-called “scope” of (∀z) —that
is, the big brackets above— it myopically understands (perceives)
each of (1) and (2) as atomic statements p and q (not seeing inside
the scope it sees NO “glue”).

Thus Boolean logic, if forced to opine about the above it will say
none of the above is a theorem (by soundness).

Yet, (1) is an axiom of Set Theory and (2) is an axiom in ALL math-
ematics.

Says: “Every object is equal to itself.” □

Notes on Logic© G. Tourlakis

178 Predicate Logic

Enter First-Order Logic or Predicate Logic.

Predicate logic is the language AND logic of mathematics and math-
ematical sciences.

In it we CAN “speak” (1) and (2) above and reason about them.

7.1 The language of First-Order Logic

What symbols are absolutely necessary to include in the Alphabet,
V1 —the subscript “1” for “1st-order”— of Predicate Logic?

Well, let us enumerate:

7.1.1 Definition. (The 1st-order alphabet; first part)

1. First of all, we are EXTENDING, NOT discarding, Boolean Logic.
So we include in V1 all of Boolean Logic’s symbols p,⊥,⊤, (,),¬,∧,∨,
→,≡, where p stands for any of the infinitely many Boolean vari-
ables.

2. Then we need object variables —that is variables that stand for
mathematical objects— x, y, z, u, v, w with or without primes or
subscripts. So, these are infinitely many.

Metanotation that stands for any of them will be bold face, but us-
ing the same letters with or without primes or subscripts: x,x′′5,y,w

′′′
123,

etc.

Notes on Logic© G. Tourlakis

7.1 The language of First-Order Logic 179

3. Equality between mathematical objects: =

4. New glue: ∀
We call this glue universal quantifier. It is pronounced “for all”.

Is that all? No. But let’s motivate with two examples. □

Notes on Logic© G. Tourlakis

180 Predicate Logic

7.1.2 Example. (Set theory) The language of set theory needs also
a binary relation or predicate up in front: Denoted by “∈”. BUT nothing else.

All else is “manufactured” in the theory, that is, introduced by definitions.

The manufactured symbols include constants like our familiar N (the
set of natural numbers, albeit set theorists often prefer the symbol
“ω”), our familiar constant “∅” (the empty set).

Also include functions like ∪,∩ and relations or predicates like ⊂,⊆.

So set theory needs no constants or functions up in front to start
“operating” (proving theorems, that is). □

Notes on Logic© G. Tourlakis

7.1 The language of First-Order Logic 181

7.1.3 Example. (Number theory) The language of Number theory
—also called Peano arithmetic— needs —in order to get started:

• A constant, the number zero: 0

• A predicate (“less than”): <

• A unary function: “S”. (This, informally/intuitively is the “suc-
cessor function” which with input x produces output x+ 1.)

• Two binary functions, “+,×” with the obvious meaning.

Oct. 31, 2022

All else is “manufactured” in the theory, that is, introduced by definitions.

The manufactured symbols include constants like our familiar 1, 2, 1000234000785.

Also include functions like xy, ⌊x/y⌋ and more relations or predicates
like ≤. □

Notes on Logic© G. Tourlakis

182 Predicate Logic

We will do logic for the user, that is, we are aiming to teach the
USE of logic.

But will do so without having to do set theory or number theory
or any specific mathematical theory (geometry, algebra, etc.).

So equipped with our observations from the examples above, we note
that various theories start up with DIFFERENT sets of constants,
functions and predicates —according to their specific needs.

So we will complete the Definition 7.1.1 in a way that APPLIES TO
ANY AREA OF MATHEMATICAL APPLICATION.

Notes on Logic© G. Tourlakis

7.1 The language of First-Order Logic 183

7.1.4 Definition. (The 1st-order alphabet; part 2) Our 1st-order
alphabet also includes the following symbols

(1) Symbols for zero or more constants. Generically, we use a, b, c, d
with or without primes or subscripts for constants.

(2) Symbols for zero or more functions. Generically we use f, g, h with
or without primes or subscripts for functions.

Each such symbol will have the need for a certain number of
arguments, this number called the function’s “arity” (must be≥ 1).
For example, S has arity 1; it is unary. Each of +,× have arity
two; they are binary.

You see where the word “arity” comes from?

(3) Symbols for zero or more predicates, generically denoted as ϕ (“fe”,
as in “see”), ψ (“pse”), with or without primes or subscripts.

Each predicate symbol will have the need for a certain number of
arguments called its “arity” (must be ≥ 1). For example, < has
arity 2. □

Notes on Logic© G. Tourlakis

184 Predicate Logic

The first-order LANGUAGE is a set of strings of two types —terms
and formulas— over the alphabet 7.1.1 AND 7.1.4.

By now we should feel comfortable with first-order inductive defini-
tions.

In fact we gave inductive definitions of first-order Boolean formulas
and used it quite a bit, but also more recently gave an inductive defi-
nition of Boolean proofs.

Thus we inductively introduce first-order Terms that denote objects,
and first-order formulas, that denote statements, in two separate
definitions.

Notes on Logic© G. Tourlakis

7.1 The language of First-Order Logic 185

First terms:

7.1.5 Definition. (Terms)
A term is a string over the alphabet V1 that satisfies one of:

(1) It is just an object variable x (recall that x is metanotation and
stands for any object variable).

� BTW, we drop the qualifier “object” from “object variable” from
now on, but RETAIN the qualifier “Boolean” in “Boolean vari-
able”. �

(2) An object constant a (this stands for any constant —generically).

� BTW, we ALSO drop the qualifier “object” from “object constant”
from now on, but RETAIN the qualifier “Boolean” in “Boolean
constant”. �

(3) General case. It is a string of the form ft1t2 . . . tn where the
function symbol f has arity n.

We will denote arbitrary terms generically by the metasymbols t, s
with or without primes or subscripts. □

Notes on Logic© G. Tourlakis

186 Predicate Logic

� We will often abuse notation and write “f(t1, t2, . . . , tn)” for “ft1t2 . . . tn”.

This is one (rare) case where the human eye prefers extra brackets!
Be sure to note that the comma “,” is not in our alphabet! �

Examples from number theory.
x, 0 are terms. x+0 is a term (abuse of the actual “+x0” notation).

(x+ y)× z is a term (abuse of the actual ×+ xyz).

Notes on Logic© G. Tourlakis

7.1 The language of First-Order Logic 187

With the concept of terms out of the way we now define 1st-order
formulas:

First the Atomic Case:

7.1.6 Definition. (1st-order Atomic formulas) The following are
the atomic —that is, glue-less— formulas of 1st-order logic:

(i) Any Boolean atomic formula.

(ii) The expression (string) “t = s”, for any choice of t and s (prob-
ably, the t and s name the same term).

(iii) For any predicate ϕ of arity n, and any n terms t1, t2, . . . , tn, the
string “ϕt1t2 . . . tn”.

We denote the set of all atomic formulas here defined AF. □

In practice, we prefer writing x < y (infix) rather than < xy (prefix)

7.1.7� Remark.
(1) As in the case of “complex” terms ft1t2 . . . tn, we often abuse no-

tation using “ϕ(t1, t2, . . . , tn)” in place of the correctly written “ϕt1t2 . . . tn”.

(2) The symbol “=” is a binary predicate and is always written as
it is here (never “ϕ, ψ”).

Notes on Logic© G. Tourlakis

188 Predicate Logic

(3) We absolutely NEVER confuse “=” with the Boolean “glue”
“≡”.

They are more different than apples and oranges! □ �

Notes on Logic© G. Tourlakis

7.1 The language of First-Order Logic 189

7.1.8 Definition. (1st-order formulas) A first-order formula A —
or wff A— is one of

� We let context fend for us as to what formulas we have in mind when
we say “wff”.

From here on it is 1st-order ones!

If we want to talk about Boolean wff we WILL USE the qualifier
“Boolean”! �

(1) A member of 1st-order AF set—in particular it could be a Boolean
atomic wff!

(2) (¬B) if B is a wff.

(3) (B ◦ C) if B and C are wff, and ◦ is one of ∧,∨,→,≡.

(4) ((∀x)B), where B is a wff and x any variable.

� TWO things: (1) we already agreed that “variable” means object
variable otherwise I’d say “Boolean variable”. (2) Nowhere in the
definition is required that x occurs in B as a substring. �

We call “∀” the universal quantifier.

The configuration (∀x) is pronounced “for all x”—intuitively mean-
ing “for all values of x” rather than “for all variables x, y′′, z′′′1234009, . . .
that x may stand for”.

Notes on Logic© G. Tourlakis

190 Predicate Logic

We say that the part ofA between the two red brackets is the scope of (∀x).

Thus the x in (∀x) and the entire B are in this scope. □

� The “in particular” observation in case (1) along with the cases (2)
and (3) make it clear that every Boolean wff is also a (1st-order) wff.

Thus first-order logic can “speak” Boolean (but not the other way
around, as we made abundantly clear!) �

Notes on Logic© G. Tourlakis

7.1 The language of First-Order Logic 191

7.1.9 Example. x = y, ⊥ and p are wff. In fact, Atomic.
The last two are also Boolean wff.

((∀x)((∀y)(¬x = y))) is a wff. Note that ¬ in (¬x = y) applies to
x = y NOT to x!

Glue cannot apply to an object like x. Must apply to a statement (a
wff)!

((∀y)((¬x = y) ∧ p)) and (((∀y)(¬x = y)) ∧ p) are also formulas.

BTW, in the two last examples: p is in the scope of (∀y) in the first,
but not so in the second. □

Notes on Logic© G. Tourlakis

192 Predicate Logic

7.1.10 Definition. (Existential quantifier)
It is convenient —but NOT NECESSARY— to introduce the “ex-

istential quantifier”, ∃.

This is only a metatheoretical abbreviation symbol that we introduce
by this Definition, that is, by a “naming”

For any wff A, we define ((∃x)A) to be a short name for(
¬
(
(∀x)(¬A)

))
(1)

We pronounce ((∃x)A) “for some (value of) x, A holds”.

The intuition behind this ((∃x)A) naming is captured by the dia-
gram below(it is not the case that︷︸︸︷¬ (

(∀x)︸︷︷︸
all values of x

make A false︷ ︸︸ ︷
(¬A)

))
The scope of (∃x) in (

(∃x)A
)

(2)

is the area between the two red brackets.

In particular, the leftmost x in (2) is in the scope. □

Notes on Logic© G. Tourlakis

7.1 The language of First-Order Logic 193

Priorities Revisited

We augment our priorities table, from highest to lowest:

equal priorities︷ ︸︸ ︷
∀,∃,¬ ,∧,∨,→,≡

Associativities remain right! Thus, ¬(∀x)¬A is a short form of (1)
in 7.1.10.

Another example: (u = v → (((∀x)x = a) ∧ p)) simplifies into

u = v → (∀x)x = a ∧ p

More examples:

(2) Instead of ((∀z)(¬x = y)) we write

(∀z)¬x = y

(3) Instead of ((∀x)((∀x)x = y)) we write

(∀x)(∀x)x = y

Notes on Logic© G. Tourlakis

194 Predicate Logic

BOUND vs FREE.

7.1.11 Definition. A variable x occurs free in a wff A iff it is NOT
inside the scope of a (∀x) or (∃x) —otherwise it occurs bound.

We say that a bound variable x in (∀x)A other than the one in the
displayed (∀x), belongs to the displayed leftmost “(∀x)” iff x occurs
free in A —thus it was this leftmost “(∀x)”, which we added to the
left of A that did the bounding!

The terminology “belongs to” is now clear.

We apply this criterion to subformulas of A of the form (∀x)(. . .) to
determine where various bound x found inside A belong. □

7.1.12 Example. Consider

(∀x)
A︷ ︸︸ ︷

(x = y → (∀x)x = z))

Here the red x in A belongs to the red ∀x. The black x belongs to
the black ∀x. □

Notes on Logic© G. Tourlakis

7.1 The language of First-Order Logic 195

Nov. 2, 2022

7.1.13� Remark. We saw that a Boolean wff, is also a 1st-order wff.

We view Boolean formulas as abstractions of 1st-order ones.

How is this Abstraction accomplished?

Well, in any given 1st-order wff we just “hide” all 1st-order features.

That is, view any wff among the following three forms as Boolean variables
since we are unable (from within Boolean Logic) to understand the
language they are in, and therefore what they say.

1. t = s

2. ϕt1t2t3 . . . tn

3. (∀x)A

Why so? You see, if you “live” inside Boolean logic, you know these
configurations are “statements” but you cannot say what they say:

You do not understand the symbols, and you do not see any glue.

WAIT! I do see “glue” in (∀x)(A→ B) ; don’t I ???

No, you don’t if you are a citizen of Boolean! The “→” is hidden
inside the scope of (∀x).

Notes on Logic© G. Tourlakis

196 Predicate Logic

So an inhabitant of Boolean logic can USE the above “Boolean vari-
ables” if and only if they are connected with VISIBLE Boolean glue.

� Of course, Boolean logic whose job is to certify tautologies —by either
truth tables or proofs— has no use for isolated Boolean variables, that
is, ones that are not glued to anything! �

Examples.

• In Boolean Country you see this “x = y → x = y ∨ x = z” as
“ x = y → x = y ∨ x = z ” where the first and second box is the
same —say variable p— while the last one is different. You recog-
nize a tautology!

• You see this “x = x” as “ x = x ”. Just a Boolean variable.

Not a tautology.

• The same goes for this “(∀x)x = y → x = y” which the Boolean
citizen views as “ (∀x)x = y → x = y ”, that is, a Boolean wff
p→ q. Not a tautology.

Process of abstraction: We only abstract (that is, we see as
“Boolean variables”) the expressions 1.–3. above in order to turn a
1st-order wff into a Boolean wff.

The three forms above are known in logic as Prime Formulas.

Notes on Logic© G. Tourlakis

7.1 The language of First-Order Logic 197

More Boolean abstraction examples:

• If A is

p→ x = y ∨ (∀x)ϕx ∧ q
(
note that q is not in the scope of (∀x)

)
then we abstract as

p→ x = y ∨ (∀x)ϕx ∧ q (1)

so the Boolean citizen sees

p→ p′ ∨ p′′ ∧ q

� If we ask “show ALL the prime formulas in A by boxing them” then
we—who understand 1st-order language and we can see inside scopes—
would have also boxed ϕx above. The Boolean citizen cannot see
ϕx in the scope of (∀x) anyway so the boxing done by such a citizen
would be exactly as we gave it in (1) �

• First box all prime formulas in (2) below.

(∀x)(x = y → (∀z)z = a ∨ q) (2)

Here it is.
(∀x)(x = y → (∀z) z = a ∨ q)

Now abstract the above as if you were a Boolean citizen:

(∀x)(x = y → (∀z)z = a ∨ q)

You see no glue at all because you cannot see inside the scope of
the leftmost (∀x)!
The abstraction is something like

“p”

Notes on Logic© G. Tourlakis

198 Predicate Logic

• x = y → x = y abstracts as x = y → x = y . That is, p→ p —a
tautology.

Why bother with abstractions? Well, the last example is a tautol-
ogy so a Boolean citizen can prove it.

However x = x and (∀x)x = y → x = y are not tautologies and
we need predicate logic techniques to settle their theoremhood.

□ �

Notes on Logic© G. Tourlakis

7.1 The language of First-Order Logic 199

We can now define:

7.1.14 Definition. (Tautologies and Tautological Implications)
We say that a (1st-order) wff, A, is a tautology and write |=taut A iff
its Boolean abstraction is.

In 1st-order Logic Γ |=taut A is applied to the Boolean abstraction
of A and to the abstractions of the wff in Γ.

Goes without saying that ALL the identical occurrences of Prime
Formulas . . . in Γ ∪ {A} will stand for the same Boolean variale.

For example, x = y |=taut x = y ∨ z = v is correct as we see from

p︷ ︸︸ ︷
x = y |=taut

p︷ ︸︸ ︷
x = y ∨

q︷ ︸︸ ︷
z = v

□

Notes on Logic© G. Tourlakis

200 Predicate Logic

Substitutions

A substitution is a textual substitution: Find and Replace.

In A[x := t] we will replace all occurrences of a free x in A by the
term t: Find and replace.

In A[p := B] we will replace all occurrences of a p in A by B: Find
and replace.

7.1.15� Example. (What to avoid) Consider the substitution below(
(∃x)¬x = y

)
[y := x]

If we go ahead with it as a brute force “find and replace” asking no
questions, then we are met by a serious problem:

The result
(∃x)¬x = x (1)

says something other than what the original formula says!

The original —((∃x)¬x = y)— says “for any choice of y-value there
is a different x-value”.

The above is true in any application of logic where we have infinitely
many objects. For example, it is true of real numbers and natural num-
bers.

On the other hand, (1) though is NEVER true! It says that there is
an object that is different from itself! □ �

Notes on Logic© G. Tourlakis

7.1 The language of First-Order Logic 201

7.1.16 Definition. (Substitution) Each of

1. In A[x := t] replace all occurrences of a free x in A by the term t:
Find and replace.

2. In A[p := B] replace all occurrences of a p in A by B: Find and
replace.

However we abort the substitution 1 or 2 if it so happens that going
ahead with it makes a free variable y of t or B bound because t or B
ended up in the scope of a (∀y) or (∃y).

We say that the substitution is undefined in such cases, and that
the reason is that we had a “free variable capture”.

There is a variant of substution 2, above:

3. In A[p \ B] replace all occurrences of a p in A by B: Find and
replace.

For technically justified reasons to be learnt later, we never abort
this one, capture or not.

We call the substitutions 1. and 2. conditional or constrained, while
the substitution 3. unconditional or unconstrained.

There is NO unconditional version of 1.

Notes on Logic© G. Tourlakis

202 Predicate Logic

PRIORITIES (AGAIN!)

[x := t], [p := B], [p \ B] have higher priority than all connec-
tives ∀,∃,¬,∧,∨,→,≡. They associate from LEFT to RIGHT that
is A[x := t][p := B] means((

A[x := t]
)
[p := B]

)
□

Notes on Logic© G. Tourlakis

7.1 The language of First-Order Logic 203

7.1.17 Example. Several substitutions based on Definition 7.1.16.

(1) (y = x)[y := x].

The red brackets are META brackets. I need them to show the sub-
stitution applies to the whole formula.

The result is x = x.

(2)
(
(∀x)x = y

)
[y := x]. By 7.1.16, this is undefined because if I go

ahead then x is captured by (∀x).

(3) (∀x)(x = y)[y := x]. According to priorities, this means (∀x)
{
(x =

y)[y := x]
}
.

That is, “apply the quantifier (∀x) to x = x”, which is all right.

Result is (∀x)x = x.

(4)
(
(∀x)(∀y)ϕ(x, y)

)
[y := x]. This says

• Do

(
(∀x)

(
(∀y)ϕ(x, y)

))
[y := x]

• This is all right since y is not free in
(
(∀y)ϕ(x, y)

)
—so not found;

no replace!

Result is the original formula UNCHANGED.

(5)
(
z = a ∨ ((∀x)x = y)

)
[y := x]. Abort: x is captured when we

attempt substitution in the subformula (∀x)x = y.

Notes on Logic© G. Tourlakis

204 Predicate Logic

(6)
(
(∀x)p

)
[p \ x = y] Unconditional substitution. Just find and

replace, no questions asked!

Result: (∀x)x = y.

(7)
(
(∀x)p

)
[p := x = y] Undefined. x in x = y will get captured if

you go ahead! □

Notes on Logic© G. Tourlakis

7.1 The language of First-Order Logic 205

7.1.18 Definition. (Partial Generalisation) We say that B is a
partial generalisation of A if B is formed by adding as a PREFIX
to A zero or more strings of the form (∀x) for any choices whatsoever
of the variable x —repetitions allowed. □

7.1.19 Example. Here is a small list of partial generalisations of the
formula x = z:

x = z,

(∀w)x = z,

(∀x)(∀x)x = z,

(∀x)(∀z)x = z,

(∀z)(∀x)x = z,

(∀z)(∀y)(∀z)(∀x)(∀u)x = z. □

Notes on Logic© G. Tourlakis

206 Predicate Logic

Nov. 7, 2022

7.2 Axioms and Rules for Predicate Logic

7.2.1 Definition. (1st-Order Axioms) These are all the partial
generalisations of all the instances of the following schemata.

1. All tautologies (e.g., x = y → x = y is here)

2. (∀x)A→ A[x := t]

� Note that we get an instance of this schema ONLY IF the substi-
tution is not aborted. �

3. A→ (∀x)A —PROVIDED x is not free in A.

4. (∀x)(A→ B)→ (∀x)A→ (∀x)B

5. x = x

6. t = s→ (A[x := t] ≡ A[x := s])

� Note that we get an instance of this schema ONLY IF the none of the
substitutions above is aborted. �

The set of all first-order axioms is named “Λ1” —“1” for 1st-order.

□

Our only INITIAL (or Primary or Primitive) rule is Modus Po-
nens:

A,A→ B

B
(MP)

Notes on Logic© G. Tourlakis

7.3 First-order Proofs and Theorems 207

You may think that including all tautologies as axioms is overkill.

However

1. It is customary to do so in the literature ([Tou08, Sho67, End72,
Man77, Tou03])

2. After Post’s Theorem we do know that every tautology is a theo-
rem of Boolean logic.

Adopting axiom 1. makes every tautology also a theorem of
Predicate Logic outright!

This is the easiest way (a literature favourite) to incorporate
Boolean logic as a sublogic of 1st-order logic.

7.3 First-order Proofs and Theorems

A Hilbert-style proof from Γ (Γ-proof) is exactly as defined in the case
of Boolean Logic. Namely:

� It is a finite sequence of wff

A1, A2, A3, . . . , Ai, . . . , An

such that each Ai is ONE of

1. Axiom from Λ1 OR a member of Γ

OR

2. Is obtained by MP from X → Y and X that appear to the LEFT
of Ai (Ai is the same string as Y then.)

Notes on Logic© G. Tourlakis

208 Predicate Logic

However, here “wff” is 1st-order, and Λ1 is a DIFFERENT set of
axioms than the old Λ. Moreover we have ONLY one rule up in front.

As in Boolean definitions, a 1st-order theorem from Γ (Γ-theorem)
is a formula that occurs in a 1st-order Γ-proof.

As before we write “Γ ⊢ A” to say “A is a Γ-theorem” and write
“⊢ A” to say “A is an absolute theorem”. �

Notes on Logic© G. Tourlakis

7.3 First-order Proofs and Theorems 209

Hilbert proofs in 1st-order logic are written vertically as
well, with line numbers and annotation.

The metatheorems about proofs and theorems

▶ proof tail removal,

▶ proof concatenation,

▶ a wff is a Γ-theorem iff it occurs at the end of a proof

▶ hypothesis strengthening,

▶ hypothesis splitting,

▶ usability of derived rules,

▶ usability of previously proved theorems

hold with the same metaproofs as in the Boolean case.

Notes on Logic© G. Tourlakis

210 Predicate Logic

We TRIVIALLY have Post’s Theorem (the weak form that we proved
for Boolean logic).

7.3.1 Theorem. (Weak Post’s Theorem for 1st-order logic)
If A1, . . . , An |=taut B then A1, . . . , An ⊢ B

Proof. Exactly the same as in Boolean logic, see 5.2.4, since the as-
sumption yields |=taut A1 → . . . → An → B as before, and hence we
have ⊢ A1 → . . .→ An → B, by Axiom 1.

For the rest see 5.2.4. □

� Thus we may use
A1, . . . , An ⊢ B

as a DERIVED rule in any 1st-order proof, if we know that

A1, . . . , An |=taut B

. �

Notes on Logic© G. Tourlakis

7.4 Deduction Theorem 211

7.4 Deduction Theorem

This Metatheorem of First-Order Logic says:

7.4.1 Metatheorem. If Γ, A ⊢ B, then also Γ ⊢ A→ B

OR

7.4.2 Metatheorem. If I want to prove Γ ⊢ A → B it is enough to
prove Γ, A ⊢ B instead.

� WAIT! Did we not already prove this for Boolean Logic? Yes, but to
do so we used Boolean Semantics.

Boolean Semantics will NOT help in Predicate Logic, and First-
Order Semantics are tricky and we will do them at the end of the course!

So here we use an easy proof by Induction on the length
of First-Order Proofs from Γ + A.∗ �

∗Recall that “Γ ∪ {A}”, “Γ, A” and “Γ +A” are alternative notations for the same set of wff!

Notes on Logic© G. Tourlakis

212 Predicate Logic

Proof. Induction on the proof length L that we used for Γ, A ⊢ B:

1. Proof of length L = 1 (Basis). There is only one formula in the
proof: The proof must be

B

Only two subcases apply:

• B ∈ Γ. Then Γ ⊢ B. But B |=taut A → B, thus by 7.3.1 also
B ⊢ A→ B. We get now Γ ⊢ A→ B by 4.1.11.

• B IS A. So, A→ B is a tautology hence axiom hence Γ ⊢ A→
B.

• B ∈ Λ1. Then Γ ⊢ B. Conclude as in the first bullet.

Notes on Logic© G. Tourlakis

7.4 Deduction Theorem 213

2. Assume (I.H.) the claim for all proofs of lengths L ≤ n.

3. I.S.: The proof has length L = n+ 1:

n+1︷ ︸︸ ︷
. . . , B

If B ∈ Γ∪{A}∪Λ1 then we are done by the same argument as in 1.

Assume instead that it is the result of MP on formulas to the left
of B:

n+1︷ ︸︸ ︷
. . . , X, . . . , X → B︸ ︷︷ ︸

≤n

, . . . ,︸ ︷︷ ︸
n

B

By the I.H. we have
Γ ⊢ A→ X (∗)

and
Γ ⊢ A→ (X → B) (∗∗)

The following Hilbert proof concludes the case and the entire proof:

1) A→ X ⟨Γ-thm by (∗)⟩
2) A→ (X → B) ⟨Γ-thm by (∗∗)⟩
3) A→ B ⟨1 + 2 + taut. implication⟩

The last line proves the metatheorem. □

Comment. Line 3 uses A → X, A → (X → B) |=taut A → B,
which translates (by 7.3.1) into the “RULE” A→ X,A→ (X → B) ⊢
A→ B.

The annotation said “1 + 2 + taut. implication”.

It could also have said instead “1 + 2 + Post”.

Notes on Logic© G. Tourlakis

214 Predicate Logic

7.5 Generalisation and “weak” Leibniz Rules

We learn here HOW exactly to handle the quantifier ∀.

7.5.1 Adding and Removing “(∀x)”

7.5.1 Metatheorem. (Weak Generalisation) Suppose that no wff
in Γ has any free occurrences of x.

Then if we have Γ ⊢ A, we will also have Γ ⊢ (∀x)A.

� It is normally the case and of no adverse consequence that A does
have free occurrences of x, else (∀x)A would be trivial. �

Proof. Induction on the length L of the Γ-proof used for A.

1. L = 1 (Basis). There is only one formula in the proof: The proof
must be

A

Only two subcases apply:

• A ∈ Γ. Then A has no free x, hence A → (∀x)A is axiom 3.
Thus, we have a Hilbert proof (written horizontally for speed),

Γ−proved︷︸︸︷
A ,

axiom︷ ︸︸ ︷
A→ (∀x)A,

MP on the previous two︷ ︸︸ ︷
(∀x)A

• A ∈ Λ1. Then so is (∀x)A ∈ Λ1 by partial generalisation:

Note that if axiomA is (∀z)(∀z′)(∀z′′) . . . (∀z1) B︸︷︷︸
axiom schema inst.

,

then (∀x)A is (∀x)(∀z)(∀z′) . . . (∀z1)B. Hence an axiom
too.

Hence (∀x)A is in Λ1, thus Γ ⊢ (∀x)A once more. (Definition
of Γ-proof.)

Notes on Logic© G. Tourlakis

7.5 Generalisation and “weak” Leibniz Rules 215

� AHA! So that’s what “partial generalisation” does for
us! �

Notes on Logic© G. Tourlakis

216 Predicate Logic

2. Assume (I.H.) the claim for all proofs of lengths L ≤ n.

3. I.S.: The proof has length L = n+ 1:

n+1︷ ︸︸ ︷
. . . , A

If A ∈ Γ ∪ Λ1 then we are done by the argument in 1.

Assume instead that A is the result of MP on formulas to the left
of it:

n+1︷ ︸︸ ︷
. . . , X, . . . , X → A︸ ︷︷ ︸

≤n

, . . . ,︸ ︷︷ ︸
n

A

By the I.H. we have
Γ ⊢ (∀x)X (∗)

and
Γ ⊢ (∀x)(X → A) (∗∗)

The following Hilbert proof concludes this case and the entire
proof:

1) (∀x)X ⟨Γ-thm by (∗)⟩
2) (∀x)(X → A) ⟨Γ-thm by (∗∗)⟩
3) (∀x)(X → A)→ (∀x)X → (∀x)A ⟨axiom 4⟩
4) (∀x)X → (∀x)A ⟨2 + 3 + MP⟩
5) (∀x)A ⟨1 + 4 + MP⟩

The last line proves the metatheorem. □

Notes on Logic© G. Tourlakis

7.5 Generalisation and “weak” Leibniz Rules 217

7.5.2 Corollary. If ⊢ A, then ⊢ (∀x)A.

Proof. The condition that no X in Γ has free x is met: Vacuously. Γ
is empty! □

7.5.3� Remark.

1. HOW TO USE Generalisation: So, the Metatheorem
says that if A is a Γ-theorem then so is (∀x)A as long as the re-
striction of 7.5.1 is met.

But then, since I can invoke Γ-THEOREMS (not only axioms and
hypotheses) in a proof, I can insert the Γ-theorem (∀x)A anywhere
AFTER A in any Γ-proof of A where Γ obeys the restriction on x.

. . . , A, . . . ,

insert at any time after A︷ ︸︸ ︷
(∀x)A , . . .

2. Why “weak”? Because I need to know how the A was obtained
before I may use (∀x)A. □ �

Notes on Logic© G. Tourlakis

218 Predicate Logic

7.5.4 Metatheorem. (Specialisation Rule)
(
(∀x)A

)
⊢ A[x := t]

� Goes without saying that IF the expression A[x := t] is undefined (due
to “capture”), then we have nothing to prove. �

Proof.

(1) (∀x)A ⟨hyp⟩
(2) (∀x)A→ A[x := t] ⟨axiom 2⟩
(3) A[x := t] ⟨1 + 2 + MP⟩ □

7.5.5 Corollary. (∀x)A ⊢ A

Proof. This is the special case where t is x. □

Specialisation removes a (∀x) iff the quantifier is the very first
symbol a of a formula B and the entire remaining part of the formula
is the scope of that leading (∀x):

B︷ ︸︸ ︷
(∀x) A︸︷︷︸

A is in the scope of (∀x)

a“(∀x)” is ONE compound symbol.

Notes on Logic© G. Tourlakis

7.5 Generalisation and “weak” Leibniz Rules 219

The (∀x) in the following two CANNOT be removed: (∀x)A ∨ B,
A ∨ (∀x)B.

� Really Important! The metatheorems 7.5.5 and 7.5.1 (or 7.5.2) —
which we nickname “spec” and “gen” respectively— are tools that make
our life easy in Hilbert proofs where handling of ∀ is taking place.

7.5.5 with no restrictions allows us to REMOVE a leading “(∀x)”.

Doing so we might uncover Boolean glue and thus benefit from ap-
plications of “Post” (7.3.1).

If we need to re-INSERT (∀x) before the end of proof, we employ
7.5.1 to do so.

This is a good recipe for success in 1st-order proofs!

�

Notes on Logic© G. Tourlakis

220 Predicate Logic

7.5.2 Examples

� Ping-Pong proofs.

Hilbert proofs are not well-suited to handle equivalences.

However, trivially

A→ B,B → A |=taut A ≡ B

and —by 7.3.1—
A→ B,B → A ⊢ A ≡ B (1)

Thus, to prove Γ ⊢ A ≡ B in Hilbert style it suffices—by (1), which
is a derived rule!— to offer TWO Hilbert proofs:

Γ ⊢ A→ B AND Γ ⊢ B → A

This back and forth motivates the nickname “ping-pong” for this
proof technique. �

Notes on Logic© G. Tourlakis

7.5 Generalisation and “weak” Leibniz Rules 221

7.5.3 A Few Memorable Examples

7.5.6 Theorem. (Distributivity of ∀ over ∧)
⊢ (∀x)(A ∧B) ≡ (∀x)A ∧ (∀x)B

Proof. By Ping-Pong argument.

We will show TWO things:

1. ⊢ (∀x)(A ∧B)→ (∀x)A ∧ (∀x)B

and

2. ⊢ (∀x)A ∧ (∀x)B → (∀x)(A ∧B)

(→) (“1.” above)

By DThm, it suffices to prove (∀x)(A ∧B) ⊢ (∀x)A ∧ (∀x)B.

(1) (∀x)(A ∧B) ⟨hyp⟩
(2) A ∧B ⟨1 + spec (7.5.5)⟩
(3) A ⟨2 + Post⟩
(4) B ⟨2 + Post⟩
(5) (∀x)A ⟨3 + gen; OK: hyp contains no free x⟩
(6) (∀x)B ⟨4 + gen; OK: hyp contains no free x⟩
(7) (∀x)A ∧ (∀x)B ⟨(5,6) + Post⟩

NOTE. We ABSOLUTELY MUST acknowledge for each application
of “gen” that the restriction is met.

Notes on Logic© G. Tourlakis

222 Predicate Logic

Nov. 9, 2022

(←) (“2.” above)

By DThm, it suffices to prove (∀x)A ∧ (∀x)B ⊢ (∀x)(A ∧B).

(1) (∀x)A ∧ (∀x)B ⟨hyp⟩
(2) (∀x)A ⟨1 + Post⟩
(3) (∀x)B ⟨1 + Post⟩
(4) A ⟨2 + spec⟩
(5) B ⟨3 + spec⟩
(6) A ∧B ⟨(4,5) + Post⟩
(7) (∀x)(A ∧B) ⟨6 + gen; OK: hyp has no free x⟩ □

Easy and Natural! Right?

Notes on Logic© G. Tourlakis

7.5 Generalisation and “weak” Leibniz Rules 223

7.5.7 Theorem. ⊢ (∀x)(∀y)A ≡ (∀y)(∀x)A

Proof. By Ping-Pong. ⊢ (∀x)(∀y)A→←(∀y)(∀x)A.

(→) direction.

By DThm it suffices to prove (∀x)(∀y)A ⊢ (∀y)(∀x)A

(1) (∀x)(∀y)A ⟨hyp⟩
(2) (∀y)A ⟨1 + spec⟩
(3) A ⟨2 + spec⟩
(4) (∀x)A ⟨3 + gen; OK hyp has no free x⟩
(5) (∀y)(∀x)A ⟨4 + gen; OK hyp has no free y⟩

(←)
Exercise! Justify that you can write the above proof backwards!

□

7.5.8� Example. Say A has no free x. Then ⊢ (∀x)A ≡ A. Indeed,
⊢ (∀x)A→ A by ax. 2 and ⊢ A→ (∀x)A by ax. 3. □ �

Notes on Logic© G. Tourlakis

224 Predicate Logic

7.5.9 Metatheorem. (Monotonicity of ∀) If Γ ⊢ A → B, then
Γ ⊢ (∀x)A→ (∀x)B, as long as no wff in Γ has a free x.

Proof.

(1) A→ B ⟨invoking a Γ-thm⟩
(2) (∀x)(A→ B) ⟨1 + gen; OK no free x in Γ⟩
(3) (∀x)(A→ B)→ (∀x)A→ (∀x)B ⟨axiom 4⟩
(4) (∀x)A→ (∀x)B ⟨(2, 3) +MP ⟩ □

We annotate an application of “Monotonicity of ∀” by either of
“A-MON” or “∀-MON”.

7.5.10 Corollary. If ⊢ A→ B, then ⊢ (∀x)A→ (∀x)B.

Proof. Case of Γ = ∅. The restriction is vacuously satisfied. □

Notes on Logic© G. Tourlakis

7.6 Weak Leibniz 225

7.5.11 Corollary. If Γ ⊢ A ≡ B, then also Γ ⊢ (∀x)A ≡ (∀x)B, as
long as Γ does not contain wff with x free.

Proof.

(1) A ≡ B ⟨Γ-theorem⟩
(2) A→ B ⟨1 + Post⟩
(3) B → A ⟨1 + Post⟩
(4) (∀x)A→ (∀x)B ⟨2 + ∀-MON (7.5.9)⟩
(5) (∀x)B → (∀x)A ⟨3 + ∀-MON (7.5.9)⟩
(6) (∀x)A ≡ (∀x)B ⟨(4,5) + Post⟩ □

7.5.12 Corollary. If ⊢ A ≡ B, then also ⊢ (∀x)A ≡ (∀x)B.

Proof. Take Γ = ∅. □

7.6 Weak Leibniz

Note that since Post’s theorem holds in first-order logic, we have that
the Boolean primary rules (and all Boolean derived rules; WHY?) hold
in predicate logic.

For example, the Boolean Leibniz rule

A ≡ B ⊢ C[p := A] ≡ C[p := B]

holds since we have

A ≡ B |=taut C[p := A] ≡ C[p := B]

Notes on Logic© G. Tourlakis

226 Predicate Logic

What makes the rule “Boolean” is that we look at all of A,B,C and
p from the Boolean “citizen’s” point of view (Boolean abstractions).
In particular, p is NOT in the scope of any quantifier!

It is visible to a Boolean citizen!

� Hmmm. Can I do Leibniz with a p that is IN the scope of a quantifier?
You bet!! �

7.6.1 Metatheorem. (Weak (1st-order) Leibniz —Acronym “WL”)

If ⊢ A ≡ B, then also ⊢ C[p \ A] ≡ C[p \B].

Proof. This generalises 7.5.12.

The metatheorem is proved by Induction on the (formation of) wff
C.

Basis. Atomic case for C:

(1) C is p. The metatheorem boils down to “if ⊢ A ≡ B, then
⊢ A ≡ B”, which trivially holds!

(2) C is NOT p —that is, it is q (other than p), or is ⊥ or ⊤, or
is t = s, or it is ϕ(t1, . . . , tn). That is, C does not contain the “text” p.

Then our Metatheorem statement becomes “if ⊢ A ≡ B, then ⊢
C ≡ C”.

Given that ⊢ C ≡ C is indeed the case by Axiom 1, the “if” part is
irrelevant. Done.

Notes on Logic© G. Tourlakis

7.6 Weak Leibniz 227

The complex cases.

(i) C is ¬D. From the I.H. we have ⊢ D[p \ A] ≡ D[p \B],

hence ⊢ ¬D[p \ A] ≡ ¬D[p \B] by Post.

But

I want and have ⊢
C︷ ︸︸ ︷

(¬D)[p \ A] ≡
C︷ ︸︸ ︷

(¬D)[p \B]

because

(¬D)[p \ A] is the same wff as ¬D[p \ A] WHY?

(ii) C is D ◦ E, where ◦ ∈ {∧,∨,→,≡}.

The I.H. yields ⊢ D[p \A] ≡ D[p \B] and ⊢ E[p \A] ≡ E[p \B]
hence ⊢ D[p \ A] ◦ E[p \ A] ≡ D[p \B] ◦ E[p \B] by Post.

I want and have

⊢
C︷ ︸︸ ︷

(D ◦ E)[p \ A] ≡
C︷ ︸︸ ︷

(D ◦ E)[p \B]

due to the way substitution works, namely,

(D ◦ E)[p \ A] is the same wff as D[p \ A] ◦ E[p \ A] WHY?

(iii) C is (∀x)D. This is the “interesting case”.

From the I.H. follows ⊢ D[p \ A] ≡ D[p \B].

From 7.5.12 we get ⊢ (∀x)D[p \ A] ≡ (∀x)D[p \ B], also written
as

⊢
C︷ ︸︸ ︷(

(∀x)D
)
[p \ A] ≡

C︷ ︸︸ ︷(
(∀x)D

)
[p \B]

Notes on Logic© G. Tourlakis

228 Predicate Logic

because (
(∀x)D

)
[p \ A] is the same wff as (∀x)D[p \ A] □

� WL is the only “Leibniz” we will ever need (practically) in our use of
1st-order logic in these lectures.

Why “weak”? Because of the restriction on the Rule’s Hypothesis:
A ≡ B must be an absolute theorem. (Recall that the Boolean Leibniz
was not so restricted).

Notes on Logic© G. Tourlakis

7.6 Weak Leibniz 229

Why not IGNORE the restriction and “adopt” the strong rule (i)
below?

Well, in logic you do NOT arbitrarily “adopt” derived rules; you
prove them.

BUT, CAN I prove (i) below then?

NO, our logic does not allow it; here is why: If I can prove (i) then
I can also prove STRONG generalisation (ii) from (i).

A ≡ B ⊢ C[p \ A] ≡ C[p \B] (i)

strong generalisation: A ⊢ (∀x)A (ii)

Notes on Logic© G. Tourlakis

230 Predicate Logic

Here is why (i)⇒ (ii):

So, assume I have “Rule” (i). THEN (towards proving (ii))

(1) A ⟨hyp⟩
(2) A ≡ ⊤ ⟨(1) + Post⟩
(3) (∀x)A ≡ (∀x)⊤ ⟨(2) + (i); “Denom:” (∀x)p⟩
(4) (∀x)⊤ ≡ ⊤ ⟨Ax2 +Ax3 + ping-pong; cf. Example 7.5.8⟩
(5) (∀x)A ≡ ⊤ ⟨(3, 4) + Post⟩
(6) (∀x)A ⟨(5) + Post⟩ �

So if I have (i) I have (ii) too.

Notes on Logic© G. Tourlakis

7.6 Weak Leibniz 231

BUT: Here is an informal reason that I cannot possibly have (ii).

� It is a provable fact —this is 1st-order Soundness†— that all ab-
solute theorems of 1st-order logic are true in every informal interpretation
I build for them. �

So IF I have (ii), then by the DThm I also have

⊢ A→ (∀x)A (1)

Interpret the above over the natural numbers as the specific

⊢
A︷ ︸︸ ︷

x = 0→ (∀x)
A︷ ︸︸ ︷

x = 0 (2)

By 1st-order Soundness, IF I have (1), then (2) is true for all values
of (the free) x.

Well, try x = 0. We get 0 = 0→ (∀x)x = 0. The lhs of “→” is true
but the rhs is false.

So I cannot have (ii) —nor (i), because this implies (ii)!

†For a proof wait until the near-end of the course

Notes on Logic© G. Tourlakis

232 Predicate Logic

▶ SKIP Strong Leibniz in Predicate Logic, but here it is for the
curious!

We CAN have a MODIFIED (i) where the substitution into p is
restricted.

7.6.2 Metatheorem. (Strong Leibniz —Acronym “SL”) A ≡ B ⊢
C[p := A] ≡ C[p := B]

� Goes without saying that if the rhs of ⊢ is NOT defined, then there is
nothing to prove since the expresion “C[p := A] ≡ C[p := B]” repre-
sents no wff.

Remember this comment during the proof! �

Proof. As we did for WL, the proof is an induction on the defini-
tion/formation of C.

Basis. C is atomic:

subcases

• C is p. We need to prove A ≡ B ⊢ A ≡ B, which is the familiar
X ⊢ X.

• C is not p. The metatheorem now claims A ≡ B ⊢ C ≡ C which
is correct since C ≡ C is an axiom.

The complex cases.

(i) C is ¬D. By the I.H. we have A ≡ B ⊢ D[p := A] ≡ D[p := B],
thus, A ≡ B ⊢ ¬D[p := A] ≡ ¬D[p := B] by Post.

Notes on Logic© G. Tourlakis

7.6 Weak Leibniz 233

We can rewrite the above as A ≡ B ⊢ (¬D)[p := A] ≡ (¬D)[p :=
B] since when substitution is allowed

C︷ ︸︸ ︷
(¬D)[p := A] is the same as ¬D[p := A], etc.

(ii) C is D ◦ E. By the I.H. we get A ≡ B ⊢ D[p := A] ≡ D[p := B]

and

A ≡ B ⊢ E[p := A] ≡ E[p := B].

Thus, by Post,

A ≡ B ⊢ D[p := A] ◦ E[p := A] ≡ D[p := B] ◦ E[p := B]

The way substitution works (when defined), the above says

A ≡ B ⊢
C︷ ︸︸ ︷

(D ◦ E)[p := A] ≡
C︷ ︸︸ ︷

(D ◦ E)[p := B]

(iii) C is (∀x)D. This is the “interesting case”.

From the I.H. we get

A ≡ B ⊢ D[p := A] ≡ D[p := B]

Now, since the expressions C[p := A] and C[p := B] ARE defined
—else we wouldn’t be doing all this— the definition of conditional
(restricted) substitution implies that neither A nor B have any
free occurrences of x.

Then x does not occur free in A ≡ B either.

Notes on Logic© G. Tourlakis

234 Predicate Logic

From 7.5.11 we get

A ≡ B ⊢ (∀x)D[p := A] ≡ (∀x)D[p := B]

which —the way substitution works— is the same as

A ≡ B ⊢
C︷ ︸︸ ︷(

(∀x)D
)
[p := A] ≡

C︷ ︸︸ ︷(
(∀x)D

)
[p := B]

□

Notes on Logic© G. Tourlakis

7.6 Weak Leibniz 235

Nov. 14, 2022

More Memorable Examples and “Techniques”.

7.6.3 Theorem. ⊢ (∀x)(A → B) ≡ (A → (∀x)B), as long as x has
no free occurrences in A.

Proof.
Ping-Pong using DThm.

(→) I want
⊢ (∀x)(A→ B)→ (A→ (∀x)B)

Better still, let me do (DThm)

(∀x)(A→ B) ⊢ A→ (∀x)B

and, even better, (DThm!) I will do

(∀x)(A→ B), A ⊢ (∀x)B

(1) (∀x)(A→ B) ⟨hyp⟩
(2) A ⟨hyp⟩
(3) A→ B ⟨(1) + spec⟩
(4) B ⟨(2, 3) + MP⟩
(5) (∀x)B ⟨(4) + gen; OK: no free x in (1) or (2)⟩

Notes on Logic© G. Tourlakis

236 Predicate Logic

(←) I want
⊢ (A→ (∀x)B)→ (∀x)(A→ B)

or better still (DThm)

A→ (∀x)B ⊢ (∀x)(A→ B) (1)

Seeing that A→ (∀x)B has no free x, I can prove the even easier

A→ (∀x)B ⊢ A→ B (2)

and after this proof is done, then I can apply gen to A → B to get
(∀x)(A→ B).

OK! By DThm I can prove the even simpler than (2)

A→ (∀x)B,A ⊢ B (3)

Here it is:

(1) A→ (∀x)B ⟨hyp⟩
(2) A ⟨hyp⟩
(3) (∀x)B ⟨(1, 2) + MP⟩
(4) B ⟨(3) + spec ⟩ □

Notes on Logic© G. Tourlakis

7.6 Weak Leibniz 237

7.6.4 Corollary. ⊢ (∀x)(A ∨ B) ≡ A ∨ (∀x)B, as long as x does not
occur free in A.

Proof.

(∀x)(A ∨B)

⇔ ⟨WL + ¬∨ (axiom, so abs. thm!); “Denom:” (∀x)p⟩
(∀x)(¬A→ B)

⇔ ⟨“∀ →” (7.6.3)⟩
¬A→ (∀x)B

⇔ ⟨tautology, hence axiom⟩
A ∨ (∀x)B □

Notes on Logic© G. Tourlakis

238 Predicate Logic

� Most of the statements we prove in what follows have Dual counter-
parts obtained by swapping ∀ and ∃ and ∨ and ∧.

Let us give a theorem version of the definition of ∃. This is useful
in Equational proofs in Predicate Logic.

Definition (Recall):

(∃x)A is short name for ¬(∀x)¬A (1)

Next consider the axiom

¬(∀x)¬A ≡ ¬(∀x)¬A (2)

Let me use the ABBREVIATION (1) ONLY on ONE side of “≡” in (2).
I get the theorem

(∃x)A ≡ ¬(∀x)¬A

So I can write the theorem without words like this:

⊢ (∃x)A ≡ ¬(∀x)¬A (3)

HEY! I can apply (3) in Equational proofs —via WL— easily!

I will still refer to (3) in proofs as “Def of E”. �

Notes on Logic© G. Tourlakis

7.6 Weak Leibniz 239

Here’s something useful AND good practise too! It is the Dual of
7.6.4.

7.6.5 Corollary. ⊢ (∃x)(A ∧ B) ≡ A ∧ (∃x)B, as long as x does not
occur free in A.

� In annotation we may call the above the “∃∧ theorem”. �

Proof.

(∃x)(A ∧B)

⇔ ⟨Def of E⟩
¬(∀x)¬(A ∧B)

⇔ ⟨WL + axiom 1 (deM); “Denom:” ¬(∀x)p⟩
¬(∀x)(¬A ∨ ¬B)

⇔ ⟨WL + ∀ over ∨ (7.6.4) —no free x in ¬A; “Denom:” ¬p⟩
¬(¬A ∨ (∀x)¬B)

⇔ ⟨Ax1 (deM)⟩
A ∧ ¬(∀x)¬B

⇔ ⟨WL + Def of E; “Denom:” A ∧ p⟩
A ∧ (∃x)B □

Notes on Logic© G. Tourlakis

240 Predicate Logic

7.7 Ad hoc Memorable Examples

1. While the following theorem —nicknamed “One-point rule”— will
not play a big role in our lectures, still, on one hand it gives us
an example of how we use the axioms of equality (Axioms 5 and 6)
and on the other hand every mathematician uses it without even
thinking about it, in the form, for example,

“A(3) is the same as (∃x)(x = 3 ∧ A(x))”

7.7.1 Theorem. (One point rule —∀ version) On the condition
that x does not occur in t,† we have ⊢ (∀x)(x = t → A) ≡ A[x :=
t].‡

Proof. By Ping-Pong.

(→) Note that since x does not occur in t, we have

(x = t→ A)[x := t] means the same thing as t = t→ A[x := t]

Thus,

(1) (∀x)
B︷ ︸︸ ︷

(x = t→ A)→
B[x:=t]︷ ︸︸ ︷

t = t→ A[x := t] ⟨Ax2⟩
(2) (∀x)x = x ⟨Ax5 —partial gen. of x = x⟩
(3) t = t ⟨(2) + spec⟩
(4) (∀x)(x = t→ A)→ A[x := t] ⟨(1, 3) + Post⟩

(←) Recall theGeneral form of Axiom 6: s = t→ (A[x := s] ≡ A[x := t])

(1) x = t→ (A ≡ A[x := t]) ⟨Ax6⟩
(2) A[x := t]→ x = t→ A ⟨(1) + Post⟩

Re above step note: p→ (q ≡ r) |=taut r → p→ q
†We can also say “does not occur free in t”, but that is an overkill: A term t has NO bound variables.
‡Of course, if A[x := t] is undefined, then there is nothing to prove!

Notes on Logic© G. Tourlakis

7.7 Ad hoc Memorable Examples 241

(3) (∀x)A[x := t]→ (∀x)(x = t→ A) ⟨(2) + ∀-MON —(2) is an abs. thm⟩
(4) A[x := t]→ (∀x)A[x := t] ⟨Ax3⟩
(5) A[x := t]→ (∀x)(x = t→ A) ⟨(3, 4) + Post⟩

Note that Ax3 is applicable in (4) since x is not free in A[x := t]

2. 7.7.2 Corollary. (One point rule —∃ version) On the condition
that x does not occur in t, we have ⊢ (∃x)(x = t ∧ A) ≡ A[x := t].

Proof. Exercise! (Hint. Use the ∀ version and an Equational proof
to prove the ∃ version (use the “Def of E” Theorem).) □

Notes on Logic© G. Tourlakis

242 Predicate Logic

7.7.3 Theorem. (Bound variable renaming (∀)) IF z is fresh for
A —that is, does not occur as either free or bound in A— then
⊢ (∀x)A ≡ (∀z)A[x := z]. ← Read this right: “(∀z)A(z)”

� “Everyday mathematician’s” notation is ⊢ (∀x)A(x) ≡ (∀z)A(z).
But NOT our notation! �

Proof. Ping-Pong.

(→)

(1) (∀x)A→ A[x := z] ⟨Ax2 —fresh z; no capture: no

“(∀z)(. . . ,x, . . .)” in A⟩
(2) (∀z)(∀x)A→ (∀z)A[x := z] ⟨(1) + ∀-mon; OK: (1) is abs. thm⟩
(3) (∀x)A→ (∀z)(∀x)A ⟨Ax3⟩
(4) (∀x)A→ (∀z)A[x := z] ⟨(2, 3) + Post⟩

(←) Let us first settle a useful “lemma” for the proof below:

7.7.4 Lemma. Under the assumptions about z (freshness), we have
that A[x := z][z := x] is just the original A.

Proof. Now, z is neither

• Bound in A. That is, there is NO “(∀z)(. . .)” in A. So the substi-
tution A[x := z] GOES THROUGH, AND “flags” (and replaces)
all FREE x in A as z.

nor is

• Free in A. So NO FREE z pre-existed in A before doing A[x := z].
That is, ALL FREE z inA[x := z] are EXACTLY the x that became z.
These z are PLACEHOLDERS for THE ORIGINAL FREE x
in A.

Notes on Logic© G. Tourlakis

7.7 Ad hoc Memorable Examples 243

BUT then! Doing now [z := x] changes ALL z in A[x := z]
back to x.

We are back to the original A!

□

(1) (∀z)
B︷ ︸︸ ︷

A[x := z]→
B︷ ︸︸ ︷

A[x := z][z := x] ⟨Ax2 —A[x := z][z := x]

OK by lemma⟩
(2) (∀z)A[x := z]→ A ⟨same as (1) —see lemma⟩
(3) (∀x)(∀z)A[x := z]→ (∀x)A ⟨abs. thm (2) + ∀ MON⟩
(4) (∀z)A[x := z]→ (∀x)(∀z)A[x := z] ⟨Ax3; no free x in lhs⟩
(5) (∀z)A[x := z]→ (∀x)A ⟨(3, 4) + Post⟩ □

Notes on Logic© G. Tourlakis

244 Predicate Logic

7.8 Adding and Removing the Quantifier“(∃x)”

Nov. 16, 2022

First, introducing (adding) ∃ is easy via the following tools:

7.8.1 Theorem. (Dual of Ax2) ⊢ A[x := t]→ (∃x)A

Proof.

A[x := t]→ (∃x)A
⇔ ⟨WL + “Def of E” (this is an abs. thm); “Denom:” A[x := t]→ p⟩

A[x := t]→ ¬(∀x)¬A
⇔ ⟨tautology⟩

(∀x)¬A→ ¬A[x := t] Bingo! □

7.8.2 Corollary. (The Dual of Specialisation) A[x := t] ⊢ (∃x)A

Proof. 7.8.1 and MP. □

7.8.3 Corollary. A ⊢ (∃x)A

Proof. 7.8.2, taking x as t. □

� Either corollaries above we call “Dual Spec” in annotating proofs. �

Notes on Logic© G. Tourlakis

7.8 Adding and Removing the Quantifier“(∃x)” 245

But how can I remove a leading (the entire formula) ∃?

We need two preliminary results to answer this.

7.8.4 Metatheorem. (∀ Introduction) If x does not occur free in
Γ nor in A, then Γ ⊢ A→ B iff Γ ⊢ A→ (∀x)B.

Proof. of the “iff”.

(→) direction.

Assumption gives Γ ⊢ (∀x)(A→ B) by valid generalisation.

But we have

(∀x)(A→ B)

⇔ ⟨7.6.3⟩
A→ (∀x)B

So the bottom formula is a Γ-theorem.

(←) direction.

This time we know the bottom of the above short Equational proof
is a Γ-theorem.

Then so is the top. But from the latter I get Γ ⊢ A→ B by spec.

□

Notes on Logic© G. Tourlakis

246 Predicate Logic

7.8.5 Corollary. (∃ Introduction) IF x does not occur free in Γ
nor in B, then Γ ⊢ A→ B iff Γ ⊢ (∃x)A→ B.

� Note how we shifted the condition for x from A to B. �

Proof. of the “iff”. Well,

Γ ⊢ A→ B
Post

iff Γ ⊢ ¬B → ¬A
7.8.4

iff Γ ⊢ ¬B → (∀x)¬A
Post

iff Γ ⊢ ¬(∀x)¬A → B

□
You already know that removing a leading ∀ “uncovers” (in general†)

“Boolean structure” which is amenable to proofs “by Post”.

It would be a shame if we did not have techniques to remove a lead-
ing ∃.

We DO have such a technique! Read on.

†Clearly, removing ∀ from (∀x)x = y uncovers x = y. But that has no Boolean structure —no glue. Hence I said
“in general”.

Notes on Logic© G. Tourlakis

7.8 Adding and Removing the Quantifier“(∃x)” 247

7.8.6 Metatheorem. (Aux. Hypothesis Metatheorem) Suppose that
Γ ⊢ (∃x)A.

Moreover, suppose that we know that Γ, A[x := z] ⊢ B, where z is
fresh for ALL of Γ, (∃x)A, and B.

Then we have Γ ⊢ B.

� In our annotation we call A[x := z] an “auxiliary hypothesis asso-
ciated with (∃x)A”. z is called the auxiliary variable that we chose.

Essentially the fact that we proved (∃x)A allows us to adopt A[x :=
z] as a NEW AUXILIARY HYPOTHESIS to help in the proof of B.

▶ How does it help? (1) I have a new hypothesis to work with; (2)
A[x := z] has NO LEADING QUANTIFIER.

(2), in general, results in uncovering the Boolean structure of A[x :=
z] to enable proof by “Post”!

Halt-and-Take-Notice: Important! A[x := z] is an ADDED
HYPOTHESIS!

▶ It is NOT TRUE that either (∃x)A ⊢ A[x := z] or that
Γ ⊢ A[x := z].◀

WEWILL PROVE LATER IN THE COURSE THAT SUCH
A THING IS NOT TRUE! �

Notes on Logic© G. Tourlakis

248 Predicate Logic

Proof. of the Metatheorem.

By the DThm, the metatheorem assumption yields

Γ ⊢ A[x := z]→ B

Thus, by ∃-Intro (7.8.5) we get

Γ ⊢ (∃z)A[x := z]→ B (1)

We now can prove Γ ⊢ B as follows:

1) (∃x)A ⟨Γ-thm⟩
2) (∃z)A[x := z]→ B ⟨Γ-thm; (1) above⟩
3) (∃z)A[x := z] ≡ (∃x)A ⟨Bound var. renaming since z fresh⟩
4) (∃x)A→ B ⟨(2, 3) + Post⟩
5) B ⟨(1, 4) + MP⟩

□

Notes on Logic© G. Tourlakis

7.8 Adding and Removing the Quantifier“(∃x)” 249

The most frequent form encountered in using Metatheorem 7.8.6 is
the following corollary.

7.8.7 Corollary. To prove (∃x)A ⊢ B IT SUFFICES to

• pick a z that is FRESH for (∃x)A and B and

• PROVE INSTEAD (∃x)A,A[x := z] ⊢ B.

Proof. Take Γ = {(∃x)A} and invoke Metatheorem 7.8.6. □

Notes on Logic© G. Tourlakis

250 Predicate Logic

Some folks believe that the most important thing in logic is to know
that the following is provable but the converse is not.

True, it is important.

But so are so many other things in logic, like Metatheorem 7.8.6,
precisely and correctly formulated AND proved in our earlier pages.

7.8.8 Example. ⊢ (∃x)(∀y)A→ (∀y)(∃x)A.

Let us share two proofs!

First Proof. By DThm it suffices to prove instead:

(∃x)(∀y)A ⊢ (∀y)(∃x)A

(1) (∃x)(∀y)A ⟨hyp⟩
(2) (∀y)A[x := z] ⟨aux. hyp for (1); z fresh⟩
(3) A[x := z] ⟨(2) + spec⟩
(4) (∃x)A ⟨(3) + Dual spec: B[x := t] ⊢ (∃x)B⟩
(5) (∀y)(∃x)A ⟨(4) + gen; OK, all hyp lines, (1,2), have no free y⟩

We used the Corollary 7.8.7 of Metatheorem 7.8.6.

Notes on Logic© G. Tourlakis

7.8 Adding and Removing the Quantifier“(∃x)” 251

Second Proof. ⊢ A → (∃x)A (that is, the Dual of Ax2) we get
⊢ (∀y)A→ (∀y)(∃x)A by ∀-mon.

Applying ∃-intro (7.8.5) we get

⊢ (∃x)(∀y)A→ (∀y)(∃x)A □

Notes on Logic© G. Tourlakis

252 Predicate Logic

7.8.9 Example. We prove (∃x)(A→ B), (∀x)A ⊢ (∃x)B.

(1) (∃x)(A→ B) ⟨hyp⟩
(2) (∀x)A ⟨hyp⟩
(3) A[x := z]→ B[x := z]

〈
aux. hyp for (1); z fresh

〉
(4) A[x := z] ⟨(2) + spec⟩
(5) B[x := z] ⟨(3, 4) + MP ⟩
(6) (∃x)B ⟨(5) + Dual spec⟩

Remark. The above proves the conclusion using 7.8.6 and Γ =
{(∃x)(A→ B), (∀x)A}. Of course, this Γ proves (∃x)(A→ B). □

Notes on Logic© G. Tourlakis

7.8 Adding and Removing the Quantifier“(∃x)” 253

7.8.10 Example. We prove (∀x)(A→ B), (∃x)A ⊢ (∃x)B.

(1) (∀x)(A→ B) ⟨hyp⟩
(2) (∃x)A ⟨hyp⟩
(3) A[x := z] ⟨aux. hyp for (2); z fresh⟩
(4) A[x := z]→ B[x := z] ⟨(1) + spec⟩
(5) B[x := z] ⟨(3, 4) + MP ⟩
(6) (∃x)B ⟨(5) + Dual spec⟩ □

Notes on Logic© G. Tourlakis

254 Predicate Logic

7.8.11� Example. Here is a common mistake people make when argu-
ing informally.

Let us prove the following informally.

⊢ (∃x)A ∧ (∃x)B → (∃x)(A ∧B).

So let (∃x)A(x) and (∃x)B(x) be true.†

Thus, for some value c of x we have that A(c) and B(c) are
true.

But then so is A(c) ∧B(c).

The latter implies the truth of (∃x)
(
A(x) ∧B(x)

)
.

Nice, crisp and short.

And very, very wrong as we will see once we have 1st-order Sound-
ness in hand. Namely, we will show in the near future that (∃x)A ∧
(∃x)B → (∃x)(A∧B) is NOT a theorem schema. It is NOT provable.

†The experienced mathematician considers self-evident and unworthy of mention at least two things:
(1) The deduction theorem, and

(2) The Split Hypothesis metatheorem.

Notes on Logic© G. Tourlakis

7.8 Adding and Removing the Quantifier“(∃x)” 255

What went wrong above?

We said

“Thus, for some value c of x we have that A(c) and B(c) are true”.

The blunder was to assume that THE SAME c verified BOTH A(x)
and B(x).

Let us see that formalism protects even the inexperienced from such
blunders.

Notes on Logic© G. Tourlakis

256 Predicate Logic

Here are the first few steps of a(n attempted) FORMAL proof via
the Deduction theorem:

(1) (∃x)A ∧ (∃x)B ⟨hyp⟩
(2) (∃x)A ⟨(1) + Post⟩
(3) (∃x)B ⟨(1) + Post⟩
(4) A[x := z] ⟨aux. hyp for (2); z fresh⟩
(5) B[x := w] ⟨aux. hyp for (3); w fresh⟩

The requirement of freshness makes w DIFFERENT from z. These
variables play the role of two distinct c and c′. Thus the proof cannot
be continued. Saved by freshness! □ �

Notes on Logic© G. Tourlakis

7.8 Adding and Removing the Quantifier“(∃x)” 257

Nov. 21, 2022

7.8.12 Example. The last Example in this section makes clear that
the Russell Paradox was the result of applying bad Logic, not just bad
Set Theory!

I will prove that for any binary predicate ϕ we have

⊢ ¬(∃y)(∀x)(ϕ(x,y) ≡ ¬ϕ(x,x)) (R)

By the Metatheorem “Proof by Contradiction” I can show

(∃y)(∀x)(ϕ(x,y) ≡ ¬ϕ(x,x)) ⊢ ⊥

instead. Here it is

(1) (∃y)(∀x)(ϕ(x,y) ≡ ¬ϕ(x,x)) ⟨hyp⟩
(2) (∀x)(ϕ(x, z) ≡ ¬ϕ(x,x)) ⟨aux. hyp for (1); z fresh⟩
(3) ϕ(z, z) ≡ ¬ϕ(z, z) ⟨(2) + spec⟩
(4) ⊥ ⟨(3) + Post⟩

If we let the atomic formula ϕ(x,y) be Set Theory’s “x ∈ y”
then (R) that we just proved (in fact for ANY binary predicate ϕ
not just ∈) morphs into

⊢ ¬(∃y)(∀x)(x ∈ y ≡ x /∈ x) (R′)

In plain English (R′) says that there is NO set y that contains ALL
x satisfying x /∈ x.

Notes on Logic© G. Tourlakis

258 Predicate Logic

This theorem was proved without using even a single axiom of set
theory, indeed not even using “{. . .}-notation” for sets, or any other
symbols from set theory.

After all we proved (R′) generally and abstractly in the form (R)
and that expression and its proof has NO SYMBOLS from set theory!

In short, Russell’s Paradox can be expressed AND demonstrated in
PURE LOGIC.

It is remarkable that Pure Logic can tell us that NOT ALL COL-
LECTIONS are SETS, a fact that escaped Cantor! □

Notes on Logic© G. Tourlakis

Semantics of First-Order
Languages —Simplified

7.9 Interpretations

Systematically translate an abstract formula —symbol by symbol—
until it becomes a concrete mathematical formula, preferably famil-
iar to you.

In this translation ensure that there are no free variables, so the
mathematical formula is exactly ONE of true or false.

An interpretation of ONE wff —and of THE ENTIRE language,
that is, the set of ALL Terms and wff— is INHERITED from an
interpretation of all symbols of the Alphabet.

This tool —the Interpretation— Translates each wff to some formula
of a familiar branch of mathematics that we choose, and thus questions
such as “is the translated formula true?” can in principle be dealt with
(see 7.9.2 below for details).

An interpretation is totally up to us, just as states were in Boolean
logic.

259

260 Predicate Logic

The process is only slightly more complex.
Here we need to interpret not only wff but also terms as well.

The latter requires that we choose a NONEMPTY set of objects
to begin with. We call this set the Domain of our Interpretation and
generically call it “D” but in specific cases it could beD = N orD = R
(the reals) or even something “small” like D = {0, 5}.

Notes on Logic© G. Tourlakis

7.9 Interpretations 261

� An Interpretation of a 1st-order language consists of a PAIR of two
things:

The aforementioned domain D and a translation mapping M —
the latter translates the abstract symbols of the Alphabet of logic to
concrete mathematical symbols.

▶ This translation of the ALPHABET INDUCES a translation for
each term and wff of the language; thus of ALL THE LANGUAGE. ◀

Notes on Logic© G. Tourlakis

262 Predicate Logic

We denote the interpretation “package” as D = (D,M) displaying
the two ingredients D and M in round brackets.

The unusual calligraphy here is German capital letter calligraphy
that is usual in the printed literature to name an interpretation pack-
age.

On the chalk board I would use ordinary calligraphy, like “D”.

The package name chosen is usually the same as that of the Domain. �

Let me repeat that both D and M are OUR choice.

Notes on Logic© G. Tourlakis

7.9 Interpretations 263

7.9.1 Definition. (Translating the Alphabet V1)
An Interpretation D = (D,M) gives concrete counterparts (transla-

tions) to ALL elements of the Alphabet as follows:

In the listed cases below we may use notationM(X) to indicate the
concrete translation (mapping) of an abstract linguistic object X.

We also may use XD as an alternative notation for M(X).

� The literature favours XD and so will we. �

Notes on Logic© G. Tourlakis

264 Predicate Logic

Here are the actual translation RULES:

(1) For each FREE variable (of a wff) x, xD —that is, the translation
M(x)— is some chosen (BY US!) FIXED member of D.

� BOUND variables are NOT translated! They stay AS IS. �

(2) For each Boolean variable p, pD is a member of {t, f} that WE
CHOOSE!

(3) ⊤D = t and ⊥D = f .

This is just as we did —via states— in the Boolean case. As was
the case there we choose the value pD anyway we please, but for
⊤ and ⊥ we follow the fixed (Boolean) rule.

(4) For any (object) constant of the alphabet, say, c, we choose a
FIXED cD, as we wish, in D.

(5) For every function symbol f of the alphabet, the translation fD is
a mathematical function of the “real” or “concrete” MATH. It has
the same arity as f .

fD —which WE choose!— takes inputs from D and gives outputs
in D.

(6) For every predicate ϕ of the alphabet OTHER THAN “=”, our
CHOSEN translation ϕD is a mathematical RELATION of the
metatheory with the same arity as ϕ. It takes its inputs from D
while its outputs are one or the other of the truth values t or f.

Notes on Logic© G. Tourlakis

7.9 Interpretations 265

▶ NOTE THAT ALL the Boolean glue as well as the
equality symbol translate exactly as THEMSELVES:
“=” for “equals”, ∨ for “OR”, etc.

Finally, brackets translate as the SAME TYPE of bracket
(left or right).

□

Notes on Logic© G. Tourlakis

266 Predicate Logic

We have all we need now to translate wff, terms and thus the
entire Language:

7.9.2 Definition. (The Translation of wff)
Consider a wff A in a† first-order language.

Suppose we have chosen an interpretation D = (D,M) of the alpha-
bet.

The interpretation or translation of A viaD is a mathematical (“con-
crete”) formula of the metatheory or a concrete object of the metathe-
ory that we will denote by

AD

It is constructed as follows one symbol at a time, scanning A from
left to right until no symbol is left:

†A, not THE. For every choice of constant, predicate and function symbols we get a different alphabet, as we
know, hence a different first-order language. Remember the examples of Set Theory vs. Peano Arithmetic!

Notes on Logic© G. Tourlakis

7.9 Interpretations 267

(i) We replace every occurrence of ⊥,⊤ in A by ⊥D,⊤D —that is,
by f , t— respectively.

(ii) We replace every occurrence of p in A by pD —this is an assigned
by US TRUTH VALUE; we assigned it when we translated the
alphabet.

(iii) We replace each FREE occurrence of an object variable x of A
by the value xD from D that we assigned when we translated the
alphabet.

(iv) We replace every occurrence of (∀x) in A by (∀x ∈ D), which
means AND is read “for all values of x in D”.

(iv′) We replace every occurrence of (∃x) in A by (∃x ∈ D), which
means AND is read “for some value of x in D”.

(v) We emphasise again that Boolean connectives (glue) translate as
themselves, and so do “=” and the brackets “(” and “)”.

Theory-specific symbols in A:

(vi) We replace every occurrence of a(n object) constant c in A by the
specific fixed cD from D —which we chose when translating the
alphabet.

(vii) We replace every occurrence of a function f in A by the specific
fixed fD —which we chose when translating the alphabet.

(viii) We replace every occurrence of a predicate ϕ in A by the specific
fixed ϕD —which we chose when translating the alphabet. □

Notes on Logic© G. Tourlakis

268 Predicate Logic

Nov. 23, 2022

7.9.3 Definition. (Partial Translation of a wff) Given a wff A in
a first-order language and an interpretation D of the alphabet.

Sometimes we do NOT wish to translate a FREE variable x of A.
Then the result of the translation that leaves x as is is denoted by AD

x .

Similarly, if we choose NOT to translate ANY of

x1,x2, . . . ,xn, . . .

that (may) occur FREE in A, then we show the result of such “partial”
translation as

AD
x1,...,xn,...

� Thus AD has no free variables, but AD
xwill have x free IF x actually

DID occur free in A —the notation guarantees that if x so occurred,
then we left it alone. �

□

Notes on Logic© G. Tourlakis

7.9 Interpretations 269

7.9.4 Remark. What is the need for the concept and nota-
tion “AD

x ”?

Well, for one, note that when we translate (∀x)A FROM LEFT TO
RIGHT, we get “(∀x ∈ D)” followed by the translation of A.

However, ANY x that occur free IN A BELONG to (∀x) in the wff (∀x)A
thus are NOT FREE in the latter and hence are NOT translated!

Therefore, “(∀x ∈ D)” concatenated with “AD
x ” is what we get:

“(∀x ∈ D)AD
x ”. □

Notes on Logic© G. Tourlakis

270 Predicate Logic

Study ALL Examples!

7.9.5 Example. Consider the AF ϕ(x, x), ϕ is a binary predicate.
Here are some possible interpretations:

(a) D = N, ϕD =<.

Here “<” is the “less than” relation on natural numbers.

So
(
ϕ(x, x)

)D
, which is the same as ϕD(xD, xD) —in familiar nota-

tion is the formula over N:

xD < xD

More specifically, if we took xD = 42, then
(
ϕ(x, x)

)D
is specifically

“42 < 42”.

Incidentally,
(
ϕ(x, x)

)D
is false for ANY choice of xD.

� We will write
(
ϕ(x, x)

)D
= f to denote the above sentence symbol-

ically.

I would have preferred to write something like “V
((
ϕ(x, x)

)D)
= t

—“V ” for value— but it is so much easier to agree that writing the
above I mean the same thing! :) �

Notes on Logic© G. Tourlakis

7.9 Interpretations 271

For the sake of practice, here are two partial interpretations.

In the first we exempt the variables y, z. In the second we exempt x:

(i)
(
ϕ(x, x)

)D

y,z
is xD < xD. WHY?

(ii)
(
ϕ(x, x)

)D

x
is x < x.

(b) D = N, ϕD =≤ (the “less than or equal” relation on N).
So,

(
ϕ(x, x)

)D
is the concrete xD ≤ xD on N.

Clearly, independently of the choice of xD, we have(
ϕ(x, x)

)D
= t

□

Notes on Logic© G. Tourlakis

272 Predicate Logic

7.9.6 Example. Consider next the wff

f(x) = f(y)→ x = y (1)

where f is a unary function.

Here are some interpretetions:

1. D = N and fD is chosen to be fD(x) = x+1, for all values of x inD.

Thus
(
f(x) = f(y)→ x = y

)D
translates as this formula over N:

fD(xD) = fD(yD)→ xD = yD

xD + 1 = yD + 1→ xD = yD

Note that every choice of xD and yD makes the above true.

2. D = Z, where Z is the set of all integers, {. . . ,−2,−1, 0, 1, 2, . . .}.

Take fD(x) = x2, for all x in Z.
Then,

(
f(x) = f(y) → x = y

)D
is, more concretely, the following

formula over Z:

(xD)2 = (yD)2 → xD = yD

The above is true for some choices of xD and yD but not for others:

E.g., it is false if we took xD = −2 and yD = 2.

Notes on Logic© G. Tourlakis

7.9 Interpretations 273

Finally here are two partial interpretations of (1) at the beginning
of this example:

(i)
(
f(x) = f(y)→ x = y

)D
x
is x2 = (yD)2 → x = yD.

(ii)
(
f(x) = f(y)→ x = y

)D
x,y

is x2 = y2 → x = y. □

Notes on Logic© G. Tourlakis

274 Predicate Logic

7.9.7� Example. (Important!) Consider the wff

x = y → (∀x)x = y (1)

Here are a few interpretations:

1. D = {3}, xD = 3, yD = 3.

Since D contains one element only the above “choice” is ALL we
HAVE, being unique.

Thus (1) translates as

3 = 3→ (∀x ∈ D)x = 3 (2)

Incidentally, (2) is TRUE.

2. This time I take

D = {3, 5}, and again xD = 3 and yD = 3.

Thus (1) translates as:

3 = 3→ (∀x ∈ D)x = 3 (3)

This time (3) is FALSE since “3 = 3” is TRUE as before, BUT

“(∀x ∈ D)x = 3” is FALSE.

□ �

Notes on Logic© G. Tourlakis

7.9 Interpretations 275

7.9.8 Example. Let’s interpret the following in a few different ways:

(∀x)(x ∈ y ≡ x ∈ z)→ y = z (1)

1. First this is true if we really are talking about sets as “∈” com-
pels us to think, being THE predicate of set theory that says “is
a member of”.

Incidentally, (1) if interpreted in Set Theory, says that any two
sets y and z are equal if they happen to have the same elements
(x is in y iff x is in z). Hence is true, as I noted.

2. Let us now interpret in number theory (of N).

Take D = N and ∈D=<, where “<” is the relation “less than” on
N.

� Wait a minute! Can I do that?! Can I interpret “∈” as something OTHER
than “is a member of”?

Of course you can!

Only “=, (,),¬,∨,∧,→,≡,∀,∃” translate as themselves!

EVERYTHING ELSE is fair game to translate as you please! �

Notes on Logic© G. Tourlakis

276 Predicate Logic

So (1) translates as:

(∀x ∈ N)(x < yD ≡ x < zD)→ yD = zD

which is TRUE no matter how we choose yD and zD.

3. Next, let D = N and ∈D= |, where “|” indicates the relation “di-
vides” (with remainder zero).

E.g., 2 | 3 and 2 | 1 are FALSE but 2 | 4 and 2 | 0 are TRUE.

Then (1) translates as:

(∀x ∈ N)(x | yD ≡ x | zD)→ yD = zD

which is also TRUE for all choices of yD, zD.

It says: “Two natural numbers, yD and zD, are EQUAL if they
have exactly the same divisors”.

4. But consider something slightly different now: Take D = Z —the
set of all integers— and ∈D= |. Take also yD = 2 and zD = −2.

Then (1) translates as

(∀x ∈ Z)(x | 2 ≡ x | − 2)→ 2 = −2

This is FALSE, for 2 and −2 have the same divisors, but 2 ̸= −2.

So (1) is NOT TRUE IN ALL INTERPRETATIONS. □

Notes on Logic© G. Tourlakis

7.10 Soundness in Predicate Logic 277

7.10 Soundness in Predicate Logic

7.10.1 Definition. (Universally Valid wff)

Suppose that AD = t for some A and D.

� AD ≡ t is more correct, but the habit of writing “. . . = t” for the
sentence “. . . is true” deeply embedded in the mathematical culture
and even if we agree to write “ ≡ t” I will many times forget and write
“ = t” :) �

We say that A is true in the interpretation D or that D is a model
of A.

We write this thus:
|=D A (1)

A 1st-order wff, A, is universally valid —or just “valid”— iff EVERY
interpretation of the wff is a model of it, that is, we have that (1) holds
for every interpretation D of the language of A.

In symbols,

A is valid iff, for all D, we have |=D A (2)

(2) has the short expression (3) below:

|= A (3)

A formula A that satisfies (3) is sometimes also called Logically or
Absolutely valid. □

Notes on Logic© G. Tourlakis

278 Predicate Logic

7.10.2� Remark. NOTE the absence of the subscript “taut” in the no-
tation (3) above.

The symbols |= and |=taut are NOT the same!

For example, x = x translates as

xD = xD (4)

in EVERY interpretation D, and is thus true in every interpretation,
since it is a self-evident philosophical truth that every object is equal to itself!

Thus, we have |= x = x.

On the other hand, |=taut x = x is NOT a TRUE meta statement.
x = x is NOT a tautology! It is a prime formula (WHY?) hence a

Boolean variable!

NO Boolean variable is a tautology as I can assign to it the VALUE
FALSE. □ �

Notes on Logic© G. Tourlakis

7.10 Soundness in Predicate Logic 279

Valid Axioms 1. Ax1. Every axiom here is a tautology A. Thus
|=taut A.

This means that for all values that WE assign
to all the p,q, . . . that occur in A, and for all
values that WE assign to all prime formulas —
RECALL: these behave as Boolean variables—
we get the truth value of A come out TRUE.

Well, when we interpretA in some Interpretation D

we actually COMPUTE the values of the prime formulas
in this interpretation (rather than assign them).

However, the BOXED paragraph above makes
clear, that whether we COMPUTE OR ARBI-
TRARILY ASSIGN values to the prime formu-
las of A, the final value will be TRUE.

▶ A tautology does NOT CARE how the values of
its variables are obtained!◀

So, |=D A. As D was arbitrary, I got

|= A

Notes on Logic© G. Tourlakis

280 Predicate Logic

Valid Axioms 2. Ax2. (∀x)A→ A[x := t] is valid.

Indeed, take a D, for the language of A,x, t.

Now
(
(∀x)A→ A[x := t]

)D

is

(∀x ∈ D)AD
x →

(
A[x := t]

)D

(1)

To the left of → we explained the translation of
(∀x)A in Remark 7.9.4.

Let’s make the rhs of → more useable:

Notes on Logic© G. Tourlakis

7.10 Soundness in Predicate Logic 281

Claim:
(
A[x := t]

)D

is the same as AD
x [x := tD].

Indeed, start with the wff A depicted as a box be-
low.

A : . . . x . . . x . . .

Thus

A[x := t] : . . . t . . . t . . . (3)

Hence (
A[x := t]

)D

:

(. . .)D tD (. . .)D tD (. . .)D
(4)

But (4) is the result of applying “[x := tD]” to

AD
x : (. . .)D x (. . .)D x (. . .)D

that is, it is the same as

AD
x [x := tD]

With the claim verified, (1) is now TRUE:

Here is why: Assume the lhs of → in (1). That is,
suppose AD

x is true for all values i ∈ D. But then
it is true IN PARTICULAR for the value i = tD.

Notes on Logic© G. Tourlakis

282 Predicate Logic

Valid Axioms 3. Ax6. t = s → (A[x := t] ≡ A[x := s]). The
translation of this in D is —see the work we did for
Ax2!)

tD = sD →
(AD

x [x := tD] ≡ AD
x [x := sD])

(1)

Assume the lhs of “→” in (1). Thus tD = sD = k ∈
D.

The rhs of (1) becomes

AD
x [x := k] ≡ AD

x [x := k]

which is trivially true.

Notes on Logic© G. Tourlakis

7.10 Soundness in Predicate Logic 283

Valid Axioms 4. For the remaining axioms there is nothing new to
learn; see the text for proofs of their validity. Inci-
dentally, the axiom x = x has already been shown
to be valid (7.10.2).

Notes on Logic© G. Tourlakis

284 Predicate Logic

7.10.3 Metatheorem. (Soundness of Predicate Logic)
If ⊢ A, then |= A.

We omit the trivial proof by induction on proof length (we saw two
such proofs already).

For length one we NOTE that the ONLY formula that appears in
the proof is an axiom. But that is valid!

The induction step notes that our ONLY PRIMARY† rule, MP,
preserves truth.

†Given up in front.

Notes on Logic© G. Tourlakis

7.10 Soundness in Predicate Logic 285

7.10.4� Example. (Strong Gen; Again!) Can our logic prove strong
generalisation as a “derived rule”?

Namely, can we have

If Γ ⊢ A, then Γ ⊢ (∀x)A, with NO restriction on x?

If yes, take Γ = {A}.† We get

A ⊢ (∀x)A (1)

By the DThm, (1) allows this:

⊢ A→ (∀x)A (2)

Soundness OBJECTS to (2):

If we got (2) then, by Soundness, we get

|= A→ (∀x)A (3)

I will contradict (3) showing

̸|= A→ (∀x)A (4)

The Definition of “|=” (7.10.1) (4) dictates that I find ONE D such
that

(A→ (∀x)A)D = f (5)

� This D is called a countermodel of (2). �

†Then A ⊢ A, hence A ⊢ (∀x)A.

Notes on Logic© G. Tourlakis

286 Predicate Logic

PRACTICAL ADVISE: It is hopeless to search for a D FOR A
GENERAL A.

For a countermodel I ONLY need a SPECIFIC A (a counter-
model is a counterexample!)

▶ Always work with an atomic formula in place of A.

Now then! Take A to be atomic, for example, take A to be “x = y”
If (3) works, it should work with this special case of A!

DOES IT?

NO. We saw in Example 7.9.7(2.) (cf. Definition 7.10.1)

̸|= x = y → (∀x)x = y

So (2) is wrong and so is (1). □ �

Notes on Logic© G. Tourlakis

7.10 Soundness in Predicate Logic 287

7.10.5 Example. We have proved in class/NOTES/Text

⊢ (∃y)(∀x)A→ (∀x)(∃y)A

We hinted in class that we cannot also prove

⊢ (∀x)(∃y)A→ (∃y)(∀x)A (1)

To show that (1) is unprovable I pick a countermodel (=an inter-
pretation that makes the wff in it false).

Pick A to be something simple. Atomic is best!

I take D = N and x = y for A. Translating the wff in (1) I note

t︷ ︸︸ ︷
(∀x ∈ N)(∃y ∈ N)x = y→

f︷ ︸︸ ︷
(∃y ∈ N)(∀x ∈ N)x = y

Since the interpretation falsifies a special case of (1) the latter is not
provable (by soundness). □

Notes on Logic© G. Tourlakis

288 Predicate Logic

7.10.6 Example. We noted in class/NOTES/Text that we cannot prove

⊢ (∃x)A ∧ (∃x)B → (∃x)(A ∧B) (1)

To demonstrate this fact now we use Soundness and countermodels.

So, I pick a countermodel.

Pick A and B to be something simple. Atomic is best!

I take D = N and “x < 42” for A while I take “x > 42” for B.
Translating the wff in (1) I note

t︷ ︸︸ ︷
(∃x ∈ N)x < 42 ∧ (∃x ∈ N)x > 42→

f︷ ︸︸ ︷
(∃x ∈ N)(x < 42 ∧ x > 42)

Since the interpretation falsifies a special case of (1) the latter is not
provable (by soundness). □

Notes on Logic© G. Tourlakis

7.10 Soundness in Predicate Logic 289

7.10.7 Exercise. On the other hand, do prove by ∃-elimination the
other direction: We DO have

⊢ (∃x)(A ∧B)→ (∃x)A ∧ (∃x)B

□

Notes on Logic© G. Tourlakis

290 Predicate Logic

Nov. 28, 2022

7.10.8� Example. (Important!) Why is D ̸= ∅ important?
Well let us start by proving

⊢ (∀x)A→ (∃x)A (1)

Use DThm to prove instead

(∀x)A ⊢ (∃x)A

1) (∀x)A ⟨hyp⟩
2) A ⟨1 + spec⟩
3) (∃x)A ⟨2 + Dual spec⟩

However, if I took D = (D,M) with D = ∅ then look at the transaltion
of the formula in (1):

t vacuously︷ ︸︸ ︷
(∀x ∈ D)AD

x
† →

f︷ ︸︸ ︷
(∃x ∈ D)AD

x (2)

Soundness fails for the formula in (1). We DON’T like this! So we
NEVER allow D = ∅. □ �

†Do not forget that “(∀x ∈ D)AD
x ” means “(∀x)(x ∈ D → AD

x)”, while “(∃x ∈ D)AD
x ” means “(∃x)(x ∈

D ∧AD
x)”.

Notes on Logic© G. Tourlakis

Bibliography

[Chu36] Alonzo Church, A note on the Entscheidungsproblem, J. Sym-
bolic Logic 1 (1936), 40–41, 101–102.

[DS90] Edsger W. Dijkstra and Carel S. Scholten, Predicate Calculus
and Program Semantics, Springer-Verlag, New York, 1990.

[End72] Herbert B. Enderton, A Mathematical Introduction to Logic,
Academic Press, New York, 1972.

[GS94] David Gries and Fred B. Schneider, A Logical Approach to
Discrete Math, Springer-Verlag, New York, 1994.

[Man77] Yu. I. Manin, A Course in Mathematical Logic, Springer-Ver-
lag, New York, 1977.

[Sho67] Joseph R. Shoenfield, Mathematical Logic, Addison-Wesley,
Reading, MA, 1967.

[Tou03] G. Tourlakis, Lectures in Logic and Set Theory, Volume 1:
Mathematical Logic, Cambridge University Press, Cambridge,
2003.

[Tou08] , Mathematical Logic, John Wiley & Sons, Hoboken,
NJ, 2008.

291

	The Beginning
	Russell's Paradox
	Enters Logic!
	A look back at strings
	A Bad Alphabet

	The Formulas or well-formed-formulas (wff)

	Properties of the wff
	Boolean Wff
	Boolean Semantics

	What makes our Logic ``Classical''
	States and Truth tables
	Finite States
	Tautologies and Tautological Implication

	Substitution and Schemata
	Rules and Axioms of Boolean Logic
	blue Equational Proofs

	A Weak Post's Theorem and the Deduction Theorem Retold
	Soundness of Boolean Logic
	Completeness of Boolean logic (``Post's Theorem'')
	Deduction Theorem and Proof by Contradiction

	Resolution
	Predicate Logic
	The language of First-Order Logic
	Axioms and Rules for Predicate Logic
	First-order Proofs and Theorems
	Deduction Theorem
	Generalisation and ``weak'' Leibniz redRules
	Adding and Removing ``(x)''
	Examples
	redA Few Memorable Examples

	redWeak Leibniz
	Ad hoc Memorable Examples
	Adding and Removing the Quantifier``(x)''
	Interpretations
	Soundness in Predicate Logic

