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README FIRST! INSTRUCTIONS:

1. TIME-LIMITED ON LINE FINAL
EXAM.

You have 120 MIN to answer the EXAM
questions .

ABSOLUTELY last opportunity to upload
to eClass is BY 11:20am, that is, EX-
ACTLY 15 min after the Official End Time.

2. Only ONE file can be uploaded per stu-
dent.

3. If you submit photographed copy it still must be
ONE file that you submit. Either ZIP the
JPEG/PNG images OR import them in MS Word
and submit ONE Word file with the images attached.

4. Using the time allotted for the
uploading mechanisms (15 min) for the FI-
NAL EXAM-answering part is at your own discretion.

But also at your own risk.

FINAL EXAM not uploaded = FINAL

EXAM not written.

5. Please write your answers by hand as you nor-
mally do for assignments or use a word
processor that can convert to PDF. Microsoft
Word is acceptable to upload as is (without
conversion to PDF).

6. Whatever results were proved in class or appeared in
the assignments you may use without proof, unless I
am asking you to prove them in this Examina-
tion. If you are not sure whether some statement has
indeed been proved in class, I recommend that you
prove it in order to be “safe”.

Question MAX POINTS MARK

1 3
2 3
3 5

1 3
2 5
3 5
4 5
5 5

TOTAL 34
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The following are the axioms of Propositional Calculus: In what follows, A,B,C stand for arbitrary
formulae.

Properties of ≡
Associativity of ≡ ((A ≡ B) ≡ C) ≡ (A ≡ (B ≡ C)) (1)

Symmetry of ≡ (A ≡ B) ≡ (B ≡ A) (2)

Properties of ⊥,>
> vs. ⊥ > ≡ ⊥ ≡ ⊥ (3)

Properties of ¬
Introduction of ¬ ¬A ≡ A ≡ ⊥ (4)

Properties of ∨
Associativity of ∨ (A ∨B) ∨ C ≡ A ∨ (B ∨ C) (5)

Symmetry of ∨ A ∨B ≡ B ∨A (6)

Idempotency of ∨ A ∨A ≡ A (7)

Distributivity of ∨ over ≡ A ∨ (B ≡ C) ≡ A ∨B ≡ A ∨ C (8)

Excluded Middle A ∨ ¬A (9)

Properties of ∧
Golden Rule A ∧B ≡ A ≡ B ≡ A ∨B (10)

Properties of →
Implication A→ B ≡ A ∨B ≡ B (11)

The Primary Boolean rules are:

A,A ≡ B

B
(Eqn)

and
A ≡ B

C[p := A] ≡ C[p := B]
(Leib)
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The following are the Predicate Calculus Axioms:

Any partial generalisation of any formula in groups Ax1–Ax6 is an axiom for Predicate
Calculus.

Groups Ax1–Ax6 contain the following schemata:

Ax1. Every tautology.

Ax2. (∀x)A→ A[x := t], for any term t.

Ax3. A→ (∀x)A, provided x is not free in A.

Ax4. (∀x)(A→ B)→ (∀x)A→ (∀x)B.

Ax5. For each object variable x, the formula x = x.

Ax6. For any terms t, s, the schema t = s→ (A[x := t] ≡ A[x := s]).

There is ONLY ONE Primary First-Order rule; MODUS PONENS (MP)

A,A→ B

B
(MP )

In predicate calculus the most natural proofs are Hilbert-style.

The following metatheorems hold for both Propositional and Predicate Calculus:

1. Redundant >. Γ ` A iff Γ ` A ≡ >

2. Cut Rule. A ∨B,¬A ∨ C ` B ∨ C

3. Deduction Theorem. If Γ, A ` B, then Γ ` A→ B

4. Proof by contradiction. Γ,¬A ` ⊥ iff Γ ` A

5. Post’s Theorem. (Also called “tautology theorem”, or even “completeness of Propositional Calculus
theorem”)

If |=taut A, then ` A.

Also: If Γ |=taut A for finite Γ, then also Γ ` A.

6. Proof by cases. A→ B, C → D ` A ∨ C → B ∨D

Also the special case: A→ B, C → B ` A ∨ C → B

The Existential Quantifier ∃
(∃x)A stands for ¬(∀x)¬A

therefore (∃x)A ≡ ¬(∀x)¬A is a tautology, hence an absolute theorem.
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Useful facts from Predicate Calculus (proved in class—you may use them without proof):

We know that WL (not stated here; you should know this rule well! ) is a derived rule useful in Equa-
tional proofs within predicate calculus.

I More “rules” and (meta)theorems.

(i) “Renaming the Bound Variable”.

If z does not occur in (∀x)A as either free or bound, then ` (∀x)A ≡ (∀z)
(
A[x := z]

)
If z does not occur in (∃x)A as either free or bound, then ` (∃x)A ≡ (∃z)

(
A[x := z]

)
(ii) ∀ over ◦ distribution, where “ ◦” is “∨” or “→”.

` A ◦ (∀x)B ≡ (∀x)(A ◦B), provided x is not free in A

∃ over ∧ distribution

` A ∧ (∃x)B ≡ (∃x)(A ∧B), provided x is not free in A

(iii) ∀ over ∧ distribution.
` (∀x)A ∧ (∀x)B ≡ (∀x)(A ∧B)

∃ over ∨ distribution.
` (∃x)A ∨ (∃x)B ≡ (∃x)(A ∨B)

(iv) ∀ commutativity (symmetry).
` (∀x)(∀y)A ≡ (∀y)(∀x)A

(v) Specialisation. “Spec” (∀x)A ` A[x := t], for any term t.

(vi) Dual of Specialisation. “Dual Spec” A[x := t] ` (∃x)A, for any term t.

(vii) Generalisation. “Gen” If Γ ` A and if, moreover, the formulae in Γ have no free x occurrences,
then also Γ ` (∀x)A.

(viii) ∀ Monotonicity. If Γ ` A→ B so that the formulae in Γ have no free x occurrences, then we can
infer

Γ ` (∀x)A→ (∀x)B

(ix) ∀ Introduction; a special case of ∀ Monotonicity. If Γ ` A→ B so that neither the formulae in Γ nor
A have any free x occurrences, then we can infer

Γ ` A→ (∀x)B

(x) Finally, the Auxiliary Hypothesis Metatheorem. If Γ ` (∃x)A, and if y is a variable that does not
occur as either free or bound variable in any of A or B or the formulae of Γ —that is, it is fresh— then

Γ, A[x := y] ` B implies Γ ` B

Semantics facts
Propositional Calculus Predicate Calculus

(Boolean Soundness) ` A implies |=taut A ` A does NOT imply |=taut A
(Post) |=taut A implies ` A However, |=taut A implies ` A, and

(Pred. Calc. Soundness) ` A implies |= A

� CAUTION! The above facts/tools are only a fraction of what we have covered in class. They are very
important and very useful, and that is why they are listed for your reference here.

You can also use without proof ALL the things we have covered (such as the absolute theorems known
as “∃-definition”, “de Morgan’s laws”, etc.).

But these —the unlisted ones— are up to you to remember and to correctly state!

Whenever in doubt of whether or not a “tool” you are about to use was indeed covered in
class, prove the validity/fitness of the tool before using it! �
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Boolean Logic 1. (3 MARKS) Suppose ` A and ` B. Does it follow that
` A ≡ B?

If yes, give a proof.

If not, use soundness to justify your “NO”.

Post’s theorem is NOT allowed.

Boolean Logic 2. (3 MARKS) Suppose ` A ≡ B. Does it follow that ` A
and ` B?

If yes, give a proof.

If not, use soundness to justify your “NO”.

Post’s theorem is NOT allowed.

Boolean Logic 3. (5 Marks) Prove by Resolution:

`
(
X → (Y → Z)

)
→

(
(X → Y )→ (X → Z)

)
Caution: 0 Marks gained if any other technique
is used. In particular, Post’s theorem is NOT
allowed.

� A proof by resolution

1) MUST use proof by contradiction, and

2) It cannot/must not be “preloaded” with a long
Equational or Hilbert proof only to conclude with ONE
CUT.

Such a proof, if correct, loses half the points. �
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Predicate Logic 1. (3 MARKS) True or False and WHY —No correct
“WHY” = 0 MARKS:

For any formula A, we have ` (∀x)(∀z)(A ≡ A).

Predicate Logic 2. (5 MARKS) Use an Equational proof to establish the
∃-version of the one-point-rule:

If x is not free in t then

` (∃x)(x = t ∧ A) ≡ A[x := t]

Hint. Use the ∀-version of the one-point rule as a given.

Predicate Logic 3. (5 MARKS) Using soundness of predicate logic show
why the converse of Ax4 (p.3)

(∀x)(A→ B)→ (∀x)A→ (∀x)B (Ax4)

is not a theorem.

Predicate Logic 4. (5 MARKS) Prove ` (∀x)A ∨ (∀x)B → (∀x)(A ∨B).

Predicate Logic 5. (5 MARKS) You must use the technique of the “auxil-
iary hypothesis metatheorem” in the proof that you are
asked to write here. Any other proof (even IF correct)
will MAX at 0 MARKS.

For any formulas A,B, and C show that

` (∃x)
(
A ∨B → C

)
→ (∃x)(A→ C) ∧ (∃x)(B → C)
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