Contents

(1

The Beginning|

II.L1 Russell’s Paradoxl

[[31 A Bad Alphabet|.
[L.4 The Boolean well-formed-formulas (wff)| . . .
1.5 Building Formulas.|

Properties of the wil|

I Substiag [Sd |

4.1 Rules and Axioms of Boolean Logic|.
4.2 Brackets in Chains and Redundant [.

4.2.1 The “other EQN” and Redundant T{. . .
4.3 Equational Proofs|

FPost’s Theorem and the Deduction Theorem|

[5.1 Soundness of Boolean Logic|

.2 Completeness of Boolean logic (“Post’s Theorem™)|

[6-3 Deduction Theorem and Proof by Contradiction|

[6_Resolutionl

[7

Predicate Logic

[7.1 _The language of First-Order Logic|

7.1.1

10
17
19
27
31

37
37
61
63

69
69
(0]
7

87
97
121
123
127

167
168
170
171

177

2 CONTENTS

712 Existential Quantifier|. 202
713 OUND vy T 0 204
714 Pboolean Abstractions ... 205
715 IVlore Boolean abstraction examples| 209
716 SUD .tlT utions . e 212
1z _Partial Generalisationl......... 217
7.2 Axioms and Rules for Predicate Logic|, 218
[1.3 __First-order Proofs and Theorems| 220
[L4_ Deduction Theoreml e 223
[7.5 Adding (Removing) “(Vx)” to (from) the beginning of a wiff. 226
[7.5.1 Examples| 234
[7.5.2 A Few Memorable Examples| 0000, 235
[7.6 Weak Leibniz for 1st-Order Logic| 241

Notes on Logic(©) G. Tourlakis

Chapter 1
The Beginning

Sep. 3, 2025

1.1 Russell’s Paradox

9

...or, when things (in MATH) go “sideways” ...

@ A motivational tale.

4 The Beginning

1.1.1 Example. (Briefly about set notation)

Important. You do not need to know ANY set theory to under-
stand “Russell’s Paradox”.

This is just a short tale of misuse of Mathematics.

Sets are collections of MATH objects.

We represent sets either by explicit [zsting, like this:

e {0}
o {§,#,3,42}
e {0,1,2,3,4,...}

or by some “defining property”: The set of all ﬁﬂ that make
P(z) true, in symbols

S = {a: P(x)} (1)

%Strictly speaking you DON’T collect the various shapes and colours of the letter z. There is only ONE «.
The expression “set of all « such that P(x) is true” is sloppy for “the set of all VALUES of = such that P(x)

is true”.

As we know from discrete MATHs, (1) says the same thing as the

statement
r €S =P(x) (2)

Notes on Logic(©) G. Tourlakis

1.1 Russell’s Paradox

read “for any value of z, v € S is equivalent to P(x)”

Notes on Logic(©) G. Tourlakis

6 The Beginning

Why so? Because P(x) is an entrance condition)

A walue of x is placed in the set S IF and ONLY IF (iff) said value
passes the test P(zx).

Wait! Shouldn’t I have written (2) as

r €S = P(x) is true (2

Nope. When mathematicians state P(x) for some unspecified
fized (value of) x they mean “P(z) is true” for that value.

Notes on Logic(©) G. Tourlakis

1.1 Russell’s Paradox 7

Cantor believed (good grief! “believed”?! as did the mathematician
and philosopher Frege) that, for any property P(x), (1) defines a set
—they never proved this; just “belicved” and used it (!!) in
Cantorian Set Theory.

Which is neither here nor there because they never said what a set is.
They allowed ANY collection of (mathematical) objects to be a set!

They said: Check the meaning of the word “set” in a dictionary!

Notes on Logic(©) G. Tourlakis

8 The Beginning

Russell begged to differ, so he said: “Oh, yeah? How about this? Is

it a ‘set’?”
A Property of x
—~ =
R={z: x¢z }

where the “entry condition” /property “P(x)” here is SPECIFICALLY
ré¢x

Now, by (2) we have
reR=x¢zx

If R IS a set, then we can plug it IN the set variable 2 above to
obtain THE CONTRADICTION

ReR=R¢R

Notes on Logic(©) G. Tourlakis

1.1 Russell’s Paradox 9

How do we avoid Russell’s contradiction?

By admitting that R is NOT a set so we do not allow the substi-
tution! u

MEMO to Cantor/Frege: “Collections/sets/aggregates, etc. see
dictionary(!)” do NOT all have the same “rights”!

Some “collections” like “R” above cannot be substituted into a set
variable! Because they are NOT sets!

How can we separate the two?
1. Use axioms

OR

2. Use the Russell idea: Sets don’t just happen! They are built
by stages!

Notes on Logic(©) G. Tourlakis

10 The Beginning

1.2 Enters Formal Logic!

How do we get out out of this contradiction and many other contradic-
tions? —yes, there were many others in Cantor’s Set Theory
work.

e Cantor never said what sets really are and how they are built. He
just used a dictionary of synonyms instead of a definition! (collec-
tion, class, aggregate, etc., he suggested as dictionary synonyms.)

e MUST use logic (he did not) to argue how sets behave and what
they are.

WE, however in 1090A, will never deal with sets EVER again.
So we leave the task to set theorists ([JecT8|, [Lev79, [Tou03b]) or to
EECS 1028 (or EECS 1019).

We only felt we should motivate the case for Logic at the expense
of Cantor’s approach to Set Theory.

So Cantor was sloppy about what a set IS

OR how sets get formed.

We also do know that Euclid did not define what ARE the “points,
lines, or planes”; yet his geometry is free of contradiction.

Not just there is none found, BUT IN FACT we have a PROOF
that none will be EVER found, because they do NOT exist!

How come? He used the Axiomatic Method and Logic.

Notes on Logic(©) G. Tourlakis

¢

1.2 Enters Formal Logic! 11

Sep. 8, 2025

Formal Logic —means SYNTACTICALLY PERFORMED:;
Based on FORM.

Just like Programming! FORM is of Utmost Importance! You do
not/Cannot “handwave” to a computer!!

Logic was invented by Russell and Whitehead, and especially Hilbert,
to salvage Mathematics from “antinomies” and “paradoxes”, both words
derived from Greek, and both meaning contradictions.

And remember. Only ONE contradiction is enough to de-
stroy a theory!

Destroy how?

Well, the contradictory theory “thinks” that EVERY
formula (statement) is a theorem. So it is USELESS.

Notes on Logic(©) G. Tourlakis

12 The Beginning

@ How does formal logic salvage Mathematics?

Once you learn your axioms and your rules you will hardly
ever write faulty proofs.

You cannot pull fake facts off the air —any more than you can
pull fake programming instructions off the air!!!— but your
facts MUST be axioms or PREVIOUSLY proved theorems

At the same time, the rules of logic that you use

MUST NOT DEPEND on an arbitrary choice (yours, Cantor’s, or

mine).

Notes on Logic(©) G. Tourlakis

1.2 Enters Formal Logic! 18

Connection of Formal Logic with Programming

(1) In programming we use syntactic rules to write a program in order
to enable the computer to solve some problem computationally.

(2) In logic you use the syntactic rules to write a proof that establishes
a theorem ——colloquially, that is a “true statement of MATH” —
so that the whole process (writing the proof and communi-
cating it) convinces another math-literate person that the proof
is “correct”.

Notes on Logic(©) G. Tourlakis

14 The Beginning

Kinds of logic reasoning that we will thoroughly examine and use in
this course.

1. Equational logic —also known as calculational logic.

Introduced by [DS90] and simplified by [GS94] and later by [Tou0§]
to make it accessible to undergraduates. Software Engineers use
it.

2. Hilbert-style logic. This is the logic which most people use to write
their mathematical arguments in publications, lectures, etc.

Notes on Logic(©) G. Tourlakis

1.2 Enters Formal Logic! 15

Logic is meant to certify mathematical truths syntactically.

Logic is normally learnt by

e A thorough study and effort to memorise Definitions, Rules
and Axioms.

e A LOT of practice.

e By presenting and teaching it gradually, namely

1. First, learning the Propositional Logic (also known as
Boolean Logic).

Here one learns how logical statements combine using connec-
tives familiar from programming like OR, AND, and NOT.

Boolean logic is not expressive enough to formulate statements
about mathematical objects. Naturally, if you cannot ask it —

Notes on Logic(©) G. Tourlakis

16 The Beginning

a question about such objects— then you get no answer either.

2. Next, learning Predicate Logic (also known as First-
Order Logic).

This is the full logic of the mathematician, the software
engineer and computer scientist as it lets you formulate
and explore statements that are about mathematical objects
like numbers, strings and trees, programs (small, large and
VERY large) and many others.

The axioms and rules of the first logic above are PART of the
second. So it is like learning a PART of a programming language
—say PYTHON— first and then turning to learning and mastering

the ENTIRE language.

Notes on Logic(©) G. Tourlakis

1.8 A REVIEW of “strings” 17

1.3 A REVIEW of “strings”

1.3.1 Definition. (Strings; also called Expressions)

1. What is a string over some alphabet of symbols?

It is an ordered finite sequence of symbols from the alphabet
—with no gaps or other “separators” between symbols.

1.3.2 Example. If the alphabet is {a, b} then here are a few strings:

Notes on Logic(©) G. Tourlakis

18 The Beginning

What do we mean by “ordered”? We mean that order, LENGTH
AND multiplicity matter!

For example, aaabb and bbaaa are different strings.
So are aabbb and baaaa.

We indicate this by writing aaabb # bbaaa and also aabbb # baaaa.

Moreover, aa # aaaa.

@ Two strings are equal iffﬂ they have the same length
n and at each position —from 1 to n— both strings have
the same symbol. So, aba = aba, but aa # a and aba # baa. @

TIf and only if.

Notes on Logic(©) G. Tourlakis

1.8 A REVIEW of “strings” 19

1.3.1 A Bad Alphabet

Consider the alphabet B = {a, aa}.

This is bad. WHY?

Because if we write the string aaa over this alphabet we do not
know what we mean by just looking at the string!

Do we mean THREE a like

a a a

Or do we mean

Or perhaps

aa a

We say that the alphabet B leads to ambiguity.

Notes on Logic(©) G. Tourlakis

20 The Beginning

Since we use NO separators —like a space or a comma— be-
tween symbols in denoting strings we MUST ALWAYS choose
alphabets with single-symbol items.

Notes on Logic(©) G. Tourlakis

1.8 A REVIEW of “strings” 21

2. Names of strings: A, A", A5, B,C, S, T.

What for? CONVENIENCE AND EASE OF EXPRESSION.
Thus A = bba gives the string bba the name A.

Names vs [S: “Practicing” mathematicians and computer scien-
tists take a sloppy attitude towards using the verb “BE/IS”.

When they say “let A be a string” they mean “let A name a string”.

@ Same as in “let x be a rational number”. Well x is not a number
at all!

It is a letter!

We mean “let x STAND for, or NAME, a rational number”

Notes on Logic(©) G. Tourlakis

22 The Beginning

3. Operations on strings: Concatenation. From strings aab and baa,
concatenation in the order given yields the string aabbaa.

If Ais a string (meaning 11AIT1CS a string) and B is another,
then their concatenation AB is not a concatenation of the names

but is a concatenation of the contents. If A = aaaa and B = 101
then AB = aaaalOl.

Incidentally,
BA = 10laaaa # aaaal0l = AB

: S . .
Thus in general concatenation is not commutative as we sa
Why “in general”?

Well, if X =aa and Y = a then XY = aaa =Y X.

Special cases where concatenation does commute exist!

Notes on Logic(©) G. Tourlakis

1.8 A REVIEW of “strings” 23

4. Associativity of concatenation.

It is expressed as (AB)C = A(BC') where bracketing here denotes
invisible METAsymbols (they are NOT part of any string!) that
simply INDICATE the order in which we GLUE, from left to right.

At the left of the “=" we first concatenate A and B and then
“glue” C' at the right end.

A B C
if A=1,B=2,C =3 then A(BC) =123
NOT 1(23)

To the right of “=" we first glue B and C and then glue A to the
left of the result.

In either case we did not change the relative positions of
A, B and C.

The property is self-evident.

I can now skip most brackets and write (ABC)D and you know
what I mean! I can also just write ABC'D and I mean the same
string.

Notes on Logic(©) G. Tourlakis

24 The Beginning

5. Empty string. A string with no symbols, hence with length O.
Denoted by .

M) =Q, and QA = Q
% How is A different than () the empty set?

Well one is of string type and the other is of set type. So? The
former is an ORDERED empty set, the latter is an UNORDERED
empty set that moreover is oblivious to repetitions.

[mean, aaa # a but {a,a,a} = {a}.

6. Clearly, for any string A we have AX = AA = A as concatenation
of A adds nothing to either end.

Notes on Logic(©) G. Tourlakis

1.8 A REVIEW of “strings” 25

7. Substrings. A string A is a substring of B iff A appears as is as a
part of B.

@ So if A = aa and B = aba then A is NOT a substring of B. Its
members both appear in B (the two a) but are not together as
they are in A. A does not appear “as is”.

So if A = aa and B = baab then A IS a substring of B.

Can we get rid of all this bla-bla with a proper definition?
Sure:

1.3.3 Definition. A is a substring of B iff for some strings (named)
) and R we have B = (QAR. O

@ We also say A is part of B.

Notes on Logic(©) G. Tourlakis

26 The Beginning

8. Prefiz and suffix. Ais a prefiz of B if for some string V', B = AV.

So A is part of B up in front!

A is a suffix of B if for some string U, B = UA. O

Example:) is a prefix and a suffix, indeed a part, of any string B.
Here are the “proofs” of the two cases I enumerated:

e B=)\B
e B =B\

WHAT ABOUT THE THIRD CASE?

Well, B = BA.

Notes on Logic(©) G. Tourlakis

1.4 The Boolean well-formed-formulas (wff) 27

Sep. 10, 2025

1.4 The Boolean well-formed-formulas (wff)

The Syntax of logic.

Boolean Logic at first!

Boolean logic is the “Algebra of statements”. We start with atomic
statements and build complex statements using “glue” as I call the
Boolean connectives

A\, V, =, =

Atomic statements have NO glue! We usually denote them by p, ¢, r
with or without primes or subscripts.

E.g., p,q,r, s all are (meaning, all stand for) unspecified atomic
statements.

Boolean logic has precisely two specific statements (“constants”).

Read on! @

Examples of statements that Boolean logic can express:

p, (—p) and also ((p V q) Ar). And more!

Notes on Logic(©) G. Tourlakis

28 The Beginning

Can I see inside atomic statements like p to see what they mean?

NO!! We cannot!

But we can assign arbitrarily “true” or “false” wvalues to atomic
statements and then proceed to see how these truth values propagate
when I apply glue. '

That is all that Boolean logic can do.

And this ends up being quite useful! Read on!

Notes on Logic(©) G. Tourlakis

1.4 The Boolean well-formed-formulas (wff) 29

1.4.1 Definition. (Alphabet of Boolean Symbols)

Al.

A2.

A3.

A4.

Names for vartables, which we call “propositional” or “Boolean”
variables.

These are p,q,r, with or without primes or subscripts (indices)

(e.g., p,q, 7, P, qu3, 785 are all names for Boolean variables).

Thus we have INFINITELY MANY Boolean variables. This
will be useful later!

Two symbols denote the Boolean constants, T and 1. We pro-
nounce them “top” and “bot” respectively.

What are T and L good for? We will soon see!

(Round) brackets, i.e., “(” and “)” (employed without the quotes,
of course).

Boolean “connectives” that I will usually call “glue”.

We use glue to put a formula together much like we do so when
we build model cars or airplanes or houses.

The symbols for Boolean connectives (glue) are

- AV == (1)

Notes on Logic(©) G. Tourlakis

$5 4

30 The Beginning

and are read from left to right as “negation, conjunction, disjunc-
tion, implication, equivalence”. O

We stick to the above symbols —EXACTLY as written!!!—
for glue (no pun!) in this course! Just as we do in programming,

NO DEVIATION IS PERMITTED!!!

You cannot uSe any symbols you please or “like”. Can you do
so in C++4, JAVA, or Pascal? Of course, NOT!

SPEAKING BY ANALOGY, You use THFE symbols of A Pro-
gramming Language as THEY ARE GIVEN.

If not, your program does NOT work and your GRADE bottoms!

Same holds in logic!

Notes on Logic(©) G. Tourlakis

4

$4 4

1.5 Building Formulas. 31

1.5 Building Formulas.

1.5.1 Definition. (Formula Construction (process)) A formula construction
(in the text also called “formula calculation’ﬂ) is any finite (ordered)

sequence of strings over the alphabef| of Boolean logic V that obeys the

following three specifications:

C0. We write ONE string per line (vertically).

C1. At any step we may write precisely OI1€ symbol from categories

Al. or A2. above (l.4.1), that is, variables (p,¢",r35, etc.) or
constants (L or T).

C2. At any step we may write precisely O7.€ string of the form (—A),
as long as we have written the string (named) A already at a previous step.

So, “(=A)” is a string that has “(=" (no quotes) as a prefix, then
it has a part we named A, and then it has “)” (no quotes) as a
suffix.

[must stress that the letter A NAINES the string that was written
down earlier.

In the construction, we did not write “A” but rather wrote the
string-contents of “A”.

TWe can also say “Formula Building”.
*“Over the Alphabet”: Using exclusively symbols from the Alphabet V that we adopted.

Notes on Logic(©) G. Tourlakis

32 The Beginning

Just as in a program: When you issue the command “print X”
you mean to print what the X contains as value —what it
names. You do 10t mean to print the letter “X”!

C3. At any step we may write precisely O/NE of the strings (AAB),
(AV B), (A — B), (A= B), as long as we have already written

FACH of the TWO strings A and B carlier. O

@ We do NOt_care which we wrote first, A or B.

Notes on Logic(©) G. Tourlakis

1.5 Building Formulas. 33

1.5.2 Definition. (Boolean formulas (wff)) Any string A over the
alphabet V (A1.-A4.) is called a Boolean formula or a propositional
formula —in short wff— iff A is a string that appears in some formula
construction. n

Let’s parse the “1fF that is ubiquitous in Definitions like this one:

iff 1. The “IF” part: IF the string (that we NAMED) A appears
in a formula construction, then it is a wff.

iff 2. The “ONLY IF” part: [have got a wif (NAMED) B in my
pocket. Well, I am guaranteed that there is a formula construc-
tion out there where (a copy of) B appears!

Notes on Logic(©) G. Tourlakis

34 The Beginning

1.5.3 Remark. That is:

Ewvery string that appears in a formula construction is a wif. The
definition also says,

Conversely, “do you want to know if A is a wff? Just make sure
you can build a formula construction where A appears.” O

Notes on Logic(©) G. Tourlakis

1.5 Building Formulas. 35

1.5.4 Example. We write formula constructions vertically, per defi-
nition. Below I also use numbering and annotation (in “(...)” brackets)
to explain each step.

(1) L (const)
(2) »p (var)

(3) (=L) (1) + =)
4) L (const)
(5) T (const)

Note that we can have redundancy and repetitions.

Ostensibly the only nontrivial info in the above is that (—1) is a
formula. But it also establishes that 1. and T and p are
formulas. How so?

Notes on Logic(©) G. Tourlakis

36 The Beginning

(1) L (const)
(2) p (var)

(3) (=T) {oops!)
4) L (const)
(5) T (const)

Why the “oops”? The above is wrong at step (3). I have not
written T in the construction as [should before I attempted to
use it!

]

Notes on Logic(©) G. Tourlakis

Chapter 2

Properties of the wit

Here we speak about wiff —and discover some useful properties they
have— before we get to our main task, eventually, of USING wff in

proofs.

2.1 Boolean Wff

Let us repeat
2.1.1 Definition. (Boolean formulas, or wff) A string (or expres-
sion) A over the alphabet of Boolean symbols V is called a Boolean

formula or a Boolean well-formed formula (in short wff) 4ff it occurs
in some formula construction.

The set of all wff we denote by the all-capitals WFF.

The wif that are either propositional variables

/!
p,q,p ,T123,--.

37

38 Properties of the wff

or L or T, in short, glue-less , we call Atomic wit.

Notes on Logic(©) G. Tourlakis

2.1 Boolean Wif 39

Notation. META names. We often want to say things such as

Y

“...bla-bla ... for all variables p ...”.
» Well this is not exactly right! There is only ONE variable p!

We get around this difficulty by having informal names (in the
metatheory as we say) for Boolean variables: p,q,r’, etc.

Any such bold face informal variable can stand for any actual vari-
able of our alphabet ¥V whatsoever.

So “all variables p” means “any of the actual variables p, ¢, 1110001, - - -

that p may stand for” while “all p” is meaningless!

Notes on Logic(©) G. Tourlakis

4

40 Properties of the wff

We can give a definition of formulas that is independent
from formula constructions: OK, the above Definition [1.5.2] says
that A is a wif iff it appears in a construction as

1. Atomic: L, T.p

so is a wff
N\

2. A negation (—B), where B appeared earlier in the construction

3. A string (BAC) or (BVC)or (B — C)or (B=C), where B

so are wffs
7\

and C appeared earlier in the construction

@ BUT we can say “B (so did (') Appeared EARLIER” differ-
ently:

“B (same for C') is a wif”

So,

Notes on Logic(©) G. Tourlakis

2.1 Boolean Wff 41

2.1.2 Definition. (The Recursive Definition of wff!!!) An expres-
sion A over V is a wif just in case A is ONE of:

(1) Atomic (p, L, T)
OR

(2) (=B), (BAC), (BV(C), (B—C), (B=C), where B and C" are
wif.]

Notes on Logic(©) G. Tourlakis

42 Properties of the wff

2.1.3 Remark. The formulas (=A), (A A B), (AV B), (A — B),
(A = B) are pronounced in English, from left to right, “not A”, “A
and B”, “A or B”, “if A then B” (but also “ A implies B”), “A is
equivalent to B”. O

Notes on Logic(©) G. Tourlakis

2.1 Boolean Wif 43

Sep. 15, 2025

2.1.4 Example. In the formula below “V” is the last glue applied.

last glue

!
(A—=B) Vv O

2.1.5 Remark. The wff in Remark 2.1.3 have the same names as
their “last glue”, namely, negation, conjunction, disjunction, impli-
cation and equivalence.]

Pause. Why did I say “LAST” glue?

Notes on Logic(©) G. Tourlakis

44 Properties of the wff

2.1.6 Example. Using let us verify that ((pV ¢) V) is a wif.
Well, here is a formula construction written with annotations:

(1) p (atomic)
(2) q (atomic)
(3) r (atomic)
4) (»Va) (1 + 2+ V-glue)
5) ((pvqg Vvr) (44 3+ V-glue)

Do we have to write down all the atomic wft at the very beginning?
Not really, but it is important to write them BEFORE they are used
in the construction!

So, this works too:

(1) p (atomic)

(2) ¢ (atomic)

3) (pVaq) (1 + 2+ Vv-glue)

4) r (atomic)

5) ((pvqg Vvr) (44 3+ V-glue)
Recursively:

wj]if
g wff wff
atomic atomic atomic
(TP~ VgV

4

Notes on Logic(©) G. Tourlakis

2.1 Boolean Wff 45

Intuitively, immediate predecessors of a wif are the formu-
las on which we applied the last glue.

2.1.7 Definition. (Immediate predecessors (i.p.))

1. No atomic formula has immediate predecessors.

2. Any of the following wif
(AANB),(AV B),(A— B),(A=B)
has as i.p. A and B, and maybe others (Read On!).

3. Ais an i.p. of (—A), and maybe has others (Read On!). O

2.1.8 Example.
e Theip. of (pVgq)Vr)are (pVg) and r

e The i.p. of (pV q) are p and ¢
e The only i.p. of (=T)is T

Notes on Logic(©) G. Tourlakis

46 Properties of the wff

2.1.9 Remark. (Priorities of glue (connectives)) The priorities of
glue, from left to right in (1) below, go from strongest to weakest.

_|7 /\7 \/7 _>7 = (1)

4

Why do we care?” What does “priority” do?

Well, suppose we do not want to always write wif down with all the
brackets that Definitions [1.5.2] and [2.1.2| require.

Why wouldn’t we? For better readability!

Thus we agree to judiciously omit brackets in a manner that we can
reinsert them correctly if we are required to! @

That is, we agree on how to write formulas sloppily and get away
with it!
Is there any other way to agree on priorities?

Yes, BUT: As it is with any agreement between any two par-
ties, there can be ONLY ONE agreement.

Remember. We are learning a “programming” language!!

So please do follow (1) above and the clarifications that follow below.

Anything else will be [wrong). &

Notes on Logic(©) G. Tourlakis

2.1 Boolean Wff 47

The “algorithm” is that whenever two pieces of glue compete for a
variable as in, for example,

VDAL

then the stronger glue wins (higher priority). In this case it is A that
wins and “gets” the p.
This means brackets were intended —and hence are reinserted—
this way:
V(pA...

What if we have the situation
.VpV... (2)

i.e., same glue left and right of p?
We have the agreement that all glue is right-associative, that is, in a
chain like (2) the glue on the right wins! We insert brackets this way:

. V(pV...

In particular

—|—\—\p

means

<ﬁ(ﬁ(ﬁp))>

Notes on Logic(©) G. Tourlakis

48 Properties of the wff

p—q—r— L

means

(p— (g — (r—1)))

In (p — q) — r cannot remove the brackets; all are needed.

Notes on Logic(©) G. Tourlakis

2.1 Boolean Wff 49

2.1.10 Definition. (Complexity of a wif) The complexity of a wit
is the number of occurrences of connectives (glue) in it. Counting
occurrences means that multiplicity matters and counts! O

2.1.11 Example. Clearly we can compute complexity correctly whether
we wrote a formula with all its brackets or not.

For example, the complexity of p — 1 — r is 2 whether we wrote
it with no brackets or wrote it as Definitions [[.5.2] and 2.1.2] want:
(p— (L —=r)).

Directly from the definition above, every atomic formula has com-
plexity zero.]

Notes on Logic(©) G. Tourlakis

50 Properties of the wff

All the theorems (and their corollaries) in this section are ABOUT
formulas of Boolean logic, and their FORM.

They are not theorems OF Boolean logic. This concept we have
not defined yet!!

Theorems that are ABOUT Boolean logic we call METAtheorems.

2.1.12 Metatheorem. FEuvery formula A has equal numbers of left and
right brackets.

Proof. Induction on the complexity, let’s call it n, of A.

1. Basis. n = 0. Then A has no glue, so it is atomic. But an atomic
formula has no left or right brackets!

Since 0=0 we are good!

2. Induction Hypothesis, in short “I.LH.” Fix an n and assume the
statement for all A of complexity < n.

3. Induction Step, in short “I.S.”, is for any A of complexity n + 1.
Asn+1> 0, Ais NOT atomic THEREFORE it has one of TWO
forms:

Notes on Logic(©) G. Tourlakis

4

2.1 Boolean Wff 51

(a) Ais (-B) —where B is a wif,
By I.H. —applicable to B since it has complexity < n— B has

equal number of left and right brackets. Forming A we added
one left and one right. So, total left=total right for A.

(b) Ais (Bo (), where we wrote “o” as a metasymbol that stands
for any binary glue among

/\7 \/7 %75

By I.H.

Blefts = k, Brights = k,Clefts = k', Crights = k'
So, after gluing,

BandClefts = k + k', BandCrights = k + K

Overall (after adding external brackets for A),

we have k + k' + 1 lefts and k + &’ + 1 rights. Bingo!

Notes on Logic(©) G. Tourlakis

52 Properties of the wff

IMPORTANT! You will note that the induction for the for-
mula A above essentlally went like this:

e Prove the property for the atomic formulas p, L, T
Then we assumed the [.LH. that all the i.p. of A have the property.
and we proved (1.S.)

e If Ais (—=B), then A has the property since the i.p. B does (WHY
B does?

BY I.H. on i.p.)

The technique above is called Induction on (the shape of) formulas
and does not need the concept of complexity.

This is how we will do it in our inductions going forward. @

Notes on Logic(©) G. Tourlakis

2.1 Boolean Wif 53

2.1.13 Corollary. Every nonempty proper prefix of a wff A has an
excess of left (compared to right) brackets.

Proof. 1 will do induction on formulas A.
e Basis. A is atomic. Then we are done since A has NO nonempty
proper prefix!

People also say “then there is nothing to prove” or “the state-
ment is vacuously satisfied”.

@ What just happened here?! Well, I am claiming “the statement
is true” and suppose that you are claiming “the statement is
false”.

It is for you to give me a countererample to what I said in order
to show that you are right: Namely,

You must produce a nonempty proper prefix of A
that fails the property.

BUT there is no way! There is NO nonempty proper prefix of Al

So I win!

o Assume the 1.H. that all the i.p. of A have the property.

Notes on Logic(©) G. Tourlakis

54 Properties of the wff

e For the I.S. we examine ALL possible fOT’ 1S of nonempty proper
prefixes. These are:

1. Case where A is (—B). A nonempty proper prefix of A has one
of the four forms below:

(a) (Then clearly we have an excess of “(” The [.H. was
NOT needed.

(b) (= Then clearly we have an excess of “(” The [.H. again
was NOT needed.

(c) (=D, where D is an nonempty proper prefix of B. D
already has an excess of “(” by the I.LH. that applies since
B is an i.p. of A.
So, adding to them the leading red “(” does no harm!

(d) (=B Now (2.1.12)) B has equal number of lefts and rights.
The leading (red)“(” contributes an excess. The [.H. again
was NOT needed.

Notes on Logic(©) G. Tourlakis

2.1 Boolean Wff 55

2. Ais (Bo('). A nonempty proper prefix of A has one of the six
forms below:

(a) (Then clearly we have an excess of “(” The I.H. was
NOT needed.

(b) (B, where B’ is an nonempty proper prefix of B. B’
already has an excess of “(” by the I.LH. that applies since
B is an i.p. of A. So, adding to them the leading “(” does
no harm!
C has balanced brackets so it does not spoil the above.

(c) (B B has balanced bracket numbers by 2.1.12] thus the
leading “(” creates a majority of “(”.

(d) (Bo As o adds no brackets we are done by the previous
case.

(e) (BoC' Here B is a formula so it contributes 0 excess. C’
is a nonempty proper prefiz of C' and the I.H. applies
to the latter as it is an i.p. of A.

So C' has an excess of “(” and the leading “(” of A helps too.

(f) (BoC Neither B nor C' contribute an excess of “(” as
both are formulas. The leading red “(” breaks the balance
in favour of “(”. O

Notes on Logic(©) G. Tourlakis

56 Properties of the wff

This is easy:

2.1.14 Theorem. FEvery formula A begins with an atomic wff, or with
a {((77'

Proof. By[2.1.2] A is one of
e Atomic p, L, T
e (—B)
e (Bo(C) where o € {A,V,—, =}

So, in the first case A begins with an atomic wff, and in the other two
begins with an “(”.

No Induction was used or needed!]

Notes on Logic(©) G. Tourlakis

¢

2.1 Boolean Wff 57

2.1.15 Theorem. (Unique Readability) The i.p. of any formula A
are unique.

So we can “deconstruct” or “parse” a formula in a unique way: A
formula is exactly one of atomic, a negation (—B), a disjunction
(BVC), a conjunction (BAC'), an implication (B — C), an equivalence
(B=0).

Proof.

e Clearly no atomic formula can ALSO be “read” as one of

a negation, a disjunction, a conjunction, an implication, an equiv-
alence

since the atomic contains no glue, but all the others do.

e Can we read a formula A as two distinct negations? That is, U514

in this proof ONLY “=7 as equality of strings, can we have
A= (=-B)=(-C)?

No, since (—B) = (=C) implies that after we match the first two
symbols (left to right) then we will continue matching all symbols
—Dby position— until we match all of B with C' and finally match
the rightmost “)”.

e Can we read a formula A as a negation and as a disjunction, or a
conjunction, or an implication, or an equivalence? That is, can I
have

A= (=-B)=(CoD)?
No, since if we have (=B) = (C' o D), then from left to right the
first position is OK (match) but the 2nd is NOT: ' cannot begin

with “=7 (see [2.1.14)).

Notes on Logic(©) G. Tourlakis

58 Properties of the wff

e Can we read a formula A as a (B o () and also differently as a
(Do Q), where o stands for any binary glue (including “”)?

Let’s assume that we can and get a contradiction.

Well, note first that if (B o C) = (D ¢ Q) then if we have B = D
then this forces o = ¢ and hence also that

¢)=Q)
which trivially (remove the ending “)”) leads to C' = Q.

BUT this is not the case that we are worried about.

So, assume that B £ D. There are two cases.

Case 1. Bisshorter than D, so is a nonempty proper prefix of D. Then,
by [2.1.13] B has an excess of left brackets. But being a wif it
also has balanced numbers of left /right brackets. Contradic-
tion!

Case 2. D is shorter than B so is a nonempty proper prefix of B. Then,
by [2.1.13], D has an excess of left brackets. But being a wit it
also has balanced numbers of left /right brackets. Contradic-
tion!

L]

Notes on Logic(©) G. Tourlakis

2.1 Boolean Wif 59

2.1.16 Remark. Why do we care about unique readability?

OK. Here is an Example from Arithmetic. Let us define arith-
metic expressions (using only +, X) on three numbers, 1, 2, 3. Let us
name all such expressions by the generic name “E”.

Consider the recursive definition below for E, where “::=" is read
“Is defined as (the rhs)”

1. FEi:=1or F::=2o0r F ::=3
OR

2.F:=F+ F.

The lhs says that to figure the leftmost E out, figure out the two
rhs E (recursive calls!) and put a glue of “+” between the two.

@ [can also say that the definition here says “An (arithmetic) ex-
pression F is the sum of TWO arithmetic expressions £”.

Is E ::= E'+ E" “more correct?”. NO!

In recursive programming you call the SAME procedure E recur-
sively. Not by some OTHER names £’ and E"!

OR

3. F:=FE x FE.

The lhs says that to figure the leftmost £ out, figure out the two
rhs F (recursive calls!) and put a glue of “x” between the two.

So an example of FE is

14+2x3 (1)
What is its value? What are the i.p. of (1)?

Notes on Logic(©) G. Tourlakis

60 Properties of the wff

Well, if I say 1 +2 (+ done first) and 3, then I get value 9.
If I'say 1 and 2 x 3 (x done first), then I get value 7.

Value s slippery! We have ambiguity!

So unique i.p. 1S important!

Notes on Logic(©) G. Tourlakis

4

2.2 Boolean Semantics 01

Sep. 17, 2025

2.2 Boolean Semantics

FORMAL (=syntactically practised) Boolean Logic is about PROV-
ING, SYNTACTICALLY, Boolean THEOREMS. NOT about com-
puting so-called truth values such as “TRUE” or “FALSE”.

HOWEVER, it is extremely useful to be familiar and proficient
with Boolean SEMANTICS (Concepts that use Boolean MFEAN-
ING such as “TRUE” or “FALSE”) since we can use said Semantics
when we want to DISPROVE a Boolean wif, that is, to prove that
it has NO PROOF! Is NOT a theorem!

Semantics —or MEANING— hinge on values of wff that we compute!
So, TWO questions:

e By what mechanism can wff compute VALUES?
e WHAT ARE these values? 1, 11, 42, v/2, or something else?

NOTE. The student who has learnt to program a computer also
very likely encountered Boolean (wff) values and the techique we em-
ploy to compute them for any wif.

Notes on Logic(©) G. Tourlakis

62 Properties of the wff

These Boolean values are creatures of the METATHEORY —that is,
they find themselves OUTSIDE Boolean Logic— since clearly nowhere
in the alphabet did we hide away any symbols for values.

Next we must resolve:

IF we somehow initialised all variables of the alphabet with values,

then how do we compute an overall value of any wit?

Notes on Logic(©) G. Tourlakis

2.8 The Boolean values and initialisation 63

2.3 The Boolean values and initialisation

2.3.1 Definition. A statev (or s) —the two usual letters for “state” —
is a function that assigns the value f (false) or t (true) to every Boolean
variable —any way we pleasel— while the constants 1 and T, neces-
sarily, always get the values f and t respectively.

None of these symbols —uv, s,t,f— are in the Boolean logic alpha-
bet V. They are all metasymbols in the metatheory.

The f and t we call truth values.

On paper or on the chalk board one usually underlines rather than

bolds —as bolding is cumbersome— so one denotes f as f and t as t
respectively.

The fact that v gives (assigns) the value f to the variable ¢” is
denoted by v(¢") = f. O

Notes on Logic(©) G. Tourlakis

64 Properties of the wff

@ Therefore a state v is an infinite input/output table like the one below

input output
f

t
t
f

where no two rows can have the same input but different outputs.

In the jargon of MATH1019/1028 the table is what we call a func-
tion! This observation justifies the notation

function output
\L i l/
v g)= f
/]\
input

in the last sentence of Definition 2.3.1]

» Why an infinite table?

Because our Boolean logic language has infinitely many variables and
a state, by definition, assigns a value to each of them. @

Notes on Logic(©) G. Tourlakis

2.8 The Boolean values and initialisation 65

2.3.2 Definition. (Truth tables) In the metatheory of Boolean logic
—so0, outside logic itself— there are five operations we are interested in
that can be applied on the members of the set of truth values {t,f}.

Each operation takes its input(s) from the set {t, f}, and its outputs
are also in this very same set.

In a very obvious way the 5 operations tell us how values propagate
just after we applied glue.
I can say “the operations ape glue in the META domain”.

Notes on Logic(©) G. Tourlakis

4

66 Properties of the wff

We have one operation for each connective (glue) and in order to
keep track of which is formal and which is not we use in the METATHE-
ORY (outside Logic) the generic letter F' (for “function”) subscripted

by the name of the corresponding glue.

These functions of the metatheory are called Boolean functions and
are the following.

F.(z), B\ (x,y), Fa(z,y), Fo(z,y), F=(x,y)

So, “V” itself does NO'T operate on inputs f, t.
Fy(z,y) does. “V” does not live in the same universe as f, t. @

Notes on Logic(©) G. Tourlakis

2.3 The Boolean values and initialisation 67

The behaviour of these F-functions —input/output behaviour, that
is— is fully described by the following table that goes by the nickname
“truth table”.

r yl|| Fa(z) | Fu(z,y) | Falz,y) | Fo(z,y) | F=(z,y)
f f t f f t t
f t t t f t f
t f f t f f f
t t f t t t t

One often sees truth values 0 for f and 1 for t or even the other way
around! The metatheory allows many tastes! Not, though, the formal
theory!

ry Fﬁ(x) F\/(l’,y) F/\(xay> F_>(.T,y) FE($7y)
00 1 0 0 1 1
01 1 1 0 1 0
10 0 1 0 0 0
11 0 1 1 1 1

Notes on Logic(©) G. Tourlakis

68 Properties of the wff

Notes on Logic(©) G. Tourlakis

Chapter 3

What makes our Logic “Classical”

Answer: The behaviour of “—"!

3.1 States and Truth tables

Refer to the truth table on pl67 and let us discuss the column of
F~><x7y)‘

The most “straightforward” entry in this column is arguably, the
one for input (t, f).

This function is describing the truth-value of implications, and the
x input is the hypothesis while the y input is the conclusion.

Thus having F,(t,f) = f can be interpreted as saying that the
implication t — f is FAULTY, i.e., £, since we start with a true hy-
pothesis and end up with a false conclusion. IMPLICATION MUST
PRESERVE TRUTH is our PRINCIPLE.

69

70 What makes our Logic “Classical”

This principle indeed supports the behaviour of F., in the other three
TOWS.

For example you would be wrong to tell me: “Hey, F.,(f,t) is not
right”. I will respond: “Hmm! Show me that it does not Preserve
truth from hypothesis to conclusion! You cannot show me a truth
here that fails to be preserved!”

Why “Classical”? This, adopted by Logicians, behaviour of — goes
all the way back to Aristotle. That’s why.
The Classical Implication does not require causality.

Notes on Logic(©) G. Tourlakis

3.1 States and Truth tables 71

So far, states give meaning (values) to atomic formulas only. Let us
extend this meaning-giving to ANY wff. @

3.1.1 Definition. (The value of a wif in some state, v) We eztend
any state v to be meaningful not only for atomic arguments but also for any wff argument.

We will call such an extension of v by the same letter, but will
“cap” it with a “hat”, v, since it is a different function!

This one, 7, acts on ANY wff, not only on atomic
ONES.

Notes on Logic(©) G. Tourlakis

72 What makes our Logic “Classical”

What IS an “EXTENSION” of v?

It is a function v that on the arguments where v is defined so is
¥ and gives the same output!

THIS new function, 7, is obtained by adding correct input /output
pairs “(wff, t)” or “(wff, f)” to the v-table.

U is defined on more inputs: On ALL wif found in WFH]

%Recall that WFF in capitals is the SET of ALL wif

@ We rest on the shoulders of the “Unique-Readability-Metatheorem”: @

Notes on Logic(©) G. Tourlakis

3.1 States and Truth tables 73

You see the significance of the uniqueness of i.p. at play!!!

The following is like a Recursive Procedure of Program-
ming!

o(p) =v(p)
o(T) =t
o(l)=f
6((#1)) — . (@(A))
6((/1 A B)) ~F, (@(A),@(B))
@((A v B)) -y (a(A),a(B))
o((A = B)) —F, (6(A),@(B))
@((A — B)) — F (@(A),@(B)) O

Notes on Logic(©) G. Tourlakis

74 What makes our Logic “Classical”

Truth tables are more convenient to understand than a bunch of re-
cursive equations; but even easier to misunderstand!

For example the V-column of the Table in is often depicted as:

A B|AVB
f f f
f t t
t f t
t t t

In recursive definition jargon the above says
U((AV B)) = Fy(v(A),v(B))
At a glance the table says that to compute the value of AV B you just
utilise the values of the i.p. A and B as indicated.

The misunderstanding you MUST avoid is this: The two
left columns are NOT wvalues you assign to A and B.

You can assign values ONLY to ATOMIC formulas!

What these two columns DO say is that the formulas A and B

have each two pOSSible values.
For each pair of possible values we displayed the outcome value. @

Notes on Logic(©) G. Tourlakis

3.2 Finite States 75

3.2 Finite States

& We say a variable p occurs in a formula meaning the obvious:
It is, as a string, a substring —a part— of the formula. &

3.2.1 Metatheorem. Given a formula A. Suppose that two states, v
and s, agree on all the variables occurring in A. Then T(A) = 5(A).

Proof. We do induction on the (formation of the) formula A:

1. Case where A is atomic: If it is T or L then T(A) = 5(A) is true.

If Ais p, then
o(4) = v(4) TTE T 5(4) = 5(4)

[.LH.: Assume that Claim is true for all i.p. of A.

2. Case where A is (—B). We have

Notes on Logic(©) G. Tourlakis

76 What makes our Logic “Classical”

3.2.2 Remark. (Finite “appropriate” States) A state v is by def-
ination an infinite table.

By the above METAtheorem, the value of any wif A in a state
v 18 determined only by the values of v ON THE
VARIABLES OF A, since any other state s that agrees with v on
said variables gives the same answer.

Thus, going forward we will be utilising finite appropriate states to
compute the truth values of any wff.

That is, we discard from the infinite state all the rows that contain
variables NOT occurring in the formulas of interest. O @

3.2.3 Example. Under no state v can we have
(A= B)—A) = A

evaluate as f. Exercise!]

Notes on Logic(©) G. Tourlakis

3.8 Tautologies and Tautological Implication 77

Sep. 22, 2025

¢

3.3 Tautologies and Tautological Implication

3.3.1 Definition. (Tautologies and other things...)

@ The expression “ALL states” from here on means “for
ALL APPROPRIATE FINITE states”.

So, from here on, manipulating states is a FINITE PRO-
CESS. @

1. A Tautology is a formula A which is true in all states. That is, for
all APPROPRIATE and FINITE v, we have 5(A) = t.

We write “F=,0 A” for “A is a tautology”.

2. A contradiction is a formula A such that, for allv, we have 7(A) = f.

Clearly, for all v, we have 7(—=A) = t.

@ Example: L is a contradiction according to this definition. @

Notes on Logic(©) G. Tourlakis

78 What makes our Logic “Classical”

3. A is satisfiable iff for SOTILE v, we have v(A) = t.

We say that v satisfies A.

Notes on Logic(©) G. Tourlakis

3.8 Tautologies and Tautological Implication 79

» Boolean logic for the user seeks to discover tautologies
by proving them. O

We saw that WFF denotes the set of all (well-formed) formulas.

Notes on Logic(©) G. Tourlakis

80 What makes our Logic “Classical”

Capital Greek letters that are different from any Latin capital let-
ter are used to denote arbitrary sets of formulas. Such letters are
VA, &, U, Q,I1, X, Asalways, in the rare and unlikely circumstance you run out
of such letters you may use primes and /or (natural number) subscripts.

3.3.2 Definition. (Tautological implication: binary Fu.:)

1. Let ' be a set of wif. We say that v satisfies I' iff v satisfies —that
is, makes t— every wffinT.

2. We say that I' tautologically implies A —and we write this as
[=g A— iff every state v that satisfies T also satisfies A.

ﬁé} “Satisfies” i1s the same as “makes true”. @

The configuration
[Frant A (1)

15 called a tautological implication claim.

We call T the set of hypotheses or premises of the tautological
implication, while A is the conclusion.

Instead of {A, B,C'} Fiuut D we write A, B, C = D. H

Notes on Logic(©) G. Tourlakis

3.8 Tautologies and Tautological Implication 81

IMPORTANT! The task to verify (1) needs work on our part ONLY
with v that satisfy I'.

If there is NO such v then the claim (1) is VACUOUSLY walid!
YOU cannot contradict its validity, because to do so you will need a
v that satisfies I' but NOT A.

Youhave NO COUNTEREXAMPLE. &

Notes on Logic(©) G. Tourlakis

82 What makes our Logic “Classical”

¢

3.3.3 Example.
(1) If Ftaut A, then for any 3, we have ¥ Fiaut A.

The converse is not valid:

(2) We have p Ftaut P V q. Indeed, for any v such that v(p) =t we
compute T(p V q) = t from the truth table for V.

Yet, p VvV qis NOT a tautology. Just take v(p) = v(q) =f

Note also the obvious: A i AV B, for any wif A and B. Again
use the truth table of p[74l O

In view of we can check all of satisfiability, tautology status,
and tautological implication with finite I' using a finite truth table.

Notes on Logic(©) G. Tourlakis

3.8 Tautologies and Tautological Implication 83

Eramples.

Example 1. 1 = A.

7

Because no v satisfies the lhs of “}=4,u
Definition, I rest my case.

so according to

Example 2. Let us build a truth table for A — BV A and see what
we get.

I wrote sloppily, according to our priorities agreement.

[mean (A — (BV A)).

We align our part-work under the glue since it is the glue
that causes the output.

Here — is the last (applied) glue. Under it we write the
final results for this formula.

Since A and B are not necessarily atomic, the values un-
der A and B in the table below are possible values NOT
assigned values! So (A — (B V A)) is a tautology.

Notes on Logic(©) G. Tourlakis

84 What makes our Logic “Classical”

[4]

&+ ||
+ o+ o <

Example 3. Here is another tautology. I will verify this by a shortcut
method, WITHOUT building a truth table.

[will show

Fiaut (A— B) — A) — A (1)

[will do so by arguing that it is IMPOSSIBLE TO MAKE (1) FALSE.
o [f (1) is false then A is false and (A — B) — A is true.

e Given the two blue statements above, it must be that A — B s
false. IMPOSSIBLE, since A 1s false!

Notes on Logic(©) G. Tourlakis

3.8 Tautologies and Tautological Implication 85

If A is a tautology we say this in symbols as

Iztaut A (1)

Contrast with tautological implication from I':

F):taut A (2)

Incidentally, (2) does NOT imply (1): E.g., we have p Fu p V ¢,
but b&taut p v q.
On the other hand (1) implies (2) for all I' choices!

Notes on Logic(©) G. Tourlakis

86 What makes our Logic “Classical”

Notes on Logic(©) G. Tourlakis

Chapter 4

Substitution and Schemata

¢

4.0.1 Definition. (Substitution in Formulas)
The METAnotation

Alp == D] (1)

where A and B are formulas and p is any variable means

e As an Action: “Find and replace by B ALL occurrences of p in
A”.

e As a Result: The STRING resulting from the action described
in the previous bullet.]

87

88 Substitution and Schemata

4

1. In the METAtheory of Logic where we use the expression “[p :=
B]” we Agree to Give it The Highest priority: Thus, A A

B[q := C] means A A (B[q = C]) and —A[p := B| means

2. Clearly if p does NOT occur in A, then the “action” found noth-
ing to replace, so the resulting string —according to (1)— in this case
is just A; NO CHANGE.

4

Notes on Logic(©) G. Tourlakis

89

g% We observe the following, according to the inductive definition of for-
mulas.

With reference to (1) of page , we prove that the result of (1) is a
wif.

So how do we do A[p := B]?

Case 1. Say A is atomic. We have three subcases.

e Aisp. Then Alp:=B] =B

e A is q —where by q I denote here a wvariable OTHER
than the one p stands for. Then A[p := B] = A —no
change.

e Ais L or T. Then A[p := B] = A —no change.

So in the atomic case, A[p := B] is ONE OF A or B.
[T IS A wif!

Notes on Logic(©) G. Tourlakis

90 Substitution and Schemata

According to the recursive definition of wff, we have two more
cases for what A is.

Case 2. Ais (—C). Thus all p’s of A are in C.

@ Any substitution done happens in C.

The substitution steps are depicted below:

3 add “(";2 add —; 1 plug B in each p; 4 add).
A~ = b N

Py

~~

C

The above actions in (1) have as result

Alp := Bl is (ﬁ Clp := B])
by I.LH. a wff

Hence A[p := B] is a wif in our Case 2. (1"

Notes on Logic(©) G. Tourlakis

91

Case 3. Ais (C'oD). Thus all p’s of A are in C' and D.

The substitution steps are depicted below:

4 add “(”; 1 plug B in each p; 3 add “o”; 2 plug B in each p; 5 add “)”.
A~ PN

A= P o P

C D

The above actions in () have as result

Alp = B is (g[B) o Dlp = B])

I.H. a wff by I.LH. a wff

Hence A[p := B] is a wif in our Case 3.

Notes on Logic(©) G. Tourlakis

(1

92 Substitution and Schemata

We are poised to begin describing the proof system of Boolean logic.

To this end we will need the notation that is called formula schemata

or formula “schemas” (use the latter Only lfyou think “schema”
is an English word —but it is not!).

4.0.2 Definition. (Schema, Schemata) Add to the alphabet V the
following symbols:

1. (([77’ ((]77 and ((::77

2. AINAMES of formulas: A, B, C, ..., with or without primes and/or
subscripts.

3. All METAsymbols for variables: p,q,r, with or without primes
and/or subscripts.

Then a formula schema is a STRING over the augmented alpha-
bet, which becomes a wff whenever all metasymbols of types 2 and 3
above, which occur in the string, are replaced by wff and actual variables
(meaning non bold p, q, 7", ¢\5) respectively, and all actions indicated by

substitutions [p := B] are performed.

Notes on Logic(©) G. Tourlakis

93

A formula that we obtain by the process described in the paragraph
above is called an Instance of the Schema.

L]

@ Three examples of schemata.

(1) A: This Schema stands (is a placeholder) for a wif! So trivially,
if I plug into A any actual wff, I get that wff as an instance/

(2) (A = B): Well, whatever formulas I substitute into the (metavari-
ables) A and B I get a wff by the inductive definition of wif.

(3) Alp := B]: We know that if I substitute A and B by actual
formulas and p by an actual Boolean variable I get a wff.

Notes on Logic(©) G. Tourlakis

94 Substitution and Schemata

& Next stop is Proofs!

In proofs we use Azioms and Rules (of Inference).

P —
P —
2: Rule —Q

P, —

A rule as above indicates that in a proof that we have written ALL
the wif P, already, we have the (mathematical) right to write @ at
any proof stage after that!

It is the habit in the literature to write Rules as fractions, not as
boxes:

P17P27"'7Pn
@

where all of Py,...,P,, Q) are schemata.

Notes on Logic(©) G. Tourlakis

95

The P; are input metavariables and the @ is the output metavariable
(only onel)

Thus the “fraction” depicts an action of providing inputs to the P,
and obtaining an output from the metavariable ().

The P; are also called hypotheses and the () is called conclusion.

Notes on Logic(©) G. Tourlakis

96 Substitution and Schemata

More Jargon. We can call the P; on the numerator of the rule
“the premise(s)”.

The single schema in the denominator we may also call the “result”.

Notes on Logic(©) G. Tourlakis

4.1 Rules and Azioms of Boolean Logic 97

4.1 Rules and Axioms of Boolean Logic

4.1.1 Definition. (Rules of Inference of Boolean Logic) There are
JUST TWO up in front (“called Primary”):

Rulel

(Leib[niz])

There are NO restrictions in the use of “Leib” —that means
Leibniz.

In particular,

(a) it is NOT required that p actually occurs in C.

gz} If it does not, then the denominator is just C = C. @

(b) The single hypothesis can be ANY equivalence. —we do not check it
for “truth”.

(¢) For any INPUT we have INFINITELY MANY possible re-
sults.

Notes on Logic(©) G. Tourlakis

98 Substitution and Schemata

Rule2 “Equanimity” Rule.
AA=B

B

There are NO restrictions in the use of “Equanimity” other
than

(Eqn)

“A7 TAUST be the left part of the equivalence on the nu-
merator.

@ Does it matter “left” or “right”? FOR NOW YES! as we have
NO basis to decide otherwise and will NOT be caught “import-
ing” so-called “knowledge” (from other courses) whose valid-
ity we did NOT prove in our Logic; YET!!!

Notes on Logic(©) G. Tourlakis

4.1 Rules and Azioms of Boolean Logic 99

Sep. 24, 2025

4.1.2 Definition. (Axioms of Boolean Logic) In the following, (1)-
(11), A, B,C name or stand for arbitrary wif.

Properties of =

Associativity of = (A=B)=C)=A=(B=0)) (1)
Commutativity of = (A=B)=(B=A) (2)
Properties of L, T
T and L T=1=1 (3)
Properties of —

Introduction of — —A=A=1 (4)
Properties of V
Associativity of Vv (AvB)vC=AvV (BVC(C) (5)
Commutativity of Vv AVB=BVA (6)
Idempotency of Vv AVA=A (7)
Distributivity of Vover = AV (B=C)=AVvB=AVC (8)
“Excluded Middle” AV -A 9)
Properties of A
“Golden Rule” ANB=A=B=AVB (10)
Properties of —

Implication A—- B=AVB=B (11)

Notes on Logic(©) G. Tourlakis

100 Substitution and Schemata

All of the above (1)—(11) except (3) are schemata for axioms. We
call them Aziom Schemata, while (3) is an Aziom. Each axiom schema
above defines infinitely many azioms that are its Instances.

So our axioms are (3) and all the instances of the Axiom Schemata

(1), (2), (4)-(11).

We reserve the Greek letter A for the set of all Axioms of Boolean
Logic.

]

Notes on Logic(©) G. Tourlakis

4.1 Rules and Azxioms of Boolean Logic 101

DISCLOSURE. You can verify (Exercise! TRY IT!!!) that
each axiom schema (and axiom (3)) is a tautology. The aim is
that starting with these tautologies in a proof, and having the
Rules PRESERVE TRUTH as we proceed with the proof (WAIT
and SEE!), it follows that ANY proof is composed ONLY of true

statements.

Notes on Logic(©) G. Tourlakis

102 Substitution and Schemata

4.1.3 Definition. (Proofs) Let I' (could also call it ¥, ©, ¥, etc.,
instead of I' —there is nothing special about the letter I'! Use ¥ or A
or ® if you prefer!!!) be some set of wit.

A proof from HYPOTHESES I' is any finite ordered sequence
of formulas that satisfies the following two specifications:

At every step of the Construction (that we call “Proof”) we MAY
WRITE nothing else except

Proof 1. Any ONE wff from A or I

Proof 2. Any ONE wff A which is the RESULT of an Application of
the rule Leib or rule Fqn to wif(s)

that appeared in T'HIS proof before THIS A.

A proof from hypotheses I' is also called a “T"-proof”. O

Notes on Logic(©) G. Tourlakis

4.1 Rules and Azioms of Boolean Logic 103

¢

4.1.4 Remark.
(1) So, a proof is a totally syntactic construct, totally devoid of se-
mantic concepts.

(2) T is a convenient set of “additional hypotheses” .

Syntactically the elements of I' “behave” like the Axioms from A —as
it is clear from m, item 1— but semantically they are NOT the same:

While every member of A is a tautology by choice,
this need NOT be the case for the members of T'.

(3) Since every proof (from some I') has finite length,

only a finite part of I' and A can EVER appear in some proof.

o

Notes on Logic(©) G. Tourlakis

104 Substitution and Schemata

¢

4.1.5 Definition. (Theorems) Any wif A that appears in a I'-proof
is called a I'-theorem.

In particular, any member from I' or A that appears in a proof IS
a ['-theorem.
Remember this!

We also say, “A is a theorem from I'”.
In symbols, the sentence “A is a I'-theorem”, is denoted by “I' - A”.

If T' = 0 then we write - A.

@ That is, A never appears to the left of the turnstile “F7".

We call an A such that = A an absolute or logical theorem.]

Notes on Logic(©) G. Tourlakis

4.1 Rules and Azxioms of Boolean Logic 105

¢

@ 4.1.6 Remark. That A is a I'-theorem is certified by a I'-proof like
this

Bi,....B,,A.Cy,...,.Cp (1)

the sequence (1) obeying the specifications of 4.1.3,

Clearly, the sequence (2) below also satisfies the specifications, since
each specification for a B; or A that utilises rules refers to formulas to
the left only.

Thus the sequence (2) is also a ['-proof of Al

The bottom line of this story is expressed as either

1. If you are proving a theorem A, just stop as soon as you wrote it
down with justification in a proof!

OR
2. A I'-theorem is a wff that appears at the END of some proof.

o

Notes on Logic(©) G. Tourlakis

106 Substitution and Schemata

Concatenating two I'-proofs
A, A,

and
By, Bs,...,B,

results in a I'-proof.

Indeed, checking
By,Bsy,...,B,, Ay, ..., A,

from left to right we give EXACTLY the same reasons that we gave for
writing the formulas down in each standalone proof.

Notes on Logic(©) G. Tourlakis

4.1 Rules and Azioms of Boolean Logic 107

4.1.7 Exercise. How do we do this Exercise?

By providing a I'-proof IN WHICH our target theorem appears.

(1) A, B,C + A, for any wif A
(2) More generally, if A € ¥, then ¥ F A
(3) F B, for all Be A

Notes on Logic(©) G. Tourlakis

108 Substitution and Schemata

¢

@ 4.1.8 Remark. (Hilbert-style Proofs)

A T'-proof is also called a “Hilbert-style proof> —in honour of the
great mathematician David Hilbert, who was the first big supporter of
the idea to use SYNTACTIC (FORMAL) logic as a TOOL in order
to do CORREC'T mathematics.

We arrange Hilbert proofs vertically, one formula per line, numbered
by its position number, adding “annotation ” to the right of the formula

we just wrote, articulating briefly HOW ezactly we followed the spec
of Definition 4.1.3

Practical Note. If one forgets numbering or annotation, or that
each line contains ONE wff ONLY, then this results in a VERY
BAD grade!)

4

Notes on Logic(©) G. Tourlakis

4.1 Rules and Azioms of Boolean Logic 109

4.1.9 Example. (Some very simple Hilbert Proofs)
(a) We verify that “A, A = B+ B” (goes without saying, for all wff
A and B).

Well, just write a proof of B with “I'” being {A, A = B}.

BTW, we indicate a finite “I'” like {A, A = B} without the braces
“{ }” when writing it to the left of “F”.

(1) A (hypothesis)
(2) A = B (hypothesis)
3) B (1) +(2)+ (Eqn))

Incidentally, members of I' are annotated as “hypotheses” and going
forward we just write “hyp”.

Members of A we annotate as “Axioms”.

Notes on Logic(©) G. Tourlakis

110 Substitution and Schemata

@ Since A and B are arbitrary undisclosed wit, the expression A, A =
Bt B is a Theorem Schema (a theorem, no matter what formulas we

plug into A and B). @

Notes on Logic(©) G. Tourlakis

4.1 Rules and Azxioms of Boolean Logic 111

(b) Next verify the Theorem Schema

I will skip in class, but you study this!

A=BFClp:=A]=Clp := B

Here you go:

(1) A=B (hyp)
(2) C[p:= Al =C[p:= B] {(1) + Leib)

C can be any wff (and p any actual Boolean variable) so from ONE
hypothesis for fixed A and B we can derive an infinite number of
theorems of the “shape” Clp := A] = C[p := B].

Notes on Logic(©) G. Tourlakis

112 Substitution and Schemata

(¢) Something more substantial. Our First Derived Rule!

We establish the following Theorem Schema that we will refer to as
Transitivity of = —or simply “Trans’. How? We write a Hilbert-Style

proof!

A=B,B=CFHA=C (Trans)
(1) A=B (hyp)
(2 B=C <hyp
7
3) (A=DB) (Leidb), Denom: “A = IT)”; p “fresh”>
C
(4) A=C (1) + (3) + (Egqn))

The typesetting acrobatics showing the “A” and the “B” that we
“feed” in the Leibniz rule variable p as in annotation of line (3) will
not be repeated again. g%

BTW: What is fresh? Can I always have it? Why must p be fresh?

Notes on Logic(©) G. Tourlakis

4.1 Rules and Azxioms of Boolean Logic 113

& Well, Say A is pAq, a simple example with a NON-fresh p.

Then, after feeding B to p of “A = p” the latter wff
becomes

BANq=EB
which 1s NOT the SAME STRING AS A = B.

this is NOT A
—~ =
BANqg =B

We should leave A alone; invariant.

Notes on Logic(©) G. Tourlakis

114 Substitution and Schemata

(d) And a Tricky One! Verify that “A = A” is an absolute theorem
for all A. That is,

FA=A

No “HYP” in the proof below!!

(1) AVA=A (axiom)
2) A=A (1) + (Leib): Alp:= AV A] = Alp := A]

where p is “fresh”)

Can start the proof with any known equivalence that is an axiom.
For example, line one could contain T = L = 1. O

Notes on Logic(©) G. Tourlakis

4.1 Rules and Azxioms of Boolean Logic 115

Sep. 29, 2025

4.1.10 Metatheorem. (Hypothesis Strengthening) If I' - A and
I' C A, then also A F A.

Proof. A I'-proof for A is also a A-proof, since every time we say about
a formula B in the proof “legitimate since B € I'” we can say instead
“legitimate since B € A”.]

Notes on Logic(©) G. Tourlakis

116 Substitution and Schemata

4.1.11 Metatheorem. (Transitivity of) Assume I' + By, I'
By,....I'+ B,. Let also By,..., B, - A. Then we have I' - A.

Also: The Metatheorem Title Could be: “Using DERIVED RULES”
Bi,...,B,F A.

Derived rules are written as above, as “I'-Theorem Assertions”,
NOT as “fractions”

Bla) Bn
A
Proof.
We have I'-proofs
) Bl (1)
) B? (2)
, By (n)

We also have a { By, ..., B, }-proof

Notes on Logic(©) G. Tourlakis

4.1 Rules and Azxioms of Boolean Logic 117

..7BZ',...,A (n+1)

Concatenate all proofs (1)—(n) (in any order) and to the right of the
result glue the proof (n + 1).
We have the following proof:

DON’T say “hyp”

.., Bill...,Bsl,...,|....B,|...,Bi,..., A
T
SAY: “obtained earlier; see box ¢’
O
So if we view By, ..., B, F A as a (derived or “macro” rule) then

this “rule” is applicable!

If the B; are I'-theorems and ‘ Bi,..., B, A|, then we can apply
the boxed as a “rule” to obtain the I'-theorem A.

We say “By,..., B, Ais a DERIVED rule”.

Notes on Logic(©) G. Tourlakis

118 Substitution and Schemata

4.1.12 Metatheorem. If '+ A and also ' U{A} F B, then I' - B.

In words, the conclusion says that A drops out as a hypothesis and we
get I' = B.
That is, a THEOREM A can be invoked just like an AXIOM in a

proof! @

Notes on Logic(©) G. Tourlakis

4.1 Rules and Azioms of Boolean Logic 119

Proof. We are given two proofs:

from I'

LA

and

from ' U {A}
——N—
...A...B

When the second box is standalone, the justification for A is “hyp”.

Now concatenate the two proofs above in the order

from I' from T'U {A}
| —_—~—
LA LA

Now change all the justifications for the red A in the right box from

“hyp” to the exactly same reason you gave to the A in box one —OR,
as in the proof of [4.1.11— say about the red A: “obtained earlier in
box 17.

Thus, the status of A as “hyp” is removed and B is proved from I’
alone.]

Notes on Logic(©) G. Tourlakis

120 Substitution and Schemata

4.1.13 Corollary. If ' U{A} - B and - A, then I' - B.

Proof. By hyp strengthening, I have I' = A. Now apply the previous
metatheorem.]

Notes on Logic(©) G. Tourlakis

4.2 Brackets in Chains and Redundant T

121

4.2 Brackets in Chains and Redundant T

4.2.1 Theorem. A=BFB=A

Proof.
(1) A=B (hyp)
(2) (A=DB)=(B=A) (axiom)
3) B=A ((1,2) + Eqn)

Notes on Logic(©) G. Tourlakis

122 Substitution and Schemata

4.2.2 Theorem. - (A= (B=C))=((A=B)=0C)

NOTE. This is the mirror image of Axiom (1).

Proof.
(1) (A=B)=0C)=(A=(B=(C)) (axiom)
(2) (A=(B=0C)=({(A=B)=C) ((1)+4.2.1) [
@ 4.2.3 Remark. Thus, in a chain of two “=" we can shift brackets

from left to right (axiom) but also right to left (above theorem,).

So it does not matter how brackets are inserted in such chain.

An induction proof on chain length extends this remark to any chain
of ‘=7, of any length.

See course URL, bullet #4 under Notes:
http://www.cs.yorku.ca/~gt/courses/MATH1090F23/1090.html.

4

Notes on Logic(©) G. Tourlakis

http://www.cs.yorku.ca/~gt/courses/MATH1090F23/1090.html

4.2 Brackets in Chains and Redundant T 128

¢

4.2.1 The “other EQN” and Redundant T

4.2.4 Theorem. (The “other” (Eqn)) B A=BF A

Proof.
(1) B (hyp)
(2) A= B (hyp)
(3) B=A(2) +E21)
4) A ((1, 3) + original (Fqn)) [
4.2.5 Corollary. - T
Proof.
(1) T=1=_1 (axiom)
(2) L=1 (the “A = A” theorem)
3 T (1, 2) + (Eqn)) O

Notes on Logic(©) G. Tourlakis

124 Substitution and Schemata

¢

4.2.6 Theorem. - A=A=B=08B

(1) (A= B=B)=A (axiom; brackets as I please!)
(2) A=(A=B=B)((1) +}E21]) O

@ NOTE! A possible VALID way to perceive (2) above is also as the
theorem (A= A) = (B = B). @

4.2.7 Corollary. - L =1 =B=Band-rA=A=1=_1

NOTE absence of brackets in theorem AND corollary!

Notes on Logic(©) G. Tourlakis

4.2 Brackets in Chains and Redundant T 125

b4

4.2.8 Corollary. (Redundant T Theorem)
FT=A=Aand-A=A=T.

Proof.

1 (axiom)
A = A (absolute theorem [4.2.7)
A (Trans) + (1, 2))

©

H =
I

= - b
I

Notes on Logic(©) G. Tourlakis

126 Substitution and Schemata

4.2.9 Metatheorem. (Redundant T METAtheorem) For any I’
and A, we have ' A iff TFA=T.

Proof. Say I' - A.

Thus
I
(1) A (P-theorem)
(2) A= A=T(Red. T theorem; [4.2.8)
3) A=T ((1, 2) +Eqn)

The other direction is similar.

I
(1) A =T (P-theorem)
(2) A= A=T(Red. T theorem;
(3) A (1, 2) +Eqn)

Notes on Logic(©) G. Tourlakis

4.3 Equational Proofs 127

4.3 Equational Proofs

Example from high school trigonometry.

Prove that 1 + (tanz)? = (secx)? given the identities

sin @ ,
tanx = (7)
COS T
1 .
secT = ——— (17)
(sinz)? 4 (cosz)? = 1 (Pythagoras’ Theorem) (7i1)

Notes on Logic(©) G. Tourlakis

128 Substitution and Schemata

FEquational proof with annotation

1 + (tanx)?

= (by (2))

1+ (sinz/ cosz)?
= (arithmetic)

(

sinz)? + (cos)2

Notes on Logic(©) G. Tourlakis

4.3 Equational Proofs 129

An equational proof in Logic looks IN PRINCIPLE, like:

reason reason reason reason
A A A\

A = A (1)

4.3.1 Metatheorem. (Important Derived Rule!)
Al = A27 AQ = A37 SR An = An+1 - Al = An+1 (2>

Proof. By induction on (left index)n > 1 using the (derived) rule (Trans).

1. Basis forn = 1. We want 4] = As - A = As. Thisis “X F X7
done! (see |4.1.7)).

2. I.LH. Assume (2) for fixed unspecified n.

3. I.S. Do the case n + 1 for the n we fixed above, so now we want
(3) below:

A=Ay, A =As,.. A=A A=A (3)

Notes on Logic(©) G. Tourlakis

130 Substitution and Schemata

Here it goes

Generalised =-Transitivity (Derived Rule)

(1) A=A (hyp)
(2) Ay = Ay (hyp)

n) An = An+1 <

+1) A=A, (1+2+...4+n)+ LH.)
+2) A=A (
n+3) A=A (

Notes on Logic(©) G. Tourlakis

4.3 Equational Proofs 131

All Equational Proofs are based on Metatheorem [4.3.1}

4.3.2 Corollary. In an Equational proof (from I') like the one in (1)
of p[129 we have I' - A} = A, 41.

Proof. So we have n I'-proofs, for: =1,...,n,

---aAiEAi—i—l

Concatenate them all to get ONE TI'-proof

I'-proof I'-proof I'-proof

...,AlEAQ ---;AiEAi—l—l ...,AnEAn+1

By the DERIVED RULFE\4.53.1| the following is a I'-proof of Ay = A1

L A=A A=A A E A AL = A

Notes on Logic(©) G. Tourlakis

132 Substitution and Schemata

4.3.3 Corollary. In an Equational proof (from I') like the one in (1)
of p[129 we have I' H Ay iff ' F A,4q.

Proof. From the above Corollary we have

THA = A, (f)

Now split the “iff” in two directions:

e I[F («): So we have
I' An+1

This plus (1) plus Eqn yield T' = A;.

So if A,.1 is provable, so is A;.

e ONLY IF (—): So we have
' A
This plus (T) plus Eqn yield I' = Ay,4q.

Notes on Logic(©) G. Tourlakis

4.3 Equational Proofs 138

Oct. 1, 2025

Equational Proof Layout

2

Successive equivalences like “A; = Ajiq and A1 = Ajo” we write

vertically, without repeating the shared formula A;y1.

WITH annotation in (...) brackets

Ay

= (annotation)
Ay

= (annotation)

: (i)
Apa

= (annotation)
Ay

= (annotation)
Aps1

EXCEPT FOR ONE THING!
(¢) 1s just ONE FORMULA, namely

Al=A=...=A,=A,1

where I can put brackets anywhere I please.

Notes on Logic(©) G. Tourlakis

134 Substitution and Schemata

It does NOT say the same thing as (1) of p{129

For example, “T = L = 1”7 is NOT the same as
“IT'=LAND 1L = 1"

\T/\T/

The former (blue) is true but the latter (red) is false.

Notes on Logic(©) G. Tourlakis

4.3 Equational Proofs 135

What do we do?

We introduce a metasymbol for an equivalence that acts ONLY on TWO formulas!

AND

Such equivalences CANNOT be chained to form a SINGLE formula.

The symbol we will use for such UNCHAINABLE equivalences s
“=7 and thus

“A B C"MEANS“A=BANDB=C"NOT “A=B=C".

We say that “=7 is CONJUNCTIONAL while “=7 1s associative.

Notes on Logic(©) G. Tourlakis

156

Substitution and Schemata

So the final layout 1s:

Notes on Logic(©) G. Tourlakis

A

& (annotation)
Ay

< (annotation)
Ap

& (annotation)
Ay

< (annotation)
An+1

4.3 Equational Proofs 137

A Lot of Practice Examples Now!

If T asay “I will skip this, but you should do it (do study it)”,
then indeed you do it and you must know/remember both the

proof technique AND the theorem!

You can use the latter in assignments, midterm, exam. As is!

4.3.4 Theorem. - -(A=B)=A=-B
Proof. (Equational)

(A= B)

& (axiom)
A=B=1

& ((Leib) + axiom: =B = B = |; Denom: A = p; p fresh)
A=-B [

Why do I need Leib above? Why not just use the Axiom? Because
I am replacing PART of a wiff.

Notes on Logic(©) G. Tourlakis

138 Substitution and Schemata

» Study this next one, but I will SKIP!

4.3.5 Corollary. - -(A=B)=-A=8B
Proof. (Equational)

-(A = B)

< (axiom)
A=B=1

& ((Leib) + axiom: B= 1 = 1 = B; Denom: A = p; p fresh)
A=1=B

& ((Leib) + axiom: A = | = —A; Denom: q = B; q fresh)
-A=B

Notes on Logic(©) G. Tourlakis

4.3 Equational Proofs 139

4.3.6 Theorem. (Double Negation) - ——A = A
Proof. (Equational)

——A
& (axiom “~“X =X = 17)
—“A=1
& ((Leib) + axiom: ~A= A= 1; Denom: p= 1)
A=1=1
< ((Leib) 4+ axiom: T = L = 1; Denom: A = q; q fresh)
A=T
< (red. T thm.)
A O

Notes on Logic(©) G. Tourlakis

140 Substitution and Schemata

4.3.7 Theorem. - T = -1

Proof. (Equational)

Notes on Logic(©) G. Tourlakis

4.3 Equational Proofs 141

4.3.8 Theorem. - 1L =T
Proof. (Equational)
-T
< (axiom)
T=1
& (red. T)
L [

@ Practical Advise. In Equational Proofs move from the most complex
side towards the least complex one. @

Notes on Logic(©) G. Tourlakis

142 Substitution and Schemata

STARTING WITH WHAT YOU ARE PROVING

4.3.9 Theorem. - AV T
Proof.

AVT

< ((Leib) + axiom T = L = 1; “Denom:” AV p; Mind brackets!)
Av(L=1)

& (axiom)

AV 1L =AV L Bingo! Recognised an axiom or known theorem. [

Notes on Logic(©) G. Tourlakis

4.3 Equational Proofs 148

@ Recall about = that, by axiom (1) and a theorem we proved in the
NOTES posted inhttp://www.cs.yorku.ca/~gt/courses/MATH1090F23/
1090.html (4th bullet), we have that

in a chain of any number of = we may omit brackets.

The same holds for a chain of V (and A) using the same kind of
proof, in the same link mentioned above. @

That is,

we do not need to show bracketing in a chain of V (or one of A).

Notes on Logic(©) G. Tourlakis

http://www.cs.yorku.ca/~gt/courses/MATH1090F23/1090.html
http://www.cs.yorku.ca/~gt/courses/MATH1090F23/1090.html

Substitution and Schemata

144

How about moving formulas around in such a chain? (Permuting

them). @

It is OK! I prove this for V-chains HERE. The proof is identical for
=-chains and A-chains (EXERCISE!!)

Notes on Logic(©) G. Tourlakis

4.3 Equational Proofs 145

Prove first this theorem:

~FBvCvD=DVvVCVDEB

Indeed here is a proof:

!
BNvVCV D
< (V commutativity axiom (imagine brackets around BV C'))
|
DVBVC (*)
< ((Leib) + V commutativity axiom. “Denom:” DV p)
DvCV DB

Notes on Logic(©) G. Tourlakis

146 Substitution and Schemata

More generally we CAN DO an arbitrary swap (not only the END-
FORMULAS), that is, we have the theorem

FlAlvBv|C|vDV|[E|=[AlvDvV[C|vBVI[E]

@ The boxed formulas may well be long V-chains!

Follows by an application of the previous special case:

replace
——l—
AVBVCVDVE
< ((Leib) + equiv. of braced parts. “Denom:” AV pV E)

AvDVCVBVE

by this

Notes on Logic(©) G. Tourlakis

4.3 Equational Proofs 147

4.3.10 Theorem. - AV 1L = A4
Proofs. (Equational)

This time we work with the entire formula, not just one of the sides
of “=".

@ How do we know? We don’t! It is just a matter of practice.

Av1i=A

< ((Leib) + idemp. axiom; “Denom:” AV L = p)
AvIi=AVA

< (axiom V over =)
AV (L=A)

& ((Leib) + axiom: L = A = —A; “Denom:” AV p)
Av-A Bingo!]

Comment. Leib. with “same mouth” p used twice in above proof.
What about freshness?

Notes on Logic(©) G. Tourlakis

148 Substitution and Schemata

Oct. 6, 2025

4.3.11 Theorem. - A - B=-AV B

Proof.
A— B
& (axiom)
AVB=B <« HERE
& ((Leib) + [4.3.10} “Denom:” AV B = p)
AVB=1VB
< (axiom)
(A=1)vB
< ((Leib) + axiom; “Denom:” pV B)
-AV B]

Notes on Logic(©) G. Tourlakis

4.3 Equational Proofs 149

4.3.12 Corollary. (IMPORTANT)
F-AVB=AVB=B

Proof. Start the above proof from spot marked (above) “HERE”. [

Notes on Logic(©) G. Tourlakis

150 Substitution and Schemata

READ THIS! I will skip. Uses IMPORTANT Corollary
above twice.

4.3.13 Theorem. (de Morgan 1)
FAAB=—(=AV-B)

Proof.

Long but obvious. Start with the most complex side!

—|(—|A V —lB)
< (axiom)
—AV-B=1
< ((Leib) + |4.3.12 “Denom:” p = 1)
AVv-B=-B=1
& ((Leib) + axiom; “Denom:” AV =B = p —order does not matter!)
AvVv-B=2EB

< ((Leib) + |4.3.12; “Denom:” p = B)

AVB=A=B
< (GR axiom —order does not matter)
ANB

Notes on Logic(©) G. Tourlakis

4.3 Equational Proofs 151

4.3.14 Corollary. (de Morgan 2)
FAVB=-(-AA-B)
Proof. See Text. Better still, EXERCISE!

Notes on Logic(©) G. Tourlakis

152 Substitution and Schemata

MORE About “N”

4.3.15 Theorem. HF ANA=A
Proof.

ANA=A
< (GR axiom —order does not matter)
AVA=A Bingo!]
4.3.16 Theorem. - AANT =A

Proof.

ANT=A
< (GR axiom)
AVT =T
< (Red. T Thm.)
AVT Bingo! [J

Notes on Logic(©) G. Tourlakis

4.3 Equational Proofs 153

4.3.17 Theorem. - AN 1L =1

Proof.
ANL =1
< (GR axiom)
AV 1L =A Bingo! [

Notes on Logic(©) G. Tourlakis

154 Substitution and Schemata

» READ the following theorem and its proof!
REMEMBER the result!!!

4.3.18 Theorem. (Distributive Laws between V and A)

(7) FAVBAC=(AVB)AN(AV(O)
and
(i7) FAAN(BVC)=AANBVANC

The above are written in least parenthesised notation!
It is part of your tool-set!

Proof.

We just prove (7).

Notes on Logic(©) G. Tourlakis

4.3 Equational Proofs 155

(AVB)AN(AVC)

< (GR)
AVBVAVC=AvVB=AVC

< ((Leib) 4 scramble an V-chain; “Denom:” p= AV B= AV ()
AVAVBVC=AvB=AvVvC(C

& ((Leib) 4+ axiom; “Denom:” pV BV C=AV B=AVC(C)
AVBVC=AvB=AVC

HERE WE STOP, and try to reach this result from the other side:
AV BAC.

AVBAC

< ((Leib) + GR; “Denom:” AV p; mind brackets!)
Av(BvC=B=C()

& (axiom)
AVBVC=AvV(B=C)

< ((Leib) 4+ axiom; “Denom:” AV BV C = p)
AvBvVC=AvVvB=AvC

Notes on Logic(©) G. Tourlakis

156 Substitution and Schemata

Until now we only proved absolute theorems Equationally.

» How about theorems with HYPOTHESES?

To do so we use the Redundant T METAtheorem:

'FATHA=T

The Technique is demonstrated via Examples!

This “trick” converts a I'-theorem to an equivalence that is a I'-
theorem.

In particular, If ' ={...,A,...}, then ' F A= T BECAUSE
' A

Such equivalences help: They allow the use of Leib!

Notes on Logic(©) G. Tourlakis

4.3 Equational Proofs 157

4.3.19 Example.
(1) AABFAAB

(2) AVAF A
(3) AHAVB
(4) ANBF A (Similarly, AN B+ B)

For (1):

ANDB

& ((Leib) + hyp B + Red. T META; “Denom:” A A p)
ANT

< ([@3.10)
A Bingo!

NOTES:

» A, B+ B. Hence A, B-|B=T|

Notes on Logic(©) G. Tourlakis

158 Substitution and Schemata

For (2):
A
< (axiom)
AV A Bingo!
For (3):
AV B
< ((Leib) + Hyp A + Red-T-META; “Denom:” p V B)
TVB (Bingo!)

Notes on Logic(©) G. Tourlakis

4.3 Equational Proofs 159

(4) is a bit trickier:

A
< (@3716)
ANT

< ((Leib) + Hyp A A B 4+ Red-T-META; “Denom:” A A p)
ANANB

< ((Leib) +|4.3.15; “Denom:” p A B)
ANB Bingo!

Notes on Logic(©) G. Tourlakis

160 Substitution and Schemata

I SKIP AHEAD TO THE CUT-RULE! You study (4.3.20
proof below :)

4.3.20 Metatheorem. (Hypothesis splitting/merging)
For any wff A, B,C and hypotheses I, we have I' U{A, B} C iff
TU{AAB}FC.

Proof. (Hilbert-style)
(I) ASSUMET U {A, B} C and PROVETU{AA B} - C.

So, armed with I' and A A B as hypotheses I have to prove C. OK,
start!

(1) AA B (hyp)

(2) A (1) + ANBF Arule)

(3) B (1) + ANBF Brule)

4) C (using HYP I' + (2) and (3))

(I1) ASSUMET U{AA B} C and PROVET U{A,B} F C. So,
my HYPs are I and A and B.

1) A (hyp)

2) B (hyp)

(3) AB{(1,2)+ A, B+ AA B rule)
4) C (using HYP T" + (3))

o

Notes on Logic(©) G. Tourlakis

4.3 Equational Proofs 161

4.3.21 Theorem. (Cut Rule) AV B,-AvCHFBVC

Proof. We start with an AUXILIARY theorem —a Lemma— which

makes the most complex hypothesis =A V C' usable (turns it into an
EQUIVALENCE).

-AvVC
< (how to lose a NOT)
AvC=C

Since "AV (' is a HYP hence also a THEOREM, the same is true for
AV C = C from the Equational proof above. Remember this below!

BvC

& ((Leib) + Lemma; “Denom:” BV p)
BV (AvC)

< (inserting brackets to our advantage AND swapping wif)
(AVB)VvC

< ((Leib) + HYP AV B + Red-T-Meta; “Denom:” pV C)
TVvVC Bingo! O]

Notes on Logic(©) G. Tourlakis

162 Substitution and Schemata

READ ME! SPECIAL CASES of CUT:

4.3.22 Theorem. (Modus Ponens) A,A — B+ B
Proof.

A— B
& (—V-theorem)
-AV B
& ((Leib) + hyp A + Red-T-META; “Denom:” —p V B)
-TVDB
< ((Leib) + theorem from class; “Denom:” p V B)
1lvB
& (thm from class)
B L]

4.3.23 Corollary. Alternatively: The above says

A -AVBFB
Well, Hilbert:
1) A (hyp)
2) AV B (hyp)
3) AVB (1 + rule from class/NOTEs (expansion))
4) BVB (2434 CUT)
5) BV B=DB (axiom)
6) B (4 + 5 + Eqn)

Notes on Logic(©) G. Tourlakis

4.3 Equational Proofs 165

4.3.24 Corollary. AV B,-A+ B

Proof. Apply the rule =A + =A Vv B. Now invoke 4.3.23| (here we
have = A instead of A).]

Notes on Logic(©) G. Tourlakis

164 Substitution and Schemata

4.3.25 Corollary. A,—AF L
Proof. Hilbert-style.

1) A (hyp)

2) —A (hyp)

3) AvLl (I+rleXkFXVY)
4) ~AvLl 2+rueXFXVY)
5 LVL (3+4+CUT)

AN N TN TN /N

Reduce the two L via idempotent axiom.
Can you do the above Equationally without using CUT? O

Notes on Logic(©) G. Tourlakis

4.3 Equational Proofs

165

SKIP this PROOF', but memorise the result!

4.3.26 Corollary. (Transitivity of) A—> B, B—>CFA—C
Proof. (Hilbert style)

(1
(2
(3
(4
(5
(6
(7

N N e N N N N

A— B
B—C
A— B=-AVB
B—-C=-Bv(C
-AV B
-BvVv(C
-AvC

(hyp)
(hyp)
(=V thm)

(=V thm)

((1,3) +)
((2,4) +)
((5,6) + CUT)

(Eqn
(Eqn

The last line is provably equivalent to A — C' by the =V theorem.

Notes on Logic(©) G. Tourlakis

166 Substitution and Schemata

Notes on Logic(©) G. Tourlakis

Chapter 5

Post’s Theorem and the Deduction
Theorem

Oct. 8, 2025

This Chapter is about the Soundness and Completeness (the latter
is also known as “Post’s Theorem”) in Boolean logic.

167

168 Post’s Theorem and the Deduction Theorem

5.1 Soundness of Boolean Logic

MEMORISE RESULTS 1.-3. (but SKIP PROOFS):
1. SOUNDNESS of Boolean Logic.
2. POST’s THEOREM (COMPLETENESS of Boolean Logic).
3. DEDUCTION THEOREM.

Soundness is the Property expressed by the statement of the metathe-
ory below —which in English says “Boolean Logic tells ONLY
the truth”:

IfI'+ A, then I ‘:taut A (1)

5.1.1 Definition. The statement “Boolean logic is Sound” means
that Boolean logic satisfies (1).
For T" = () it means this:

If - A, then ‘:ta,ut A (2)
L

SKIP TO STATEMENT OF POST’S THEOREM (5.1.2)
AND EXAMPLE BEFORE IT.

Notes on Logic(©) G. Tourlakis

5.1 Soundness of Boolean Logic 169

5.1.2 Example. Soundness allows us to disprove formulas: To show
they are NOT theorems.

e The statement “F p” is false. If this were true, then p would be a
tautology!

e The statement “ L” is false! Because L is not a tautology!

e The statement “p - pAq” is false. Because if it were true I'd have
to have p Faur p A q.
Not so: Take a state s such that s(p) =t and s(q) = f. O @

Notes on Logic(©) G. Tourlakis

170 Post’s Theorem and the Deduction Theorem

5.2 Completeness of Boolean logic (“Post’s Theorem”)

(1) Post’s theorem: If I' =t A, then I'- A

The Deduction Theorem — “I1st red statement below implies the
second” is a Corollary of (1) above:

(2) If I'AF B, then I', A =4 B (Soundness), HENCE T' =4
A — B, HENCE (Post), ' - A — B.

(1) SPECIAL CASE (T finite):

T
——
IF A,..., A, Ewe B THEN A;,... A, B

That is,

Every Fiuut SCHEMA can be USED as a DERIVED RULE.

(2) above is the way practicing mathematicians prove theo-
rems like '+ A — B/ in their everyday work.

Notes on Logic(©) G. Tourlakis

5.8 Deduction Theorem and Proof by Contradiction 171

5.3 Deduction Theorem and Proof by Contradiction

5.3.1 Metatheorem. (The Deduction Theorem) If ' A = B, then
I' A — B, where ‘I';) A” means “all the assumptions in I', plus the
assumption A” (in set notation this would be I' U {A}) [

*We can also write I + A.

Notes on Logic(©) G. Tourlakis

172 Post’s Theorem and the Deduction Theorem

The mathematician, or indeed the mathematics practitioner, uses the
Deduction theorem all the time, without stopping to think about it.
Metatheorem above makes an honest person of such a mathe-
matician or practitioner.

The everyday “style” of applying the Metatheorem goes like this:

Say we have all sorts of assumptions and we want, under these as-
sumptions, to “prove” that “if A, then B” (verbose form of “A — B”).

We start by adding A to our assumptions, often with the words,
“Assume A”. We then proceed and prove just B (not A — B), and at
that point we rest our case.

Thus, we may view an application of the Deduction theorem as a
simplification of the proof-task. It allows us to “split” an implication
A — B that we want to prove, moving its premise to join our other
assumptions. We now have to prove a simpler formula, B, with the
help of stronger assumptions (that is, all we knew so far, plus A). That
often makes our task so much easier!

Notes on Logic(©) G. Tourlakis

5.8 Deduction Theorem and Proof by Contradiction 178

An Example. Prove
F(A—B)—-AvC—-BVvC
By DThm, suffices to prove
A—-BFAVC—-BVC

instead.

Again By DThm, suffices to prove
A— B, AVCFBVC

instead.
Let’s do it:
1. A= B (hyp)
2. Av(C (hyp)
3. A->B=-AVvB (=V thm)
4. -AVB (1 + 3 + Eqn)
5. BvC (2 4+ 4 + Cut)

Notes on Logic(©) G. Tourlakis

174 Post’s Theorem and the Deduction Theorem

5.3.2 Definition. A set of formulas I is inconsistent or contradictory
iff I' proves EVERY (ALL) A in WFF. O]

Why “contradictory”? For if I' proves everything, then it also proves
the contradiction p A —p.

5.3.3 Lemma. I' is inconsistent iff ' = L

Proof. only if-part. If I is as in [5.3.2] then, in particular, it proves L
since the latter is a well formed formula.

if-part. Say, conversely, that we have
'L 9)

Let now A be any formula in WFF whatsoever. We have

1 Eu A (10)
Pause. Do you believe (10)7
By Post (5.2)), I' = A follows from (9) and (10). O

Notes on Logic(©) G. Tourlakis

5.8 Deduction Theorem and Proof by Contradiction 175

5.3.4 Metatheorem. (Proof by contradiction)
I'FA IFFT U{=A} is inconsistent.

Proof. IF. So let (by [5.3.3)
I —AF L

Hence

by the Deduction theorem. However =A — | =, A, hence, by —
in-the-box, and (1) above, I' - A.
ONLY IF. Let I' = A. Prove I', mA + L.
Indeed,
[-AF A (%)
by hyp. strengthening.
By Def. of I'-proof we also have
[,-AF-A ()

By A, —A Euur L and (%), (xx) we get [', "AF L O]

?2 legitimises the tool of “proof by contradiction” that goes all the
way back to the ancient Greek mathematicians: To prove A assume
instead the “opposite”, —A. Proceed then to obtain a contradiction.
This being accomplished, it is as good as having proved A. @

Notes on Logic(©) G. Tourlakis

176 Post’s Theorem and the Deduction Theorem

Notes on Logic(©) G. Tourlakis

Chapter 6

Resolution

Proof by Resolution is an easy and self-documenting 2-dimensional
proof style.

It is essentially a Hilbert style proof that needs no numbering due to
its graphical presentation, where the annotation is depicted by drawing
certain lines.

The technique is used in “automatic theorem proving”, i.e., special
computer systems (programs) that prove theorems.
It is based on the proof by contradiction metatheorem[5.3.4] namely:
I-AF L (1)
iff
Tk A (2)
Thus, instead of proving (2) prove (1).

(1) is proved using (almost) exclusively the CUT Rule.

177

178 Resolution

The self-annotating diagram below says “apply the CUT rule to
premises AV B and =A V C' to obtain BV C”.

AvB -AvC

N7

BvC

The technique can be best learnt via examples:

Notes on Logic(©) G. Tourlakis

179

6.0.1 Example. Use Resolution to prove (1) below:

A—-BC—-DFHAVC —-BVD (1)
by DThm prove instead:

A—- B C—-D AVCFBVD
By [4.3.25| prove instead that the “I'” in the top line below proves L

-AvB, -CvD, AvC, -(BvD)

Notes on Logic(©) G. Tourlakis

180 Resolution

Oct. 20, 2025

6.0.2 Example. Next prove
F(A—-(B—-C)—=(A—B)—=(A— ()
By the DThm prove instead
A-B—-CFA—-B)—»(A-=C0)

Two more applications of the DThm simplify what we will prove into

the following:
A—-(B—C),A— BAFC

By [4.3.25] prove instead that I' = 1| where
'={-Av-BVvC,-AV B,A, -C}

-Av-=Bv(C, -AvB, A, -C

\/

B

quC\/

-A

Notes on Logic(©) G. Tourlakis

181

6.0.3 Example. Annotating hypothesis splitting and equivalence graph-
ically. We do not annotate the equivalence or split lines any more than
we annotate the CUT lines!

Prove

F(AA-B) — —-(A— B)

By DThm do instead: AA-BF —-(A — B).

By [4.3.25| do instead

AN-B,A— BF L

Notes on Logic(©) G. Tourlakis

182 Resolution

AN-B, A— B

N

—-A

L

6.0.4 Example. Annotating hypothesis splitting and equivalence graph-
ically. We do not annotate the equivalence or split lines any more than
we annotate the CUT lines!

Prove

AFAVEB

By Proof by Contra do instead: A,=(AV B) F L.

Notes on Logic(©) G. Tourlakis

183

Notes on Logic(©) G. Tourlakis

184 Resolution

Notes on Logic(©) G. Tourlakis

¢

Chapter 7

Predicate Logic

Oct. 27, 2025
Extending Boolean Logic

Boolean Logic can deal only with the Boolean glue: properties and behaviour.

Can certify tautologies, but it misses many other truths as we will
see, like x = x where x stands for a mathematical object like a matrix,
string, array, number, etc.

One of the obvious reasons is that Boolean logic cannot even “see”
or “speak” about mathematical objects.

If it cannot see or speak about them, then naturally cannot reason about
them either! @

185

186 Predicate Logic

E.g, we cannot even state inside Boolean logic the sentence “every
natural number greater than 1 has a prime factor”.

Boolean Logic does not know what “every” means or what a “num-
ber” is, what “natural” means, what is “1”, what “greater” means,
what “prime” is, or what “factor” is.

In fact it is worse than not “knowing”: It cannot even say any one
of the concepts listed above.

Its alphabet and language are extremely limited.

We need a richer language!

Notes on Logic(©) G. Tourlakis

187

7.0.1 Example. Look at these two math statements. The first says
that two sets are equal IF they have the same elements. The second
says that any object is equal to itself.

We read “(Vx)” below as “for all values of x”, usually said MORE
SIMPLY as, “for all x”.
(Vy)(Vz)((V:v)(x cCy=re€z)>y= z) (1)

and
r=ux (2)

Boolean Logic is a very high level (= very non-detailed) abstraction
of Mathematics.

Since Boolean Logic cannot see object variables x, y, z, cannot see V
or =, nor can penetrate inside the so-called “scope” of (Vz) —that
is, the big brackets above— it myopically understands (perceives)
each of (1) and (2) as atomic statements p and ¢ (not seeing inside
the scope it sees NO “glue”).

Thus Boolean logic, if forced to opine about the above it will say
none of the above is a theorem (by soundness).

Yet, (1) is an axiom of Set Theory and (2) is an azxiom in ALL math-
ematics.

Says: “Every object is equal to itself.” O

Notes on Logic(©) G. Tourlakis

188 Predicate Logic

Enter First-Order Logic or Predicate Logic.

Predicate logic is the language AND logic of mathematics and math-
ematical sciences.

In it we CAN “speak” (1) and (2) above and reason about them.

7.1 The language of First-Order Logic

What symbols are absolutely necessary to include in the Alphabet,
V1 —the subscript “1” for “Ist-order”— of Predicate Logic?

Well, let us enumerate:

7.1.1 Definition. (The 1st-order alphabet; first part)

1. First of all, we are EXTENDING, NOT discarding, Boolean Logic.
So we include in V; all of Boolean Logic’s symbols

p7J_7 —|—7 (7)7_|7 /\7 \/7 _>7E
where p stands for any of the infinitely many Boolean variables.

2. Then we need object variables —that is, variables that stand for
mathematical objects— x,y, z,u,v,w with or without primes
or subscripts. These are infinitely many.

Metanotation that stands for any of them will be bold face, but us-
ing the same letters with or without primes or subscripts: x, Xz, y, Wi,

etc.

Notes on Logic(©) G. Tourlakis

7.1 The language of First-Order Logic 189

3. Equality between mathematical objects: =

4. New glue: ¥

We call this glue universal quantifier. It is pronounced “for all”.

Is that all? No. But let’s motivate with two examples.]

Notes on Logic(©) G. Tourlakis

190 Predicate Logic

7.1.2 Example. (Set theory) The language of set theory needs also
a binary relation or predicate up in front: Denoted by “€”. BU'T nothing else.

All else is “manufactured’ in the theory, that is,
introduced by definitions.

The manufactured symbols include constants like our familiar N (the
set of natural numbers, albeit set theorists often prefer the symbol

w”), our familiar constant “(0” (the empty set).
Also include functions like U, N and relations or predicates like C, C.

So set theory needs no constants or functions up in front to start
“operating” (proving theorems, that is). O

Notes on Logic(©) G. Tourlakis

7.1 The language of First-Order Logic 191

7.1.3 Example. (Number theory) The language of Number theory
—also called Peano arithmetic— needs —in order to get started:

e A constant, the number zero: 0
e A binary predicate (“less than”): <

e A unary function: “S”. (This, informally/intuitively is the “suc-
cessor function” which with input x produces output = + 1.)

e Two binary functions, “4, x” with the obvious meaning.

All else is “manufactured’ in the theory, that is, introduced by defi-
nitions.

The manufactured symbols include constants like our familiar 1, 2, 1000234000785:

1000234000785 S symbols

50,550, 55...9 0

We can also manufacture functions like z¥, |x/y| and more relations
or predicates like <. m

Notes on Logic(©) G. Tourlakis

192 Predicate Logic

We will do logic for the user, that is, we are aiming to teach the
USE of logic.

But will do so without having to learn and do set theory or
number theory or any specific mathematical theory (geometry, algebra,
etc.).

So equipped with our observations from the examples above, we note
that various theories start up with DIFFERFENT sets of constants,
functions and predicates —according to their specific needs.

So we will complete the Definition in a UNIFIED way that
APPLIES TO ANY AREA OF MATHEMATICAL APPLICATION,

Notes on Logic(©) G. Tourlakis

7.1 The language of First-Order Logic 193

7.1.4 Definition. (The 1st-order alphabet; part 2) Our Ist-order
alphabet also includes the following symbols

(1) Symbols for zero or more constants. Generically, we use a, b, c,d
with or without primes or subscripts for constants.

(2) Symbols for zero or more functions. Generically we use f, g, h with
or without primes or subscripts for functions.

Each such symbol will have the need for a certain number of
arguments, this number called the function’s “arity” (must be > 1).
For example, S has arity 1; it is unary. Each of +, x have arity
two; they are binary. o

You see where the word “arity” comes from?

(3) Symbols for zero or more predicates, generically denoted as ¢ (“fe”,
as in “see”), ¢ (“pse”), with or without primes or subscripts.

Each predicate symbol will have the need for a certain number of
arguments called its “arity” (must be > 1). For example, < has
arity 2. O]

Notes on Logic(©) G. Tourlakis

194 Predicate Logic

The first-order LANGUAGF is a set of strings of two types —terms
and formulas— over the alphabet AND [7.1.4]

By now we should feel comfortable with first-order inductive defini-
tions.

In fact we gave inductive definitions of first-order Boolean formulas
and used it quite a bit, but also more recently gave an inductive defi-
nition of Boolean proofs.

Thus we inductively introduce first-order Terms that denote objects
—the notation is that of function calls— and first-order formulas,
that denote statements, in two separate definitions.

Notes on Logic(©) G. Tourlakis

7.1 The language of First-Order Logic 195

First terms:

7.1.5 Definition. (Terms)
A term is a string over the alphabet V; that satisfies ONE of:

(1) It is just an object variable x (recall that x is metanotation and
stands for any object variable).

@ BTW, we drop the qualifier “object” from “object variable” from

now on, but RETAIN the qualifier “Boolean” in “Boolean vari-
able”.

(2) An object constant a (this stands for any constant —generically).

BTW, we ALSO drop the qualifier “object” from “object constant”
from now on, but RETAIN the qualifier “Boolean” in “Boolean
constant”.

(3) General case. It is a string of the form ftt5...7, where the
function symbol [has arity n and the ¢; are (I mean, STAND
FOR) terms.

As noted already, objects —with the exception of trivial ones,
like variables and constants, these are denoted by function calls.

Surprised? Function calls do return as values objects!

We will denote arbitrary terms generically by the metasymbols ¢, s
with or without primes or subscripts just as we did above. O

Notes on Logic(©) G. Tourlakis

196 Predicate Logic

@ We will often abuse notation and write “f(t1, o, ..., t,)" for “ftito...t,".

This is one (rare) case where the human eye prefers extra brackets!

[

Be sure to note that the comma “,” is not in our alphabet! @

Examples from number theory.
x,0 are terms. x40 is a term (abuse of the actual “4+z0” notation).

(x +y) x z is a term (abuse of the actual x + zyz).

Notes on Logic(©) G. Tourlakis

7.1 The language of First-Order Logic 197

With the concept of terms out of the way we now define 1st-order
formulas:

First the Atomic Case:

Reminder: Arbitrary (non specific) terms are denoted by the let-
ters t and s with or without subscripts or primes.

7.1.6 Definition. (1st-order Atomic formulas) The following are
the atomic —that is, glue-less— formulas of 1st-order logic:

(1) Any Boolean atomic formula.

(73) The expression (string) “t = s”, for any choice of t and s (prob-
ably, the ¢ and s name the same term).

(7i7) For any predicate ¢ of arity n, and any n terms t1, 1o, ..., t,, the
StI'iIlg “gbtltg Ce tn” .

We denote the set of all atomic formulas here defined by AF. O

In practice, we prefer writing x < y (infix) rather than < xy (prefix)

Notes on Logic(©) G. Tourlakis

198 Predicate Logic

7.1.7 Remark.

(1) As in the case of “complex” terms ft1t,...t,, we often abuse no-

tation using “¢(t1, o, ..., t,)" in place of the correctly written “ott, .

2
)

(2) The symbol “=” is a binary predicate and is always written as

it is here (never “¢,¢”).

(3) We |absolutely NEVER | confuse “=" with the Boolean “glue”

“—m»

They are more different than apples and oranges!

Notes on Logic(©) G. Tourlakis

4

4

7.1 The language of First-Order Logic 199

7.1.8 Definition. (1st-order formulas) A first-order formula A —
or wif A— is one of

We let context fend for us as to what formulas we have in mind when
we say “wff”: 1st Order or Boolean?

From here on it is 1st-order ones!

If we want to talk about Boolean wif we WILL ALWAYS USE the
qualifier “Boolean”!

(1) A member of 1st-order AF set —in particular it could be a Boolean
atomic wif!

(2) (—B) if B is a wif.

(3) (Bo Q) if B and C are wif, and o is one of A, V, — =.

(4) ((VX)B), where B is a wif and x any variable.

@ TWO things: (1) we already agreed that “variable” means object
variable otherwise I'd say “Boolean variable”. (2) Nowhere in the
definition —of item (/)— is required that x occurs in B as a sub-
string.

We call “V” the uniwversal quantifier.

The configuration (Vx) is pronounced “for all x” —intuitively mean-

ing “for all values of x” rather than “for all variables =, y", 2{%34009 - - -

Notes on Logic(©) G. Tourlakis

4

200 Predicate Logic

that x may stand for”.

We say that the part of A between the two large red brackets
above is the scope of (Vx).

Thus the x in (Vx) and the entire B are in this scope.

@ The “in particular” observation in case along with the cases (2)
and (3) make it clear that every Boolean wff is also a (1st-order) wff.

Thus first-order logic can “speak” Boolean (but not the other way
around, as we made abundantly clear!)

Notes on Logic(©) G. Tourlakis

7.1 The language of First-Order Logic 201

Oct. 29, 2025

711 SCOPE of QUANTIFIERS

g%@ 7.1.9 Example. r =y, | and p are wif. In fact, Atomic.
The last two are also Boolean wff.

scope of (Vx)

scope of (Vz)
(V) (V2)(~z = y))) v is free; an “input’ variable

Note that = in (—z = y) applies to © =y NOT to !

Glue cannot apply to an object like x. Must apply to a statement (a
wit)!

((Vy)((—z = y) Ap)) and (((Vy)(—z = y)) A p) are also wif.

BTW, in the two last examples: p is in the scope of (Yy) in the first,
but not so in the second.] @@

Notes on Logic(©) G. Tourlakis

202 Predicate Logic

7.1.2 Existential Quantifier

7.1.10 Definition. (Existential quantifier)
It is convenient —but NOT NECESSARY— to introduce the “ex-
istential quantifier”, 3.

This is only a metatheoretical abbreviation symbol that we introduce
by this Definition, that is, by a “naming”

For any wif A, we define ((3x)A) to be a short name for

(~(t-a)) 0

We pronounce ((3x)A) “for some (value of) x, A holds”.

The intuition behind this ((3x)A) naming is captured by the dia-
gram below

it 1s not the case that make A false
(™ (w D)
~——

all values of x

So SOME value of z makes A TRUE.

The scope of (3x) in
((3x)4) (2)

is the area between the two red brackets.

In particular, the leftmost x in (2) is in the scope. O

Notes on Logic(©) G. Tourlakis

7.1 The language of First-Order Logic 203

Priorities Revisited

We augment our priorities table, from highest to lowest:

equal priorities

;737_‘ 7/\7\/7_>7E

Associativities remain right! Thus, =(Vx)=A is a short form of (1)
in (/.1 10

Another ezample: (u =v — (((Vx)x = a) A p)) simplifies into
u=v— (Vx)r=aAp

More examples:

(2) Instead of ((Vz)(—z = y)) we write
(V2)mz =1y
(3) Instead of ((Vz)((Vz)z = y)) we write
(Vz)(Va)z =y

Notes on Logic(©) G. Tourlakis

204 Predicate Logic

713 BOUND vs FREE

7.1.11 Definition. A variable x occurs free in a wif A iff it s NOT
inside the scope of a (Vx) or (3x) —otherwise it occurs bound.

We say that a bound variable x in |(Vx)A| other than the one in

the displayed (Vx), belongs tO the displayed leftmost “(Vx)” iff x
occurs free in A —thus

it was this leftmost “(Vx)”, that we added to the left of A,
that did the bounding!

The terminology “belongs to” is now clear.

We apply this criterion to subformulas of A of the form (vVx)(...) to
determine where various bound x found inside A belong. O

7.1.12 Example. Consider
A

7\

(Vx)(:r; =y — (Vo) = z)}

Here the red = in A belongs to the red V. The black x belongs to
the black Vx. The occurrences of y, z are free. O

Notes on Logic(©) G. Tourlakis

7.1 The language of First-Order Logic 205

7.1.4 Boolean Abstractions

@ 7.1.13 Remark. We saw that a Boolean wff, is also a 1st-order wff.
We view Boolean formulas as abstractions of 1st-order ones.

How is this Abstraction (= LESS DETAIL) accomplished?

@ Well, THEORETICALLY, in any given lst-order wif we just

“hide” all 1st-order features inside certain glue-less subformulas that
take up the role of NEW Boolean variables. @

That is, we view any wff among the following three forms as Boolean variables
—mnone of them has exposed glue

These have 110 GXpOSGd glue so are viewed as Boolean variables

Lt =s]

2. [dtitats . . .t

3.1 (Vx)A

WAIT! I do see “glue” in |(Vz)(A — B)|; don’t I 777

No, you don’t if you are a citizen of Boolean! The “—” is hidden
inside the scope of (Vz).

Notes on Logic(©) G. Tourlakis

206 Predicate Logic

So an inhabitant of Boolean logic has an INTEREST in the above
“Boolean variables” if and only if they are connected with VISIBLE
Boolean glue to form Boolean wff.

Of course, Boolean logic whose job is to certify tautologies —by either
truth tables or proofs— has no use for isolated Boolean variables, that
is, ones that are not glued to anything!

Examples.

e In Boolean Country you see this “v =y — x =y Vo = 2”7 as
Yz =y|] =[x =y|V[z = 2]’ where the first and second box is the
same —say variable p— while the last one is different. You recog-

nize a tautology!

e In fact, In Boolean Country you see this wif
ANB — B (1)

as Boolean (it certainly is 1st-order)
Pause. Why “certainly”? «
You don’t care what A, B are hiding as long as the shape
(1) is right.
A secret: In all these abstractions you look
for tautologies or tautological implications.

Notes on Logic(©) G. Tourlakis

7.1 The language of First-Order Logic

207

e You see this “z = 2" as ‘{o = z[". Just a Boolean variable.

NOT a tautology.

e The same goes for this “(Vx)r = y — & = y” which the Boolean

citizen views as

(Va)r =y

— [x =y, that is, a Boolean wff

p — q. Not a tautology.

Notes on Logic(©) G. Tourlakis

208 Predicate Logic

Process of abstraction: We only abstract (that is, we see as
“Boolean variables”) the expressions 1.-3. above in order to turn a
Ist-order wit into a Boolean wif.

The three forms above are known in logic as Prime Formulas.

Invariably, we abstract in order to detect tautologies or tautological
implications —like A, B e A AN B— as both are crucial in proofs!

As it will be obvious by observing our several proof examples (to
follow), most of the time it is not necessary to carry out the ab-
straction process all the way down to prime formulas.

Notes on Logic(©) G. Tourlakis

7.1 The language of First-Order Logic 209

7.1.5 MMore Boolean abstraction examples
o If Ais
p—x=yV Vr)oxrAq (note that ¢ s not in the scope of (Vz))

then we abstract as

p—[r=y|V | (Vr)px|Aq (1)

so the Boolean citizen sees

p—=p Vp'Ag

g% If we ask “show ALL the prime formulas in A by bozing them”
then we —who understand 1st-order language and we can see inside
scopes— would have also boxed ¢x above. The Boolean citizen
cannot see ¢z in the scope of (Vx) anyway so the boxing done by
such a citizen would be exactly as we gave it in (1)

e First box all prime formulas in (2) below.
(Vz)(z =y = (Vz)z =aVyq) (2)

Here it is.

(Vo) (7 =y] = | (V) z=al]Vq)

Now abstract the above as if you were a Boolean citizen:

(Vx)(x =y — (V2)z =a Vq)

You see no glue at all because you cannot see inside the scope of
the leftmost (Vx)!

The abstraction is something like

[AFe)

p

Notes on Logic(©) G. Tourlakis

210 Predicate Logic

e x =y — x =y abstracts as [t = y| — [= y| Thatis, p — p or
A — A —a tautology.

A B

>

B

Consider (Vz)z =y A(32)z =w — (Va)z = yV (3z)z = w. No need
to go all the way to prime formulas like (Vx)xr = y, etc., to see that
this has the form A A B — AV B. Hence is a tautology.

Why bother with abstractions? Well, the last example is a tautol-
ogy so a Boolean citizen can prove it.

However and | (Vx)x = y| — [z = y] are not tautologies and
we need predicate logic techniques to settle their theoremhood.

4

Notes on Logic(©) G. Tourlakis

7.1 The language of First-Order Logic 211

We can now define:

7.1.14 Definition. (Tautologies and Tautological Implications)

We say that a (1st-order) wif, A, is a tautology and write =i A
iff it has a Boolean abstraction that is.

In Ist-order Logic I' = A is applied to the Boolean abstraction
A and to the abstractions contained in I'.

So, no matter what A, B,C “say” (via their lst-order shape) we
have, for example,

A=B,B=C i A=C

L]

Definition. A 1st-Order formula @ is a Tautology IFF we found ONE
Boolean Abstraction of it that is.

We do not expect NOR need that all its abstractions will be tau-
tologies. For example, if we abstract the formula as A — B then we
did not establish that it is a tautology.

However if we further note that A is C' A B, then A — B, aka
CANB— B, IS recognised as a tautology!

Notes on Logic(©) G. Tourlakis

212 Predicate Logic

7.1.6 Substitutions

A substitution is a textual substitution: Find and Replace.

In Alx := t] we will replace all occurrences of a free x in A by the
term t: Find and replace.

In A[p := B] we will replace all occurrences of a p in A by B: Find

and replace.

7.1.15 Example. (What to avoid) Consider the substitution below

(@2)z =)y =]
If we go ahead with it as a brute force “find and replace” asking no

questions, then we are met by a serious problem:

The result
(Jz)—z == (1)

says something DIFFERFENT than what the original formula says!

The original —((3z)—x = y)— says “no matter what the value of y
is, there is a different x-value”.

The above is true in any application of logic where we have infinitely
many objects. For example, it is true of real numbers and natural num-
bers.

On the other hand, (1) is NEVER true! It says that there is an
object that is different from itself! O g%

Notes on Logic(©) G. Tourlakis

7.1 The language of First-Order Logic 213

7.1.16 Definition. (Substitution) Each of

1. In Alx := t| replace all occurrences of a free x in A by the term ¢:
Find and replace.

2. In A[p := B] replace all occurrences of a p in A by B: Find and
replace.

However we | abort the substitution 1 or 2]if it so happens that going
ahead with it

forces a free variable y of t or B to become bound because
or B ended up inside the scope of a (Vy) or (Jy).

We say that the substitution is undefined in such cases, and that
the reason is that we had a “free variable capture”.

There is a variant of substution 2, above:

3. In A[p \ B] replace all occurrences of a p in A by B: Find and
replace.

For technically justified reasons to be learnt later, we never abort
this one, capture or not.

We call the substitutions 1. and 2. conditional or constrained, while
the substitution 3. unconditional or unconstrained.

There 1s NO unconditional version of 1.

Notes on Logic(©) G. Tourlakis

214 Predicate Logic

PRIORITIES (AGAIN!)

x = t],[p =] [p \ B] have higher priority than all connec-
tives V,d, -, A\, V, —,=. They associate from LEFT to RIGHT that
is A[x :=t] [p = B] means

(b= 1) o = 51)

-~

Notes on Logic(©) G. Tourlakis

7.1 The language of First-Order Logic 215

7.1.17 Example. Several substitutions based on Definition [7.1.16]

(1) (y =)y =],

The red brackets are META brackets. I need them to show the sub-
stitution applies to the whole formula.

The result is © = z.

(2) ((Vx)x = y) [y := z]. By|7.1.16] this is undefined because if I go
ahead then x is captured by (Vz).

(3) (Vz)(x = y)[y := z]. According to priorities, this means (Vx){(x =

y)ly =]},
That is, “apply the quantifier (V) to z = 2”, which is all right.

Result is (Vz)x = z.
(4) ((v)(vy)(x.y))y = x]. This says
+ Do (() ((¥0)o0.0)))= o

e This is all right since y is not free in ((Vy)gb(a:,y)) —s0 y not
found; no replace!
Result is the original formula UNCHANGED.

(5) <z =aV (Vo)r = y)) ly :== x]. Abort: x is captured when we

attempt substitution in the subformula (Vz)z = y.

Notes on Logic(©) G. Tourlakis

216 Predicate Logic

(6) ((Va:)p) [p \ * = y] Unconditional substitution. Just find and

replace, no questions asked!
Result: (Vx)r =y.

(7) ((Vm)p) [p := x = y] Undefined. z in x = y will get captured if
you go ahead! O

Notes on Logic(©) G. Tourlakis

7.1 The language of First-Order Logic 217

Nov. 3, 2025

717 Partial Generalisation

7.1.18 Definition. (Partial Generalisation) We say that B is «
partial generalisation of A if B is formed by adding as a PREFIX
to A zero or more strings of the form (Vx) for any choices whatsoever
of the variable x —repetitions allowed.]

7.1.19 Example. Here is a small list of partial generalisations of the
formula x = z:

(Vu)e = 2,

(Vz) (Vo) = 2,
(Va)(V2)z = 2,
(V2)(Vo)z = 2,

(V2)(Vy)(Vz) (V) (Vu)r = 2. O

Notes on Logic(©) G. Tourlakis

218 Predicate Logic

7.2 Axioms and Rules for Predicate Logic

7.2.1 Definition. (1st-Order Axioms) These are all the partial
generalisations of all the instances of the following schemata.

1. All tautologies. Examples: v = y — = = y is included here
and so are T, p — pand r — pVr but also ANY WHATSOEVER
instance of the SCHEMA ((A — B) — A) — A, for ANY specific
A and B.

2. (Vx)A — Alx :=1]

@ Note that we get an instance of this schema ONLY IF the substi-
tution is not aborted.

3. A — (Vx)A —PROVIDED x is not free in A.
4. (Vx)(A — B) = (Vx)A — (Vx)B
2. X=X
6.t=s5— (Alx:=t] = A[x:=5s])

Note that we get an instance of this schema ONLY IF none of the
substitutions above 1s aborted.

The set of all first-order axioms is named “A;” —“1” for 1st-order.

[

Our ONLY INITIAL (or Primary or Primitive) rule is Modus Po-
nens:

AA— B

- (MP)

Notes on Logic(©) G. Tourlakis

4

7.2 Axzioms and Rules for Predicate Logic 219

You may think that including all tautologies as axioms is overkill.
However

1. It is customary to do so in the literature ([Tou08, [Sho67, [End72),
Man77, Tou03al)

2. After Post’s Theorem we do know that every tautology is a theo-
rem of Boolean logic.

Adopting axiom 1. makes every tautology also a theorem of
Predicate Logic outright!

This is the easiest way (a literature favourite!) to incorporate
Boolean logic as a sublogic of 1st-order logic.

Notes on Logic(©) G. Tourlakis

220 Predicate Logic

7.3 First-order Proofs and Theorems

A Hilbert-style proof from Hypotheses I' (I'-proof) is ALMOST exactly
as defined in the case of Boolean Logz’c.lﬂ Namely:

@ It is a finite sequence of wff
Ap, Ao Az, A AL
such that ecach A; is ONE of
1. Axiom from A; OR a member of I
OR

2. Is obtained by MP from X — Y and X that appear to the LEFT
of A; (A; is the same string as Y then.)

However, here “wff” is 1st-order, and Ay is a DIFFERENT set of ax-
ioms than the old A. Moreover we have ONLY one rule up in front
and it is Neither Leib NOR Eqnl.

As in Boolean definitions, a lst-order theorem from I" (I'-theorem)
is a formula that occurs in a 1st-order I'-proof.

As before we write “I' = A” to say “A is a ['-theorem” and write
“+ A” to say “A is an absolute theorem”.

TNote the change of start-up (Primitive) Rule, though.

Notes on Logic(©) G. Tourlakis

7.8 First-order Proofs and Theorems 221

Hilbert proofs in 1st-order logic are written ver-
tically as well, with line numbers and annotation.

The following metatheorems about proofs and theorems

» proof tail removal,
» proof concatenation,
» a wif is a I'-theorem iff it occurs at the end of a proof
» hypothesis strengthening,
» hypothesis splitting,
» Transitivity of b (4.1.11]),
and hence

» usability of derived rules,

» usability of previously proved theorems

hold with the same metaproofs as in the Boolean case.

Notes on Logic(©) G. Tourlakis

222 Predicate Logic

We TRIVIALLY have Post’s Theorem (the weak form that we proved
for Boolean logic).

7.3.1 Metatheorem. (Weak Post’s Theorem for 1st-order logic)

]fAl,...,An):tautB then Al,...,An'_B

Proof. Ezactly the same as in Boolean logic, see [1, p[170, since the
assumption yields Ay, ..., Ay_1 Fraw An — B (easy!!) which yields

Ar, o Avs Fraut Al — A, — B
etc. etc. etc. and in the end of all this
Fuw A1 > A — - —> Ay 1 — A, — B (2)
Thus (2) is an AXIOM!!!, hence Theorem!!!

FA Ay — - — A, 1 — A, — B

The (red) assumption Ay, ..., A, above and n applications of MP chop
the A; —one at a time— from left to right and we are left with a proved
B. H

Thus we may use

Ay,...,A,F B
as a DERIVED rule in any 1st-order proof, whenever we know that

Ala"'aAn Iztaut B

[THIS IS DONE A LOT IN Hilbert PROOFS!] &

Notes on Logic(©) G. Tourlakis

7.4 Deduction Theorem 223

7.4 Deduction Theorem

This Metatheorem of First-Order Logic says:
7.4.1 Metatheorem. IfI', A+ B, then alsoI'+-A — B
OR

7.4.2 Metatheorem. If [want to prove I' = A — B it is enough to
prove I', A + B instead.

@ WAIT! Did we not already prove this for Boolean Logic? Yes, but to

do so we used in an essential way Boolean Soundness. See proof of
5.3.1, where we write “By Boolean Soundness, etc.”

Boolean Semantics will NOT help in Predicate Logic, Because 1st-
order Semantics are DIFFERENT, and we will present it at the end
of the course!

So here we use a direct proof by Induction on the length
of First-Order Proofs from I' + A[f @

*Recall that “T"U {A}”, “T'; A” and “T"'+ A” are alternative notations for the same set of wif!

Notes on Logic(©) G. Tourlakis

224 Predicate Logic

Proof. We do Induction on the proof length L that we used for I', A -
B:

1. Proof of length L = 1 (Basis). There is only one formula in the
proof: The proof must be just

Only three subcases apply:
e Bcl. Then I' - B. Hence I' - A — B by Post (NOTE that
B Etat A — B).

e BISA. So, A— B is a tautology hence axiom hence ' H A —
B.

e B Ai. Then I' = B. Conclude as in the first bullet.

Notes on Logic(©) G. Tourlakis

7.4 Deduction Theorem 225

2. Assume (I.H.) the claim for all proofs of lengths L < n.

3. I.S.: The proof has length L =n + 1:
n+1
..., B

Let Be I'U{A}UA;. Done as in the Basis.

Assume instead that it is the result of MP on formulas to the left

of B:
I'+A-proof where L=n+1

.,X,....X—>B,....B

A\ e
~"

By the I.LH. the metatheorem is true for proofs of length L < n.
Thus we have

Ve

\ .

'-A— X (%)

and

'FA— (X — B) ()
The following Hilbert proof concludes the case and the entire proof:
1) A= X (I-thm by (x))
2) A— (X — B) (I-thm by (xx))
3) A= DB (1 + 2 + Post)
The last line proves the metatheorem. O

Notes on Logic(©) G. Tourlakis

226 Predicate Logic

Nov. 5, 2025

We learn here HOW ezactly to handle the quantifier V.

7.5 Adding (Removing) “(Vx)” to (from) the beginning of a
wif.

7.5.1 Metatheorem. (Weak Generalisation) Suppose that no wff
in I' has any free occurrences of x.

Then if we have I' = A, we will also have I' - (Vx)A.

The last line above does NOT say that somehow A “implies”
(Vx)A.

It rather says that from a proof of A from I' a proof of (Vx)A
—probably quite different— can be found, in fact, constructed.

It is normally the case and of no adverse consequence that A does
have free occurrences of x, else (Vx)A would be trivial.

Notes on Logic(©) G. Tourlakis

7.5 Adding (Removing) “(Vx)” to (from) the beginning of a wff. 227

Proof. Induction on the length L of the I'-proof used for A.

1. L =1 (Basis). There is only one formula in the proof: The proof
must be the 1-wff sequence

A
Only two subcases apply:

e A cTl'. Then A has no free x, hence A — (Vx)A is axiom 3.
Thus, we have a Hilbert proof

1) A (in ['; hyp)
2) A— (Vx)A (Axiom 3 —no free x in A)
3) (Vx)A (14 2 +MP)

e A€ Ay. Then so is (Vx)A € Ay by partial generalisation:

g% Note that if axiom A is (Vz)(Vz')...(Vz1) B , then
axiom schema inst.
(Vx)A is (Vx)(Vz)(VZ') ... (Vz1)B. Hence an axiom too. gé?
Hence (Vx)A is in Ay, thus I' F (Vx)A once more. (Definition
of I'-proof.)

& AHA! So that’s what “partial generalisation”
does for us! &

Notes on Logic(©) G. Tourlakis

228 Predicate Logic

2. Assume (I.H.) the claim for all proofs of lengths L < n.
3. I.S.: The proof has length L =n + 1:

n+1
—~
A

If AeT'UA; then we are done by the argument in 1.

Assume instead that A is the result of MP on formulas to the left
of it:

G §7z J
By the I.H. we have
F(Vx)X (%)

and

I'F(Vx)(X — A) ()
The following Hilbert proof concludes this case and the entire
proof:
1) (vx)X (IP-thm by (%))
2) (Vx)(X — A) (P-thm by (s:x))
3) (Vx)(X —- A) = (Vx)X — (Vx)A (Axiom 4)
4) (Vx)X — (Vx)A (2 + 3 + MP)
5) (Vx)A (1 +4 + MP)
The last line proves the metatheorem. O

Notes on Logic(©) G. Tourlakis

7.5 Adding (Removing) “(Vx)” to (from) the beginning of a wff. 229

7.5.2 Corollary. If - A, then F (Vx)A.

Proof. The condition that no X in I' has free x is met: Vacuously.
[' is empty!]

@ 7.5.3 Remark.

1. HOW TO USE Generalisation: So, the Metatheorem
says that if A is a I-theorem then so is (Vx)A as long as the re-

striction of [.5.1] is met.

But then, since I can invoke I'-THEORFEMS (not only axioms and
hypotheses) in a proof, I can insert the I'-theorem (Vx)A anywhere
AFTER A in any I'-proof of A where I" obeys the restriction on x.

insert at any time after A

—~
LA (Vx)A -
2. Why “weak”? Because I need to know how the A was obtainedH
before I may use (Vx)A. O @

TFrom an x-less T'.

Notes on Logic(©) G. Tourlakis

230 Predicate Logic

7.5.4 Metatheorem. (Specialisation Rule or Spec)

((VX)A) - Alx = 1]

Goes without saying that /' the expression A[x := t] is undefined (in

the event of “capture”), then we have nothing to prove. @
Proof.

(1) (vx)A (hyp)

(2) (Vx)A — Alx:=1t] (axiom 2)

(3) Alx:=t] (1 + 2+ MP)]

7.5.5 Corollary. (Vx)AF A

Proof. This is the special case where t is x.]

Notes on Logic(©) G. Tourlakis

7.5 Adding (Removing) “(Vx)” to (from) the beginning of a wff. 231

Specialisation removes a (Vx) iff the quantifier is the very first
symbol[f]of a formula B and the entire remaining part of the formula
is the scope of that leading (Vx):

B

(Vx) A

<~
A is in the scope of (Vx)

24(vx)” is ONE compound SYIIlbOl

Notes on Logic(©) G. Tourlakis

232 Predicate Logic

The (Vz) in the following two CANNOT be removed: (Vz)AV B,
AV (Vx)B.

Notes on Logic(©) G. Tourlakis

7.5 Adding (Removing) “(Vx)” to (from) the beginning of a wff. 238

Really Important! The metatheorems and [7.5.1 (or [7.5.2)) —
which we nickname “spec” and “gen” respectively— are tools that make
our life easy in Hilbert proofs where handling of V is taking place.

with no restrictions allows us to REMOVE a leading “(Vx)”.

Doing so we might uncover Boolean glue and thus benefit from ap-
plications of “Post” ([7.3.1]).

If we need to re-INSERT (Vx) before the end of proof, we employ
[7.5.1 to do so.

This is a good recipe for success in 1st-order proofs!

Notes on Logic(©) G. Tourlakis

234 Predicate Logic

7.5.1 Examples

@ Ping-Pong proofs.

Hilbert proofs are not well-suited to handle equivalences.

However, trivially

A—)B,B—)AlimutAEB

and —by [7.3.1]
A—B,B—-A-A=B (1)

Thus, to prove I' = A = B in Hilbert style it suffices —by (1), which
is a derived rulel— to offer TWQO Hilbert proofs:

'FA—-BANDI'EFB— A

This back and forth motivates the nickname “ping-pong” for this
proof technique. @

Notes on Logic(©) G. Tourlakis

7.5 Adding (Removing) “(Vx)

7 to (from) the beginning of a wff. 235

7.5.2 A Few Memorable Examples

7.5.6 Theorem. (Distributivity of V over A)

- (Vx)(A A B) =

(Vx)A A (Vx)B

Proof. By Ping-Pong argument.

We will show TWO things:
.- (Vx)(AANB) —

and

2. F (Vx)AN (Vx)B —

(—) (“1.” above)

(Vx)A A (Vx)B

(Vx)(A A B)

By DThm, it suffices to prove (Vx)(A A B) F (Vx)A A (Vx)B.

(1
(2
(3
(4
(5
(6
(

7)

— — —t — —r

(Vx)(A A B)
ANB

A

B

(Vx)A
(Vx)B

(Vx)A A (Vx)B

(hyp)

(1 + spec (T53))

(2 + Post>

(2 + Post)

(3 + gen; OK: hyp contains no free x)
(4 + gen; OK: hyp contains no free x)
((5,6) + Post)

NOTE. We ABSOLUTELY MUS'T acknowledge for each appli-
cation of “gen” that the restriction is met.

Notes on Logic(©) G. Tourlakis

236 Predicate Logic

() (“2.” above)

By DThm, it suffices to prove (Vx)A A (Vx)B F (Vx)(A A B).

(1) (vx)AA(Vx)B (hyp)

(2) (vx)A (1 4 Post)

(3) (vx)B (1 + Post)

(W A (2 + spec)

(5) B (3 + spec)

(6) AAB ((4,5) + Post)

(7) (Vx)(AAB) (6 + gen; OK: hyp has no free x) O

Easy and Natural! Right?

Notes on Logic(©) G. Tourlakis

7.5 Adding (Removing) “(Vx)” to (from) the beginning of a wff. 237

7.5.7 Theorem. I (Vx)(Vy)A = (Vy)(vx)A
Proof. By Ping-Pong. - (Vx)(Vy)A_” (Vy)(vx)A.

(—) direction.

By DThm it suffices to prove (Vx)(Vy)A F (Vy)(Vx)A

(1) (vx)(vy)A (hyp)
(2) (vy)A (1 + spec)
3) A (2 4 spec)
4) (vx)A (3 + gen; OK hyp has no free x)
(5) (Vy)(vx)A (4 + gen; OK hyp has no free y)
(<)
Exercise! Justify that you can write the above proof backwards!

]

Notes on Logic(©) G. Tourlakis

238 Predicate Logic

@ 7 5 8 Example. Say A has no free . Then (Vz)A = A. Indeed,
r)A — A by ax. 2 and F A — (Vx)A by ax. 3.
In particular we also have (Vx)T =T, (Vx)L = 1 and (Vx)p = p.

4

Notes on Logic(©) G. Tourlakis

7.5 Adding (Removing) “(Vx)” to (from) the beginning of a wff. 239

7.5.9 Metatheorem. (Monotonicity of V) If ' - A — B, then
I'F (vx)A — (Vx)B, as long as no wff in I' has a free x.

Proof.

(1) A—B (invoking a I'-thm)

(2) (vx)(A — B) (1 + gen; OK no free x in I')
3) (Wx)(A— B) = (Vx)A — (Vx)B (Axiom 4)

4) (vx)A = (Vx)B ((2,3) + MP) O

We annotate an application of “Monotonicity of V” by either writ-
ing “A-MON” or writing “V-MON”.

7.5.10 Corollary. If- A — B, then - (Vx)A — (Vx)B.
Proof. Case of I = (). The restriction is vacuously satisfied. O

Notes on Logic(©) G. Tourlakis

240 Predicate Logic

7.5.11 Corollary. If ' - A = B, then also I' - (Vx)A = (Vx)B, as
long as I' does not contain wff with x free.

Proof.
(1) A=B (I-theorem)
(2) A—B (1 4 Post)
(3) B—A (1 + Post)
(4) (Vx)A — (Vx)B (2 4+ V-MON (7.5.9))
(5) (vx)B — (Vx)A (3 + V-MON (7.5.9))
6) (Vx)A=(Vx)B {((4,5) + Post) O

7.5.12 Corollary. If - A = B, then also - (Vx)A = (Vx)B
Proof. Take I’ = ().]

Notes on Logic(©) G. Tourlakis

7.6 Weak Leibniz for 1st-Order Logic 241

7.6 Weak Leibniz for 1st-Order Logic

Note that since Post’s theorem holds in first-order logic, we have that
the two Boolean primary rules (and all Boolean derived rules; WHY?)
hold in predicate logic.

For example, the Boolean Leibniz rule

A=BFClp:= Al =C[p:= B]
holds since we have
A= B FEu Clp := Al = Clp := B]

What makes the rule “Boolean” is that we look at all of A, B, C and p
from the Boolean “citizen’s” point of view (Boolean abstractions). In
particular, p is INOT in the scope of any quantifier! Because if IT IS,
then the Boolean practitioner CANNOT SEE IT —hence CANNOT

USE I'T— thus rendering the rule trivial:
A=B
c=C

@@ Hmmm. Can I do Leibniz with a p that is IN the scope of a quantifier?

You bet!! @@

Notes on Logic(©) G. Tourlakis

242 Predicate Logic

7.6.1 Metatheorem. (“Weak” (1st-order) Leibniz “IV L")
If - A= B, then also = Clp\ A =C[p \ BJ.

Proof. This generalises [7.5.12]

The metatheorem is proved by Induction on the (formation of the)
wiff C.

Basis. Atomic case for C':

(1) C is p. The metatheorem boils down to “if - A = B, then
= A = B”, which trivially holds!

(2) C'is NOT p —that is, it is q (other than p), or is L or T, or
ist = s, oritis ¢(ty,...,t,). That is, C' does not contain the “text” p.

Then our Metatheorem statement becomes “if = A = B, then
C=C".

Given that = C' = C is indeed the case by Axiom 1, the “if” part is
irrelevant. Done.

Notes on Logic(©) G. Tourlakis

7.6 Weak Leibniz for 1st-Order Logic 243

The complex cases.

(i) C'is =D. From the I.LH. we have - D[p \ A] = D[p \ B],
hence - =D[p \ A] = =D[p \ B] by Post.

But that is the same as
/-/C\ /-/C\
= (=D)p\ Al = (—-D)[p\ B]

since “=” is not searched for p.

(ii) C'is D o E, where o € {A,V, —,=}.

The I.H. yields - D[p\ Al = D|p\ B] and - E[p\ A] = E[p\ B]
hence

X Y X' Y’

- D\ Ao Elp\ Al = Dlp \ BloElp \ B) by Post.

To see Post relevance, the above follows from this:

Rename
e Dp\A]: X
e EIp\ Al Y
e Dp\ B]: X'
e Hlp\ B|: Y’
Then X = X' Y =Y e X oY =X oY

This is
c c
F(DoE)p\Al=(DoE)p)\ B

Notes on Logic(©) G. Tourlakis

244 Predicate Logic

due to the way substitution works, namely,

(Do E)[p\ A] is the same wif as D[p\ A]o E[p\ A] WHY?”

(iii) C is (Vx)D. This is the “interesting case”.
From the [.H. follows - D[p \ A] = D[p \ BJ.

From [7.5.12] we get
- (%) (DIp\ 4]) = (%) (Dlp \ B])

also written as

c c
——

——
= ((vx)D)[p\ Al = ((vx)D)[p \ B]
because

((vx)D)[p \ A] is the same wif as (Vx) <D[p \ A]>

Notes on Logic(©) G. Tourlakis

7.6 Weak Leibniz for 1st-Order Logic 245

WL is the only “Leibniz” we will ever need (practically) in our use of
1st-order logic in these lectures.

Why “weak”? Because of the restriction on the Rule’s Hypothesis:
A = B must be an absolute theorem. (Recall that the Boolean Leibniz
was not so restricted).

Notes on Logic(©) G. Tourlakis

246 Predicate Logic

More Memorable Examples and “Techniques”.

7.6.2 Theorem. - (Vx)(A — B) = (A — (Vx)B), as long as x has

no free occurrences in A.

Proof.
Ping-Pong using DThm.

(—) I want
- (vx)(A — B) — (A — (¥x)B)
Better still, let me do (DThm)
(Vx)(A— B)F A — (Vx)B
and, even better, (DThm!) I will do
(Vx)(A — B), A+ (Vx)B

(1) (vx)(A = B) (hyp)

2) A (hyp)

3) A—DB ((1) + spec)

4) B ((2,3) + MP)

(5) (vx)B ((4) 4+ gen; OK: no free x in (1) or (2))

Notes on Logic(©) G. Tourlakis

7.6 Weak Leibniz for 1st-Order Logic 247

(<) I want
F(A— (Vx)B) — (Vx)(A — B)

or better still (DThm)
A— (Vx)B+ (Vx)(A — B) (1)
Seeing that A — (Vx)B has no free x, [can prove the even easier
A— (Vx)BFA— B (2)
and after this proof is done, then I can apply Gen to A — B to get
(Vx)(A — B).

OK! By DThm I can prove the even simpler than (2)

A— (Vx)B,A+ B (3)
Here it is:
(1) A—=(vx)B (hyp)
(2) A (hyp)
(3) (Vx)B ((1, 2) + MP)
(4) B ((3) + spec) O

Notes on Logic(©) G. Tourlakis

248 Predicate Logic

7.6.3 Corollary. If ' H A — B and x is not free in either I' or A,
then we have also I' - A — (Vx)B.

The operation expressed in the corollary is called “V-Introduction”, in
short, “A-intro”. @
Proof. We have I' - (Vx)(A — B) by Gen (restriction on I' makes it
OK!). Then viewing as an Equational proof

(Vx)(A — B)
& (7.6.2)
A — (Vx)B

we have I' = A — (Vx)B.

BUT ALSO:
1) A—-B (P-thm)
2) (Vx)(A— B) (1 + Gen; OK, no free x in I')
3) (Vx)(A— B)=A— (VYx)B (1.62)
4) A— (Vx)B (2 + 3 +Eqn)

Notes on Logic(©) G. Tourlakis

7.6 Weak Leibniz for 1st-Order Logic 249

7.6.4 Corollary. - (Vx)(AV B) = AV (Vx)B, as long as x does not
occur free in A.

Proof.

(Vx)(AV B)
< (WL + =V (axiom, so abs. thm!); “Denom:” (Vx)p)
(Vx)(—'A — B)
& (% ([[62)
-A— (VX)
< (tautology, hence axiom)

AV (Vx)B O

Notes on Logic(©) G. Tourlakis

250 Predicate Logic

Most of the statements we prove in what follows have Dual counter-
parts obtained by swapping V and 4 and V and A.

Let us give a theorem version of the definition of 4. This is useful
in Fquational proofs in Predicate Logic.

Definition (Recall):
(3x)A is short name for =(Vx)—A (1)
Next consider the axiom
—(Vx)—A = —(vVx)-A (2)

Let me use the ABBREVIATION (1) ONLY on ONFEside of “=” in (2).
I get the theorem
(ElX)A = —|(VX)—|A

So I can write the theorem without words like this:

F(3x)A = —~(Vx)-A (3)

HEY! T can apply (3) in Equational proofs —via WL easily!

I will still refer to (3) in proofs as “Def of E”.

Notes on Logic(©) G. Tourlakis

7.6 Weak Leibniz for 1st-Order Logic 251

Here’s something useful AND good practise too! It is the Dual of
[r.6.4

7.6.5 Corollary. - (Ix)(A A B) = A A (Ix)B, as long as x does not
occur free in A.

@ In annotation we may call the above the “JA theorem”.

Proof.

(Ix)(A A B)
< (Def of E)
—(Vx)—(A A B)
< (WL + axiom 1 (deM); “Denom:” —(Vx)p)
—(Vx)(=AV —B)
< (WL + V over V (7.6.4) —no free x in = A; “Denom:” —p)
—(—=AV (Vx)-B)
& (Ax1 (deM))
AN—(Vx)-B
< (WL + Def of E; “Denom:” A A p)
AN (3x)B 0

Notes on Logic(©) G. Tourlakis

252 Predicate Logic

Notes on Logic(©) G. Tourlakis

Bibliography

[Bar78]

[DS90]

[End72]

(GS94]

[JecT8]
[Lev79]
[Man77]

[Sho67]

[Tou03a]

[Tou0O3b]

Jon Barwise, An introduction to first-order logic, Handbook
of Mathematical Logic (Jon Barwise, ed.), North-Holland,
Amsterdam, 1978, pp. 5—46.

Edsger W. Dijkstra and Carel S. Scholten, Predicate Calculus
and Program Semantics, Springer-Verlag, New York, 1990.

Herbert B. Enderton, A Mathematical Introduction to Logic,
Academic Press, New York, 1972.

David Gries and Fred B. Schneider, A Logical Approach to
Discrete Math, Springer-Verlag, New York, 1994.

T. J. Jech, Set theory, Academic Press, New York, 1978.
A. Levy, Basic Set Theory, Springer-Verlag, New York, 1979.

Yu. I. Manin, A Course in Mathematical Logic, Springer-Ver-
lag, New York, 1977.

Joseph R. Shoenfield, Mathematical Logic, Addison-Wesley,
Reading, MA, 1967.

G. Tourlakis, Lectures in Logic and Set Theory, Volume 1:
Mathematical Logic, Cambridge University Press, Cam-
bridge, 2003.

, Lectures in Logic and Set Theory, Volume 2: Set
Theory, Cambridge University Press, Cambridge, 2003.

253

254 BIBLIOGRAPHY

[Tou08] , Mathematical Logic, John Wiley & Sons, Hoboken,

NJ, 2008.

Notes on Logic(©) G. Tourlakis

	The Beginning
	Russell's Paradox
	Enters Formal Logic!
	A REVIEW of ``strings''
	A Bad Alphabet

	The Boolean well-formed-formulas (wff)
	Building Formulas.

	Properties of the wff
	Boolean Wff
	Boolean Semantics
	The Boolean values and initialisation

	What makes our Logic ``Classical''
	States and Truth tables
	Finite States
	redTautologies and Tautological Implication

	Substitution and Schemata
	blueRules and Axioms of Boolean Logic
	Brackets in Chains and Redundant
	The ``other EQN'' and Redundant

	blue Equational Proofs

	Post's Theorem and the Deduction Theorem
	Soundness of Boolean Logic
	redCompletenessblack of Boolean logic (``Post's Theorem'')
	Deduction Theorem and Proof by Contradiction

	Resolution
	Predicate Logic
	The language of First-Order Logic
	redSCOPE of QUANTIFIERS
	redExistential Quantifier
	redBOUND vs FREE
	redBoolean Abstractions
	redMore Boolean abstraction examples
	redSubstitutions
	redPartial Generalisation

	Axioms and Rules for Predicate Logic
	First-order Proofs and Theorems
	Deduction Theorem
	Adding (Removing) ``(x)'' to (from) the bluebeginning of a wff.
	Examples
	redA Few Memorable Examples

	redWeak Leibniz for 1st-Order Logic

