Lassonde School of Engineering

Dept. of EECS

Professor G. Tourlakis

MATH1090 A. Problem Set No2

Posted: Oct. 6, 2025

Due: Oct. 31, 2025; by 5:00pm, in eClass.

Q: How do I submit?

A:

- (1) Submission must be ONLY ONE file
- (2) Accepted File Types: PDF, RTF, MS WORD, ZIP
- (3) Deadline is strict, electronically limited by eClass (see course Outline).
- (4) MAXIMUM file size = 10MB
- In this problem set and onwards, $\mathbf{p}, \mathbf{q}, \mathbf{r}'$ etc., are *metavariables* that stand for *actual* Boolean variables. As such, it is possible that, say, \mathbf{p} and \mathbf{q} stand for the same actual variable in some line of reasoning.

1. (5 MARKS)

Prove that

$$\vdash A \equiv A$$

in **ONE DIFFERENT way**, which does **not** use the "trick" of a Leibniz variable \mathbf{p} that does not appear in A.

Page 1 G. Tourlakis

2. (5 MARKS) True or False and WHY?

The following two statements —(1) and (2)— are equivalent

$$\Gamma \vdash A \text{ iff } \Gamma \vdash B \tag{1}$$

$$\Gamma \vdash A \equiv B \tag{2}$$

3. (5 MARKS) We have learnt that $\Gamma \vdash A \land B$ implies that $\Gamma \vdash A$ **AND** $\Gamma \vdash B$.

Is (1) below *True* or *False* and WHY?

$$\Gamma \vdash A \lor B$$
 implies that $\Gamma \vdash A \ \mathbf{OR} \ \Gamma \vdash B$ (1)

Caution. If a proof style is explicitly required in what <u>follows</u>, then any other style used gets 0 marks regardless of its correctness.

4. (5 MARKS) Prove Hilbert-Style that

$$A, \neg A \vdash \bot$$

directly, without using the derived rule *CUT* in any of its special forms.

- **5.** (5 MARKS) Give a **Hilbert-Style proof** of $\vdash A \land \top \equiv A$.
- **6.** (4 MARKS) Prove **Equationally** that $A \vdash B \rightarrow A$.
- 7. (4 MARKS) Prove Equationally that $A \lor B \vdash \neg B \to A$.
- **8.** Prove that $A \to B, A \to C \vdash A \to B \land C$.

Do **two** proofs:

- (5 MARKS) One with the Deduction theorem (and a Hilbert-style proof).
- (5 MARKS) One Equational, **WITHOUT** using the Deduction theorem.

Page 2 G. Tourlakis