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Chapter 1

The Beginning

Sep. 4, 2024

1.1 Russell’s Paradox

. . . or, when things (in MATH) go “sideways” . . .

3



4 The Beginning

1.1.1 Example. (Briefly about set notation) We rep-
resent sets either by explicit listing,

• {0}

• {$,#, 3, 42}

• {0, 1, 2, 3, 4, . . .}

or by some “defining property”: The set of all x∗ that
make P (x) true, in symbols

S = {x : P (x)} (1)

As we know from discrete MATHs, (1) says the same
thing as the statement

x ∈ S ≡ P (x) (2)

read “for any value of x, x ∈ S is equivalent to P (x)”

∗Strictly speaking you DON’T collect the various shapes and colours of the letter x. There
is only ONE x. The expression “set of all x such that P (x) is true” is sloppy for “the set of
all VALUES of x such that P (x) is true”.
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1.1 Russell’s Paradox 5

Why so? Because P (x) is an entrance condition!

A value of x is included in the set S IF and ONLY IF
(iff) said value passes the test P (x).

Wait! Shouldn’t I have written (2) as

x ∈ S ≡ P (x) is true (2′)

Nope. When mathematicians state P (x) for some un-
specified fixed x they mean “P (x) is true” for that value.
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6 The Beginning

Cantor believed (good grief! “believed”?! as did the
mathematician and philosopher Frege) that, for any prop-
erty P (x), (1) defines a set —they never proved this;
just “believed” and used (!!) in Cantorian Set The-
ory.

Which is neither here nor there because they never
said what a set is. They allowed ANY collection of
(mathematical) objects to be set!

Notes on Logic© G. Tourlakis



1.1 Russell’s Paradox 7

Russell begged to differ, so he said: “Oh, yeah? How
about this? Is it a ‘set’?”

R = {x : x /∈ x}

where the property “P (x)” here is “x /∈ x”

Now, by (2) we have

x ∈ R ≡ x /∈ x

If R IS a set, then we can plug in it the set variable x
above to obtain

R ∈ R ≡ R /∈ R

Notes on Logic© G. Tourlakis



8 The Beginning

Sep. 9, 2024
How do we avoid Russell’s contradiction?

By admitting that R is NOT a set so we do not allow
the substitution! □

Notes on Logic© G. Tourlakis



1.2 Enters Formal Logic! 9

1.2 Enters Formal Logic!

How do we get out out of this contradiction?

• Cantor never said what sets really are and how they
are built. He just used a dictionary of synonyms
instead of a definition! (collection, class, aggregate,
etc., he suggested as synonyms.)

• MUST use logic to argue how sets behave and what
they are.

� WE, however in 1090A, will never deal with sets again.
So we leave the task to set theorists ([Jec78, Lev79, Tou03b])
or to EECS 1028E and Z (my other course).

We only felt we should motivate the case for Logic at
the expense of Cantor’s approach to Set Theory. �

So Cantor was sloppy about what a set is

AND how sets get formed.
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10 The Beginning

Formal—meaning SYNTACTICALLY PER-
FORMED; Based on FORM— logic was invented
by Russell andWhitehead, andHilbert to salvageMath-
ematics from “antinomies” and “paradoxes”, both words
derived from Greek, and both meaning contradictions.

� How does formal logic salvage Mathematics?

By helping you stay on track in your argumentation.

You cannot pull facts and fake facts off the air, but
your facts MUST be axioms or PREVIOUSLY proved
theorems, and the rules of logic that you use

MUST NOT DEPEND on an Interpretation (yours,
Cantor’s, or mine).

�
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1.2 Enters Formal Logic! 11

Connection of Formal Logic with Programming

(1) In programming we use syntactic rules to write a pro-
gram in order to solve some problem computationally.

(2) In logic you use the syntactic rules to write a proof
that establishes a theorem.

Notes on Logic© G. Tourlakis



12 The Beginning

Kinds of logic reasoning that we will thoroughly examine
and use in this course.

1. Equational logic —also known as calculational logic.

Introduced by [DS90] and simplified by [GS94] and
later by [Tou08] to make it accessible to undergrad-
uates. Software Engineers like it.

2. Hilbert-style logic. This is the logic which most peo-
ple use to write their mathematical arguments in
publications, lectures, etc.

Notes on Logic© G. Tourlakis



1.2 Enters Formal Logic! 13

Logic is meant to certify mathematical truths
syntactically.

Logic is normally learnt by

• A LOT of practice.

• By presenting and teaching it gradually, namely

1. First, learning the Propositional Logic (also
known as Boolean Logic).

Here one learns how logical truths combine using
connectives familiar from programming like OR,
AND, and NOT.

Boolean logic is not expressive enough to formulate
statements about mathematical objects. Natu-
rally, if you cannot ask it —a question about such
objects— then you cannot answer it either.

Notes on Logic© G. Tourlakis



14 The Beginning

2. Next, learning Predicate Logic (also known
as First-Order Logic).

This is the full logic of the mathematician and
computer scientist as it lets you formulate and
explore statements that are about mathematical
objects like numbers, strings and trees, and many
others.

Notes on Logic© G. Tourlakis



1.3 A look back at strings 15

1.3 A look back at strings

1.3.1 Definition. (Strings; also called Expressions)

1. What is a string over some alphabet of symbols?

It is an ordered finite sequence of symbols from the
alphabet —with no gaps or other “separators” between symbols.

1.3.2 Example. If the alphabet is {a, b} then here
are a few strings:

(a) a

(b) aaabb

(c) bbaaa

(d) bbbbbbb

□

Notes on Logic© G. Tourlakis



16 The Beginning

What do we mean by “ordered”? We mean that
order matters! For example, aaabb and bbaaa are
different strings. We indicate this by writing aaabb ̸=
bbaaa.

� Two strings are equal iff † they have the same
length n and at each position —from 1 to n—
both strings have the same symbol. So, aba =
aba, but aa ̸= a and aba ̸= baa. �

†If and only if.

Notes on Logic© G. Tourlakis



1.3 A look back at strings 17

1.3.1 A Bad Alphabet

Consider the alphabet B = {a, aa}.

This is bad. WHY?

Because if we write the string aaa over this alphabet
we do not know what we mean by just looking at
the string!

Do we mean 3 a like

a a a

Or do we mean

a aa

Or perhaps

aa a

We say that alphabet B leads to ambiguity.

Notes on Logic© G. Tourlakis



18 The Beginning

Since we use NO separators —like a space or a comma—
between symbols in denoting strings we MUST AL-
WAYS choose alphabets with single-symbol items.

Notes on Logic© G. Tourlakis



1.3 A look back at strings 19

2. Names of strings: A,A′′, A5, B, C, S, T .

What for? CONVENIENCE AND EASE OF EX-
PRESSION.

Thus A = bba gives the string bba the name A.

Names vs IS : “Practicing” mathematicians and com-
puter scientists take a sloppy attitude towards using
the verb “IS”.

When they say “let A be a string” they mean “let A
name a string”.

� Same as in “let x be a rational number”. Well x is
not a number at all! It is a letter! We mean “let x
STAND for, or NAME, a rational number” �

Notes on Logic© G. Tourlakis



20 The Beginning

3. Operations on strings: Concatenation. From strings
aab and baa, concatenation in the order given yields
the string aabbaa.

If A is a string (meaning names a string) and B

is another, then their concatenation AB is not a
concatenation of the names but is a concatenation
of the contents. If A = aaaa and B = 101 then
AB = aaaa101.

Incidentally,

BA = 101aaaa ̸= aaaa101 = AB

Thus in general concatenation is not commutative
as we say.

Why “in general”?

Well, if X = aa and Y = a then XY = aaa = Y X.

Special cases where concatenation commutes exist!

Notes on Logic© G. Tourlakis



1.3 A look back at strings 21

4. Associativity of concatenation.

It is expressed as (AB)C = A(BC) where bracketing
here denotes invisible METAsymbols (they are NOT
part of any string!) that simply INDICATE the or-
der in which we GROUP, from left to right.

At the left of the “=” we first concatenate A and B
and then glue C at the right end.

A B C

if A = 1, B = 2, C = 3 then A(BC) = 123 NOT
1(23)

To the right of “=” we first glue B and C and then
glue A to the left of the result.

In either case we did not change the relative
positions of A, B and C.

The property is self-evident.

I can now skip brackets and write (ABC)D and you
know what I mean!

((((ABC)D)E)F )G

Notes on Logic© G. Tourlakis



22 The Beginning

5. Empty string. A string with no symbols, hence with
length 0. Denoted by λ.

λQ = Q, and Qλ = Q

� How is λ different than ∅ the empty set?

Well one is of string type and the other is of set type.
So? The former is an ORDERED empty set, the
latter is an UNORDERED empty set that moreover
is oblivious to repetitions.

I mean, aaa ̸= a but {a, a, a} = {a}. �

6. Clearly, for any string A we have Aλ = λA = A as
concatenation of λ adds nothing to either end.

Notes on Logic© G. Tourlakis



1.3 A look back at strings 23

7. Substrings . A string A is a substring of B iff A ap-
pears as is as a part of B.

� So if A = aa and B = aba then A is NOT a substring
of B. So if A = aa and B = baab then A IS a
substring of B. �

Its members both appear in B (the two a) but are
not together as they are in A. A does not appear “as
is”.

Can we get rid of all this bla-bla with a proper
definition? Sure:

1.3.3 Definition. A is a substring of B iff for some
strings (named) Q and R we have B = QAR. □

� We also say A is part of B. �

Notes on Logic© G. Tourlakis



24 The Beginning

Sep. 11, 2024

8. Prefix and suffix . A is a prefix of B if for some string
V , B = AV .

So A is part of B up in front!

A is a suffix of B if for some string U , B = UA. □

Example: λ is a prefix and a suffix, indeed a part, of
any string B. Here are the “proofs” of the two cases I
enumerated:

• B = λB

• B = Bλ

WHAT ABOUT THE THIRD CASE?

Well, B = Bλλ.

Notes on Logic© G. Tourlakis



1.4 The Formulas or well-formed-formulas (wff) 25

1.4 The Formulas or well-formed-formulas (wff)

The Syntax of logic. Boolean Logic at first!

Boolean logic is the “Algebra of statements”. We start
with atomic statements and build complex statements
using “glue” as I call the Boolean connectives

¬,∧,∨,→,≡

� Atomic statements have NO glue! We usually denote
them by p, q, r with or without primes or subscripts.

E.g., p, q, r, r′′′105 all are (meaning, all stand for) un-
specified atomic statements.

Boolean logic has precisely two specific statements (“con-
stants”). Read on! �

Examples of statements that Boolean logic can ex-
press:

p, (¬p) and also ((p ∨ q) ∧ r). And more!
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26 The Beginning

Can I see inside atomic statements like p to see what
they mean?

NO!! We cannot! But we can assign arbitrarily
“true” or “false” values to atomic statements and
then proceed to see how these truth values propa-
gate when I apply glue.

That is all that Boolean logic can do.

And this ends up being quite useful! Read on!
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1.4 The Formulas or well-formed-formulas (wff) 27

1.4.1 Definition. (Alphabet of Boolean Symbols)

A1. Names for variables, which we call “propositional”
or “Boolean” variables.

These are p, q, r, with or without primes or sub-
scripts (indices) (e.g., p, q, r, p′, q13, r

′′′
51 are all names

for Boolean variables).

A2. Two symbols denote the Boolean constants, ⊤ and
⊥. We pronounce them “top” and “bot” respec-
tively.

What are ⊤ and ⊥ good for? We will soon see!

A3. (Round) brackets, i.e., “(” and “)” (employed with-
out the quotes, of course).

A4. Boolean “connectives” that I will usually call “glue”.

We use glue to put a formula together much like
we do so when we build model cars or airplanes or
houses.
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28 The Beginning

The symbols for Boolean connectives are

¬ ∧ ∨ → ≡ (1)

and are read from left to right as “negation, con-
junction, disjunction, implication, equivalence”.

□

� We stick to the above symbols for glue (no pun!)
in this course! Just as in programming,

� NO DEVIATION IS PERMITTED!!! �

� You cannot use any symbols you please or like. �

SPEAKING BY ANALOGY, You use THE sym-
bols of A Programming Language as THEY ARE GIVEN.

If not, your program does NOT work and your GRADE
bottoms!

Same holds for logic! �
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1.4 The Formulas or well-formed-formulas (wff) 29

1.4.2 Definition. (Formula Construction (process))
A formula construction (in the text called “formula cal-
culation”) is any finite (ordered) sequence of strings over
the alphabet† of Boolean logic V that obeys the following
three specifications:

C1. At any step we may write precisely one symbol
from categories A1. or A2. above (1.4.1), that is,
variables (p, q′′, r′′′33, etc.) or constants (⊥ or ⊤).

C2. At any step we may write precisely one string of
the form (¬A), as long as we have written the string
(named) A already at a previous step.

So, “(¬A)” is a string that has “(¬” (no quotes) as

a prefix, then it has a part we named A, and then
it has “)” (no quotes) as a suffix.

� I must stress that the letter A names the string
that was written down.

Just as in a program: When you issue the com-
mand “print X” you mean to print what the X
contains as value —what it names. You do not
mean to print the letter “X”!

�

C3. At any step we may write precisely one of the strings
(A ∧ B), (A ∨ B), (A → B), (A ≡ B), as long as

†“Over the Alphabet”: Using exclusively symbols from the Alphabet V that we adopted.
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30 The Beginning

we have already written each of the strings A and
B earlier. □

� We do not care which we wrote first, A or B. �
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1.4 The Formulas or well-formed-formulas (wff) 31

1.4.3 Definition. (Boolean formulas (wff)) Any string
A over the alphabet V (A1.–A4.) is called a Boolean for-
mula or propositional formula —in short wff— iff A is a
string that appears in some formula construction. □

Notes on Logic© G. Tourlakis



32 The Beginning

1.4.4 Example. First off, the above says more than it
pretends to:

For example, it says that every string that appears
in a formula construction is a wff. The definition also
says,

“do you want to know if A is a wff? Just make sure
you can build a formula construction where A ap-
pears.”

Notes on Logic© G. Tourlakis



1.4 The Formulas or well-formed-formulas (wff) 33

We normally write formula constructions vertically.
Below I use numbering and annotation (in “⟨. . .⟩” brack-
ets) to explain each step.

•

(1) ⊥ ⟨const⟩
(2) p ⟨var⟩
(3) (¬⊥) ⟨(1) + ¬⟩
(4) ⊥ ⟨const⟩
(5) ⊤ ⟨const⟩

Note that we can have redundancy and repetitions.

Ostensibly the only nontrivial info in the above is
that (¬⊥) is a formula. But it also establishes that
⊥ and ⊤ and p are formulas.
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34 The Beginning

•

(1) ⊥ ⟨const⟩
(2) p ⟨var⟩
(3) (¬⊤) ⟨oops!⟩
(4) ⊥ ⟨const⟩
(5) ⊤ ⟨const⟩

Why the “oops”? The above is wrong at step (3).
I have not written ⊤ in the construction before I at-
tempted to use it!

□
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Chapter 2

Properties of the wff

Sep. 16, 2024

Here we speak about wff —and discover some useful
properties they have— before we get to our main task,
eventually, of USING wff in proofs.

2.1 Boolean Wff

Let us repeat

2.1.1 Definition. (Boolean formulas or wff) A string
(or expression) A over the alphabet of Boolean symbols
V is called a Boolean formula or a Boolean well-formed
formula (in short wff) iff it occurs in some formula con-
struction.

The set of all wff we denote by the all-capitals
WFF.

35



36 Properties of the wff

The wff that are either propositional variables

p, q, p′′, r123, . . .

or ⊥ or ⊤, in short, glue-less , we call Atomic wff.

□
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2.1 Boolean Wff 37

� Notation. META names. We often want to say
things such as “. . . bla-bla . . . all variables p . . . ”.

▶ Well this is not exactly right! There is only ONE
variable p!

We get around this difficulty by having informal names
(in themetatheory as we say) for Boolean variables: p,q, r′,
etc.

Any such bold face informal variable can stand for any
actual variable of our alphabet V whatsoever.

So “all variables p” means “any of the actual variables
p, q, r1110001, . . . that p may stand for” while “all p” is
meaningless ! �
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38 Properties of the wff

We can give a definition of formulas that is in-
dependent from formula constructions: OK, the
above Definition 1.4.3 says that A is a wff iff it appears
in a construction as

1. Atomic: ⊥,⊤,p

2. A negation (¬B), whereB

so is a wff︷ ︸︸ ︷
appeared earlier in the construction

3. An expression (B∧C) or (B∨C) or (B → C) or (B ≡

C), whereB and C

so are wffs︷ ︸︸ ︷
appeared earlier in the construction

and

� BUT we can say “B (or C) Appeared EARLIER”
differently:

“B (or C) is a wff” �

So,
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2.1 Boolean Wff 39

2.1.2 Definition. (The Inductive Definition of wff)
An expression A over V is a wff just in case A is:

(1) Atomic (p,⊥,⊤)

or one of

(2) (¬B), (B ∧ C), (B ∨ C), (B → C), (B ≡ C), where
B and C are wff. □
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40 Properties of the wff

2.1.3 Remark. The formulas (¬A), (A ∧ B), (A ∨ B),
(A→ B), (A ≡ B) are pronounced in English, from left
to right, “not A”, “A and B”, “A or B”, “if A then B”
(but also “ A implies B”), “A is equivalent to B”.

((A→ B)

last glue
↓
∨ C)

The wff in the remark have the same names as their
“last glue”, namely, negation, conjunction, disjunction,
implication and equivalence.

Pause. Why did I say “LAST” glue?

□
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2.1 Boolean Wff 41

2.1.4� Example. Using 1.4.3 let us verify that ((p∨q)∨r)
is a wff.

Well, here is a formula construction written with an-
notations:

(1) p ⟨atomic⟩
(2) q ⟨atomic⟩
(3) r ⟨atomic⟩
(4) (p ∨ q) ⟨1 + 2 + ∨-glue⟩
(5) ((p ∨ q) ∨ r) ⟨4 + 3 + ∨-glue⟩

Do we have to write down all the atomic wff at the
very beginning? Not really, but it is important to write
them BEFORE they are used in the construction!

So, this works too:

(1) p ⟨atomic⟩
(2) q ⟨atomic⟩
(3) (p ∨ q) ⟨1 + 2 + ∨-glue⟩
(4) r ⟨atomic⟩
(5) ((p ∨ q) ∨ r) ⟨4 + 3 + ∨-glue⟩

□ �
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42 Properties of the wff

Intuitively, immediate predecessors of a wff are
the formulas on which we applied the last glue.

2.1.5 Definition. (Immediate predecessors (i.p.))

1. No atomic formula has immediate predecessors.

2. Any of the following wff

(A ∧B), (A ∨B), (A→ B), (A ≡ B)

has as i.p. A and B.

3. A is an i.p. of (¬A). □

2.1.6 Example.

• The i.p. of ((p ∨ q) ∨ r) are (p ∨ q) and r

• The i.p. of (p ∨ q) are p and q

• The only i.p. of (¬⊤) is ⊤

□
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2.1 Boolean Wff 43

2.1.7� Remark. (Priorities of glue (connectives)) The
priorities of glue, from left to right in (1) below, go from
strongest to weakest.

¬,∧,∨,→,≡ (1)

□ �

Why do we care? What does “priority” do?

Well, suppose we do not want to always write wff down
with all the brackets that Definitions 1.4.3 and 2.1.2 re-
quire.

Why wouldn’t we? For better readability !

� Thus we agree to judiciously omit brackets in a manner
that we can reinsert them correctly if we are required to! �

� That is, we agree on how to write formulas sloppily
and get away with it!

Is there any other way to agree on priorities?

Yes, BUT: As it is with any agreement between
any two parties, there can be ONLY ONE agreement.

Remember. We are learning a “programming” lan-
guage!!
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44 Properties of the wff

So please do follow (1) above and the clarifications
that follow below. Anything else will be wrong. �

The “algorithm” is that whenever two pieces of glue
compete for a variable as in, for example,

. . . ∨ p ∧ . . .

then the stronger glue wins (higher priority). In this case
it is ∧ that wins and “gets” the p.

This means brackets were intended —and hence are
reinserted— this way:

. . . ∨ (p ∧ . . .

What if we have the situation

. . . ∨ p ∨ . . . (2)

i.e., same glue left and right of p?
We have the agreement that all glue is right-associative,

that is, in a chain like (2) the glue on the right wins ! We
insert brackets this way:

. . . ∨ (p ∨ . . .

In particular
¬¬¬p

means (
¬
(
¬(¬p)

))

Notes on Logic© G. Tourlakis



2.1 Boolean Wff 45

p→ q → r → ⊥
means

(p→ (q → (r → ⊥)))

In (p→ q)→ r cannot remove the brackets; all are needed.
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46 Properties of the wff

2.1.8 Definition. (Complexity of a wff) The complex-
ity of a wff is the number of occurrences of connectives
(glue) in it. Counting occurrences means that multiplic-
ity matters and counts! □

2.1.9 Example. Clearly we can compute complexity cor-
rectly whether we wrote a formula with all its brackets
or not.

For example, the complexity of p → ⊥ → r is 2
whether we wrote it with no brackets or wrote it as Def-
initions 1.4.3 and 2.1.2 want: (p→ (⊥ → r)).

Directly from the definition above, every atomic for-
mula has complexity zero. □
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� All the theorems (and their corollaries) in this section are
ABOUT formulas of Boolean logic, and their FORM.

They are not theorems OF Boolean logic. This
concept we have not defined yet!!

Theorems that are ABOUT Boolean logic we call METAtheorems. �

2.1.10 Metatheorem. Every formula A has equal num-
bers of left and right brackets.

Proof. Induction on the complexity, let’s call it n, of A.

1. Basis. n = 0. Then A has no glue, so it is atomic.
But an atomic formula has no left or right brackets!

Since 0=0 we are good!

2. Induction Hypothesis, in short “I.H.” Fix an n and
assume the statement for all A of complexity ≤ n.

3. Induction Step, in short “I.S.”, is for any A of com-
plexity n+1. As n+1> 0, A is NOT atomic THERE-
FORE it has one of TWO forms:
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(a) A is (¬B) —where B is a wff.

By I.H. —applicable since A has complexity n+1
hence the complexity of B is ≤ n— B has equal
number of left and right brackets. Forming A we
added one left and one right. So, total left=total
right for A.

(b) A is (B◦C), where we wrote “◦” as a metasymbol
that stands for any binary glue among

∧,∨,→,≡

By I.H.

Blefts = k,Brights = k, Clefts = k′, Crights = k′

So, after gluing,

BandClefts = k + k′, BandCrights = k + k′

Overall (after adding external brackets for A),

we have k + k′ + 1 lefts and k + k′ + 1 rights.
Bingo!

□
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� IMPORTANT! You will note that the induction
for the formula A above essentially went like
this:

• Prove the property for the atomic formulas p,⊥,⊤

Then we assumed the I.H. that all the i.p. of A have
the property.

and we proved (I.S.)

• If A is (¬B), then A has the property since the i.p.
B does (WHY B does?

BY I.H. on i.p.)

The technique above is called Induction on (the shape
of) formulas and does not need the concept of com-
plexity.

This is how we will do it in our inductions
going forward. �
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2.1.11 Corollary. Every nonempty proper prefix of a
wff A has an excess of left (compared to right) brackets.

Proof. I will do induction on formulas A.

• Basis. A is atomic. Then we are done since A has
NO nonempty proper prefix!

People also say “then there is nothing to prove”
or “the statement is vacuously satisfied”.

� What just happened here?! Well, I am claiming “the
statement is true” and suppose that you are claiming
“the statement is false”.

It is for you to give me a counterexample to what I
said in order to show that you are right: Namely,

You must produce a nonempty proper
prefix of A that fails the property.

BUT there is no way! There is NO nonempty proper
prefix of A!

So I win! �

• Assume the I.H. that all the i.p. of A have the prop-
erty.
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• For the I.S. we examine ALL possible forms of
nonempty proper prefixes. These are:

1. Case where A is (¬B). A nonempty proper prefix
of A has one of the four forms below:

(a) ( Then clearly we have an excess of “(”
The I.H. was NOT needed.

(b) (¬ Then clearly we have an excess of “(”
The I.H. again was NOT needed.

(c) (¬D, where D is an nonempty proper
prefix of B. D already has an excess of
“(” by the I.H. that applies since B is an i.p.
of A.
So, adding to them the leading red “(” does
no harm!

(d) (¬B Now (2.1.10) B has equal number of
lefts and rights. The leading (red)“(” con-
tributes an excess. The I.H. again was NOT
needed.
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2. A is (B ◦C). A nonempty proper prefix of A has
one of the six forms below:

(a) ( Then clearly we have an excess of “(”
The I.H. was NOT needed.

(b) (B′, where B′ is an nonempty proper pre-
fix of B. B′ already has an excess of “(”
by the I.H. that applies since B is an i.p. of
A. So, adding to them the leading “(” does
no harm!
C has balanced brackets so it does not spoil
the above.

(c) (B B has balanced bracket numbers by
2.1.10, thus the leading “(” creates a majority
of “(”.

(d) (B◦ As ◦ adds no brackets we are done by
the previous case.

(e) (B ◦ C ′ Here B is a formula so it con-
tributes 0 excess. C ′ is a nonempty proper
prefix of C and the I.H. applies to the latter
as it is an i.p. of A.

So C ′ has an excess of “(” and the leading “(”
of A helps too.

(f) (B ◦C Neither B nor C contribute an ex-
cess of “(” as both are formulas. The leading
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red “(” breaks the balance in favour of “(”.

□
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This is easy:

2.1.12 Theorem. Every formula A begins with an atomic
wff, or with a “(”.

Proof. By 2.1.2, A is one of

• Atomic p,⊥,⊤

• (¬B)

• (B ◦ C) where ◦ ∈ {∧,∨,→,≡}

So, in the first case A begins with an atomic wff, and in
the other two begins with an “(”.

No Induction was used or needed! □
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Sep. 18, 2024

2.1.13 Theorem. (Unique Readability) The i.p. of
any formula A are unique.

� So we can “deconstruct” or “parse” a formula in a unique way:
A formula is exactly one of atomic, a negation (¬B), a
disjunction (B∨C), a conjunction (B∧C), an implication
(B → C), an equivalence (B ≡ C). �

Proof.

• Clearly no atomic formula can also be “read” as one
of

a negation, a disjunction, a conjunction, an implica-
tion, an equivalence

since the atomic contains no glue, but all the others
do.

• Can we read a formula A as two distinct negations?
That is, using in this proof ONLY “=” as
equality of strings, can we have

A = (¬B) = (¬C)?

No, since (¬B) = (¬C) implies that after we match
the first two symbols (left to right) then we will con-
tinue matching all symbols —by position— until we
match all of B with C and finally match the right-
most “)”.
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• Can we read a formula A as a negation and as a
disjunction, or a conjunction, or an implication, or
an equivalence? That is, can I have

A = (¬B) = (C ◦D)?

No, since if we have (¬B) = (C ◦D), then from left
to right the first position is OK (match) but the 2nd
is NOT: C cannot begin with “¬” (see 2.1.12).

• Can we read a formula A as a (B ◦ C) and also dif-
ferently as a (D ⋄Q), where ⋄ stands for any binary
glue (including “◦”)?

Let’s assume that we can and get a contradiction.

Well, note first that if (B ◦ C) = (D ⋄ Q) then
if we have B = D then this forces ◦ = ⋄ and hence
also that C) = Q) which trivially (remove the ending
“)”) leads to C = Q.

BUT this is not the case that we are looking at.

So, assume that B ̸= D. There are two cases.

Case 1. B is shorter than D, so is a nonempty proper
prefix of D. Then, by 2.1.11, B has an excess of
left brackets. But being a wff it also has balanced
numbers of left/right brackets. Contradiction!
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Case 2. D is shorter than B so is a nonempty proper
prefix of B. Then, by 2.1.11, D has an excess of
left brackets. But being a wff it also has balanced
numbers of left/right brackets. Contradiction!

□

Notes on Logic© G. Tourlakis



58 Properties of the wff

Why do we care about unique readability?

OK. Let as define arithmetic expressions (using only
+,×) on three numbers, 1, 2, 3. Let us name all such
expressions by the generic name “E”.

Consider the recursive definition below for E, where
“::=” is read “is defined as (the rhs)”

1. E ::= 1 or E ::= 2 or E ::= 3

OR

2. E ::= E + E.

The lhs says that to figure it out, figure out the two
rhs E (recursive calls!) and put a glue of “+” be-
tween the two.

� I can also say that the definition here says “An (arith-
metic) expression E is the sum of TWO arithmetic
expressions E”.

Is E ::= E ′ + E ′′ “more correct?”. NO!
In recursive programming you call the SAME proce-
dure E recursively. Not some other E ′ and E ′′! �

OR

3. E ::= E × E.
The lhs says that to figure it out, figure out the two
rhs E (recursive calls!) and put a glue of “×” be-
tween the two.

So an example of E is

1 + 2× 3 (1)
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What is its value? What are the i.p. of (1)?

Well, if I say 1 + 2 (+ done first) and 3, then I get
value 9.

If I say 1 and 2× 3 (× done first), then I get value 7.

Value is slippery! We have ambiguity!

� So unique i.p. IS important! �
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2.2 Boolean Semantics

Boolean Logic is about the behaviour of glue. That is,
we use Boolean logic to find out how glue influences the
truth-value of an entire wff, assuming values are arbitrarily
assigned to its atomic subformulas.

What values do we have in mind?

The so-called truth-values, true and false.

These values are OUTSIDE Boolean Logic.

Did you see them in the alphabet V? Nor did I!!

They are in the metatheory of Boolean Logic, that is,
in the domain where we are speaking about the logic,
rather than using the logic.

2.2.1 Definition. A state v (or s) is a function that as-
signs the value f (false) or t (true) to every Boolean
variable —any way we please!— while the constants ⊥
and ⊤, necessarily, always get the values f and t respec-
tively.

None of these symbols —v, s, t, f— are in the Boolean
logic alphabet V . They are all metasymbols in themetatheory.
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2.2 Boolean Semantics 61

The f and t we call truth values.

On paper or on the chalk board one usually underlines
rather than bolds —as bolding is cumbersome— so one
denotes f as f and t as t respectively.

The fact that v gives (assigns) the value f to the vari-
able q′′ is denoted by v(q′′) = f. □
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� Therefore a state v is an infinite input/output table like
the one below

input output

⊥ f
⊤ t
p t
q f
...

...

where no two rows can have the same input but
different outputs.

In the jargon of MATH1019/1028 the table is what
we call a function! This observation justifies the no-
tation

function
↓
v ( q′′

↑
input

) =

output
↓
f

in the last sentence of Definition 2.2.1.

▶ Why an infinite table?

Because our Boolean logic language has infinitely many
variables and a state, by definition, assigns a value to
each of them. �
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2.2.2 Definition. (Truth tables) In themetatheory of
Boolean logic —so, outside logic itself— there are five op-
erations we are interested in that can be applied on the
members of the set of truth values {t, f}.

Each operation takes its input(s) from the above set,
and its outputs are also in this set.

We have one operation for each connective (glue) and
in order to keep track of which is formal and which is
not we use in the METATHEORY (outside Logic)
the generic letter F (for “function”) subscripted by the
name of the corresponding glue.

These functions of the metatheory are called Boolean
functions and are the following.

F¬(x), F∨(x, y), F∧(x, y), F→(x, y), F≡(x, y)

� So, “∨” does NOT operate on inputs f , t.

∨ expects TWO inputs that are wff! t, f are NOT wff
and we operate with F∨ on these two instead. In the
META THEORY.

The behaviour of these functions —input/output be-
haviour, that is— is fully described by the following table
that goes by the nickname “truth table”.
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x y F¬(x) F∨(x, y) F∧(x, y) F→(x, y) F≡(x, y)

f f t f f t t

f t t t f t f

t f f t f f f

t t f t t t t

□

One often sees truth values 0 for f and 1 for 1 or even the
other way around! The metatheory allows many tastes!
Not, though, the formal theory!

x y F¬(x) F∨(x, y) F∧(x, y) F→(x, y) F≡(x, y)

0 0 1 0 0 1 1

0 1 1 1 0 1 0

1 0 0 1 0 0 0

1 1 0 1 1 1 1

The above depiction of truth values as “0” and “1”
makes clear that truth values are NOT part of the theory.
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Chapter 3

What makes our Logic
“Classical”

3.1 States and Truth tables

Refer to the truth table on p.64 and let us discuss the
column of F→(x, y).

The most “straightforward” entry in this column is ar-
guably, the one for input (t, f).

This function is describing the truth-value of implica-
tions, and the x input is the hypothesis while the y input
is the conclusion.

Thus having F→(t, f) = f can be interpreted as say-
ing that the implication cannot be RIGHT, i.e., t, IF we
start with a true hypothesis and end up with a false
conclusion. IMPLICATIONMUST PRESERVE TRUTH
is our PRINCIPLE.
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This principle indeed supports the behaviour of F→ in
the other three rows.

For example you would be wrong to tell me: “Hey,
F→(f , t) is not right”. I will respond: “Oh yeah? Show
me that it does not preserve truth from hypothesis to
conclusion! You cannot show me a truth here that
fails to be preserved!”
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� So far, states give meaning (values) to atomic formulas
only . Let us extend this meaning-giving to any wff. �

3.1.1 Definition. (The value of a wff in some state, v)
We extend any state v to be meaningful not only for
atomic arguments but also for any wff arguments.

We will call such an extension of v by the same
letter, but will “cap” it with a “hat”, v, since it is a
different function!

This one, v, acts on ANY wff, not only on atomic ones.

Notes on Logic© G. Tourlakis



68 What makes our Logic “Classical”

What IS an “EXTENSION” of v?

It is a function v that on the arguments where v is
defined so is v and gives the same output!

But v is ALSO defined on more inputs: On ALL
wff found in WFF.
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The definition of v is INDUCTIVE (also called RE-
CURSIVE):

The first three lines below simply say that v agrees
with v on the inputs —atomic they are— that the latter
is defined on.

The remaining lines trace along the inductive def-
inition of wff, and give the value of a wff using the
values —via “recursive calls”— of its UNIQUE
i.p.

� You see now the significance of the uniqueness of i.p.!!! �

v(p) = v(p)

v(⊤) = t

v(⊥) = f

v
(
(¬A)

)
= F¬

(
v(A)

)
v
(
(A ∧B)

)
= F∧

(
v(A), v(B)

)
v
(
(A ∨B)

)
= F∨

(
v(A), v(B)

)
v
(
(A→ B)

)
= F→

(
v(A), v(B)

)
v
(
(A ≡ B)

)
= F≡

(
v(A), v(B)

)
□
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� Truth tables are more convenient to understand than a
bunch of recursive equations; but even easier to misunderstand!

For example the ∨-column of the Table in 2.2.2 can
also be depicted as:

A B A ∨B
f f f

f t t

t f t

t t t

In recursive definition jargon the above says

v((A ∨B)) = F∨(v(A), v(B))

At a glance the table says that to compute the value of
A ∨ B you just utilise the values of the i.p. A and B as
indicated.

The misunderstanding you MUST avoid is
this: The two left columns are NOT values you
assign to A and B.

You can assign values ONLY to ATOMIC formulas!

What these two columns DO say is that the for-

mulas A and B have each two possible values.

That is, 4 pairs of values, as displayed! �
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3.2 Finite States

Sep. 23, 2024

� We say a variable p occurs in a formula mean-
ing the obvious: It is, as a string, a substring
—a part— of the formula. �

3.2.1 Theorem. Given a formula A. Suppose that two
states, v and s, agree on all the variables occurring in
A. Then v(A) = s(A).

Proof. We do induction on the (formation of the) for-
mula A:

1. Case where A is atomic. Well if it is ⊤ or ⊥ then
v(A) = s(A) is true.

If A is p, then

v(A) = v(A)
Hypothesis

= s(A) = s(A)

I.H.: Claim is true for all i.p. of A.

2. Case where A is (¬B). The value of A —whether
under v or under s— is determined by the recursive
calls v(B) and s(B).
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Seeing that all the variables of B are in A, the
I.H. yields v(B) = s(B) and —as F¬ “FLIPS” both
these values— we get v(A) = s(A).

3. Case where A is (B ◦C). The value of A —whether
under v or under s— is determined by the recursive
calls v(B) and v(C) on one hand and s(B) and s(C)
on the other.

Seeing that all the variables of B and C are in A,
the I.H. yields

v(B) = s(B) and v(C) = s(C) (∗)

Hence

v(A) = F◦

(
v(B), v(C)

)
by (∗)
= F◦

(
s(B), s(C)

)
= s(A)

□
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3.2.2� Remark. (Finite “appropriate” States) A state
v is by definition an infinite table.

By the above theorem, the value of any wff A in a
state v is determined only by the values
of v ON THE VARIABLES OF A, since any other
state that agrees with v on said variables gives the
same answer.

Thus, going forward we will be utilising finite appro-
priate states to compute the truth values of any wff.

That is, we discard from the infinite state all the rows
that contain variables NOT occurring in the formulas of
interest. □ �

3.2.3 Example. Under no state v can we have

((A→ B)→ A)→ A

evaluate as f . Exercise! □
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3.3 Tautologies and Tautological Implication

3.3.1 Definition. (Tautologies and other things. . . )

1. A Tautology is a formula A which is true in all states.
That is, for all v, we have v(A) = t.

We write “|=taut A” for “A is a tautology”.

2. A contradiction is a formula A such that, for all v,
we have v(A) = f .

Clearly, for all v, we have v(¬A) = t.

3. A is satisfiable iff for some v, we have v(A) = t.

We say that v satisfies A.

▶ Boolean logic for the user helps to discover
tautologies. □
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We saw that WFF denotes the set of all (well-formed)
formulas.

Capital Greek letters that are different from any Latin
capital letter are used to denote arbitrary sets of for-
mulas. Such letters are Γ,∆,Φ,Ψ,Ω,Π,Σ. As always,
in the rare circumstance you run out of such letters you
may use primes and/or (natural number) subscripts.

3.3.2 Definition. (Tautological implication: binary |=taut)

1. Let Γ be a set of wff. We say that v satisfies Γ iff v

satisfies —that is, makes t— every wff in Γ.

2. We say that Γ tautologically implies A —and we
write this as Γ |=taut A— iff every state v that satis-

fies Γ also satisfies A.

The configuration

Γ |=taut A (1)

is called a tautological implication claim.

We call Γ the set of hypotheses or premises of the
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tautological implication, while A is the conclusion.

Instead of {A,B,C} |=taut D we write A,B,C |=taut

D. □

� IMPORTANT! The task to verify (1) needs work on our

partONLY with v that satisfy Γ.

If there is NO such v then the claim (1) is VACU-
OUSLY valid! YOU cannot contradict its validity, be-
cause to do so you will need a v that satisfies Γ but
NOT A.

You haveNOCOUNTEREXAMPLE. �

3.3.3 Example.

(1) If |=taut A, then for any Σ, we have Σ |=taut A.

The converse is not valid:

(2) We have p |=taut p∨q. Indeed, for any v such that
v(p) = t we compute v(p ∨ q) = t from the truth table
for ∨.
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Yet, p ∨ q is NOT a tautology. Just take v(p) =
v(q) = f

Note also the obvious: A |=taut A ∨ B, for any wff A
and B. Again use the truth table of p.70. □

In view of 3.2.1 we can check all of satisfiability, tau-
tology status, and tautological implication with finite Γ
using a finite truth table.
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Examples.

Example 1. ⊥ |=taut A.

Because no v satisfies the lhs of “|=taut” so
according to Definition, I rest my case.

Example 2. Let us build a truth table for A → B ∨ A
and see what we get.

I wrote sloppily, according to our priorities
agreement.

I mean (A→ (B ∨ A)).

We align our part-work under the glue since
it is the glue that causes the output.

Here→ is the last (applied) glue. Under it
we write the final results for this formula.

Since A and B are not necessarily atomic,
the values under A and B in the table be-
low are possible values NOT assigned val-
ues! So (A→ (B ∨ A)) is a tautology.
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A B A → B ∨ A

f f t f
f t t t
t f t t
t t t t

Sep. 25, 2024

Example 3. Here is another tautology. I will verify this
by a shortcut method, WITHOUT build-
ing a truth table.

I will show

|=taut ((A→ B)→ A)→ A (1)

I will do so by arguing that it is IMPOSSIBLE TO
MAKE (1) FALSE.

• If (1) is false then A is false and (A → B) → A is
true.

• Given the two blue statements above, itmust be that
A→ B is false. IMPOSSIBLE, since A is false!
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And another thing: If A is a tautology we say this in
symbols as

|=taut A (1)

Contrast with tautological implication from Γ:

Γ |=taut A (2)

Incidentally, (2) does NOT imply (1): E.g., we have
p |=taut p ∨ q, but ̸|=taut p ∨ q.

On the other hand (1) implies (2) for all Γ choices!
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Chapter 4

Substitution and Schemata

4.0.1 Definition. (Substitution in Formulas)

The METAnotation

A[p := B] (1)

where A and B are formulas and p is any variable
means

• As an Action: “Find and replace by B ALL occur-
rences of p in A”.

• As a Result: The STRING resulting from the
action described in the previous bullet. □
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�

1. In the METAtheory of Logic where we use the ex-
pression “[p := B]” we Agree to Give it The
Highest priority: Thus, A ∧ B[q := C] means

A ∧
(
B[q := C]

)
and ¬A[p := B] means ¬

(
A[p :=

B]
)

2. Clearly if p does NOT occur in A, then the “action”
found nothing to replace, so the resulting string —
according to (1)— in this case is justA; NO CHANGE.

�
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We observe the following, according to the inductive
definition of formulas.

With reference to (1) of page 81, we prove that the
result of (1) is a wff.

So how do we do A[p := B]?

Case 1. Say A is atomic. We have three subcases.

• A is p. Then A[p := B] = B

• A is q —where by q I denote here a vari-
able other than the one p stands for. Then
A[p := B] = A —no change.

• A is ⊥ or ⊤. Then A[p := B] = A —no
change.

� So in the atomic case, A[p := B] is ONE
OF A or B. A wff! �
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According to the recursive definition of wff, we
have two more cases for what A is.

Case 2. A is (¬C). Thus all p’s of A are in C.

� Any substitution done happens in C. �

The substitution steps are depicted below:

A =

3 add “(”;︷︸︸︷
(

2 add ¬;︷︸︸︷
¬

1 plug B in each p;︷ ︸︸ ︷
. . .p . . .p . . .︸ ︷︷ ︸

C

4 add “)”.︷︸︸︷
)

(†)
The above actions in (†) have as result

A[p := B] is
(
¬ C[p := B]︸ ︷︷ ︸

by I.H. a wff

)

Hence A[p := B] is a wff in our Case 2.
(†′)
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Case 3. A is (C ◦D). Thus all p’s of A are in C andD.

The substitution steps are depicted below:

A =

4 add “(”;︷︸︸︷
(

1 plug B in each p;︷ ︸︸ ︷
. . .p . . .︸ ︷︷ ︸

C

3 add “◦”;︷ ︸︸ ︷
◦

2 plug B in each p;︷ ︸︸ ︷
. . .p . . .︸ ︷︷ ︸

D

5 add “)”.︷︸︸︷
)

(‡)
The above actions in (‡) have as result

A[p := B] is
(
C[p := B]︸ ︷︷ ︸
by I.H. a wff

◦ D[p := B]︸ ︷︷ ︸
by I.H. a wff

)

Hence A[p := B] is a wff in our Case 3.
(‡′)
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4.0.2 Proposition. For every wff A and wff B and any
variable p, A[p := B] is∗a wff.

Proof. See the preceding argument. □

� We are poised to begin describing the proof system of
Boolean logic.

To this end we will need the notation that is called
formula schemata or formula “schemas” (use the lat-
ter only if you think “schema” is an English word —but
it is not!).

(A ∨ (B → p))

A[p := B]

4.0.3 Definition. (Schema, Schemata) Add to the
alphabet V the following symbols:

1. “[”, “]” and “:=”

2. All NAMES of formulas: A,B,C, . . ., with or with-
out primes and/or subscripts.

3. Allmetasymbols for variables: p,q, r, with or without
primes and/or subscripts.

Then a formula schema is a STRING over the aug-
mented alphabet, which becomes a wff whenever all

∗We are purposely sloppy with jargon here —like everybody else in the literature: “IS”
means “results into”.

Notes on Logic© G. Tourlakis



87

metasymbols of types 2 and 3 above, which occur in the
string, are replaced by wff and actual variables (meaning
non bold p, q, r′′, q′′′13) respectively, and all actions indi-
cated by [p := B] are performed.

A formula that we obtain by the process described in
the paragraph above is called an Instance of the
Schema. □

� Three examples of schemata.

(1) A: This Schema stands (is a placeholder) for a wff!
So trivially, if I plug into A an actual wff, I get that wff
as an instance!

(2) (A ≡ B): Well, whatever formulas I substitute into
the (metavariables) A and B I get a wff by the inductive
definition of wff.

(3) A[p := B]: We know that if I substitute A and B
by actual formulas and p by an actual Boolean variable
I get a wff (4.0.2). �
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Next stop is Proofs!

In proofs we use Axioms and Rules (of Inference).

P1 −→
P2 −→

...
Pn −→

Rule −→ Q

A rule as above indicates that in a proof that we have
written the wff Pi already, we have the (mathematical)
right to write Q at any proof stage after that!

It is the habit in the literature to write Rules as frac-
tions:

P1, P2, . . . , Pn

Q
(R)

where all of P1, . . . , Pn, Q are schemata.

Notes on Logic© G. Tourlakis



89

The Pi are input metavariables and the Q is the output
metavariable(only one!)

Thus the “fraction” depicts an action of providing in-
puts to the Pi and obtaining an output from the metavari-
able Q.

The Pi are also called hypotheses and the Q is called
conclusion.
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More Jargon. We can call the Pi on the numerator
of the rule “the premise(s)”.

The single schema in the denominator we may also
call the “result”.
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4.1 Rules and Axioms of Boolean Logic

4.1.1 Definition. (Rules of Inference of Boolean Logic)
There are just two:

Rule1
A ≡ B

C[p := A] ≡ C[p := B]
(Leib)

There are NO restrictions in the use of “Leib”
—that means Leibniz.

In particular,

(a) it is NOT required that p actually occurs in
C.

� If it does not, then the denominator is just
C ≡ C. �

(b) The single hypothesis can be ANY equivalence.

(c) For any INPUT we have INFINITELY MANY
possible results.

Notes on Logic© G. Tourlakis



92 Substitution and Schemata

Rule2 “Equanimity” Rule.

A,A ≡ B

B
(Eqn)

There are NO restrictions in the use of “Equa-
nimity” other than

“A”must be the left part of the equivalence
on the numerator.

� Does it matter “left” or “right”? FOR NOW
YES!, as we have NO basis to decide otherwise
and will NOT be caught “importing” so-called “knowl-
edge” (from other courses) whose validity we
did NOT prove in our Logic; YET!!! �

□
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4.1.2 Definition. (Axioms of Boolean Logic) In the
following, (1)–(11), A,B,C name or stand for arbitrary
wff.

Properties of ≡
Associativity of ≡ ((A ≡ B) ≡ C) ≡ (A ≡ (B ≡ C)) (1)

Commutativity of ≡ (A ≡ B) ≡ (B ≡ A) (2)

Properties of ⊥,⊤
⊤ and ⊥ ⊤ ≡ ⊥ ≡ ⊥ (3)

Properties of ¬
Introduction of ¬ ¬A ≡ A ≡ ⊥ (4)

Properties of ∨
Associativity of ∨ (A ∨B) ∨ C ≡ A ∨ (B ∨ C) (5)

Commutativity of ∨ A ∨B ≡ B ∨ A (6)

Idempotency of ∨ A ∨ A ≡ A (7)

Distributivity of ∨ over ≡ A ∨ (B ≡ C) ≡ A ∨B ≡ A ∨ C (8)

“Excluded Middle” A ∨ ¬A (9)

Properties of ∧
“Golden Rule” A ∧B ≡ A ≡ B ≡ A ∨B (10)

Properties of →
Implication A→ B ≡ A ∨B ≡ B (11)

All of the above (1)–(11) except (3) are schemata for axioms.
We call them Axiom Schemata, while (3) is an Axiom.
Each axiom schema above defines infinitely many axioms
that are its Instances.

So our axioms are (3) and all the instances of the Ax-
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iom Schemata (1), (2), (4)–(11).

We reserve the Greek letter Λ for the set of all Axioms
of Boolean Logic. □

DISCLOSURE. You can verify (Exercise! TRY
IT!!!) that each axiom is a tautology. The aim is that
starting with these tautologies in a proof, and having
the Rules PRESERVE TRUTH as we proceed with
the proof (WAIT and SEE!), it follows that ANY
proof is composed ONLY of true statements.
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4.1.3 Definition. (Proofs) Let Γ (could use Σ,Θ,Ψ etc.,
instead of Γ —there is nothing special about the letter
Γ! Use Σ or ∆ or Φ if you prefer!!!) be some set of
wff.

A proof from Γ is any finite ordered sequence of for-
mulas that satisfy the following two specifications:

At every step of the Construction (that we call “Proof”)
we may write

Proof 1. Any ONE formula from Λ or Γ.

Proof 2. Any wff A which is the RESULT of an Appli-
cation of the rule Leib or rule Eqn to wff(s)

that appeared in THIS proof before A.

A proof from Γ is also called a “Γ-proof”. □
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Γ-proofs. No mystery in Γ. Follow all definitions
(including those for the use of Σ,Φ,∆,Γ,Ψ).
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4.1.4� Remark. (1) So, a proof is a totally syntactic con-
struct, totally devoid of semantic concepts.

(2) Γ is a convenient set of “additional hypotheses”.

Syntactically the elements of Γ “behave” like the Ax-
ioms from Λ —as it is clear from 4.1.3, item 1— but
semantically they are NOT the same:

While every member of Λ is a tautology by choice,

this need NOT be the case for the members of Γ.

(3) Since every proof (from some Γ) has finite length,

only a finite part of Γ and Λ can ever appear in some
proof.

□ �
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Sep. 30, 2024

4.1.5 Definition. (Theorems) Any wff A that appears
in a Γ-proof is called a Γ-theorem.

In particular, any member from Γ or Λ that appears
in a proof is a Γ-theorem.

Remember this!

We also say, “A is a theorem from Γ”.

In symbols, the sentence “A is a Γ-theorem”, is de-
noted by “Γ ⊢ A”.

If Γ = ∅ then we write ⊢ A.

� That is, Λ never appears to the left of the turnstile “⊢”. �

We call an A such that ⊢ A an absolute or logical
theorem. □
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4.1.6� Remark. That A is a Γ-theorem is certified by a
Γ-proof like this

B1, . . . , Bn, A, C1, . . . , Cm (1)

the sequence (1) obeying the specifications of 4.1.3.

Clearly, the sequence (2) below also satisfies the spec-
ifications, since each specification for a Bi or A that
utilises rules refers to formulas to the left only.

Thus the sequence (2) is also a Γ-proof of A!

B1, . . . , Bn, A (2)

The bottom line of this story is expressed as either

1. If you are proving a theorem A, just stop as soon as
you wrote it down with justification in a proof!

OR

2. A Γ-theorem is a wff that appears at the END of some proof.

□ �
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Concatenating two Γ-proofs

A1, . . . , An

and
B1, B2, . . . , Br

results in a Γ-proof.

Indeed, checking

B1, B2, . . . , Br, A1, . . . , An

from left to right we give EXACTLY the same reasons
that we gave for writing the formulas down in each stan-
dalone proof.
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So we learnt that a Γ-theorem, let’s call it A, satisfies

1. A is member of Λ or Γ

2. A appears in a Γ-proof as the result of an application of Eqn
to TWO wff to its left in the proof.

3. A appears in a Γ-proof as the result of an application of Leib
to ONE wff to its left in the proof.

Let us rephrase the blue “appears” above, remember-
ing that a Γ-theorem IS a formula that appears in a Γ-
proof.

1. A is member of Λ or Γ

2. A is the result of an application of Eqn to two Γ-theorems.
of the forms X and X ≡ A

3. A is the result of an application of Leib to one Γ-theorem.
of the form X ≡ Y .
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4.1.7 Exercise. How do we do this Exercise?

By providing a Γ-proof IN WHICH our target theo-
rem appears, OR by using the Inductive Definition of the
previous page.

(1) A,B,C ⊢ A, for any wff A
(2) More generally, if A ∈ Σ, then Σ ⊢ A
(3) ⊢ B, for all B ∈ Λ

□
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4.1.8� Remark. (Hilbert-style Proofs)
A Γ-proof is also called a “Hilbert-style proof” —in

honour of the great mathematician David Hilbert, who
was the first big supporter of the idea to use SYNTAC-
TIC (FORMAL) logic as a TOOL in order to do COR-
RECT mathematics.

We arrange Hilbert proofs vertically, one formula per line,
numbered by its position number, adding “annotation ”
to the right of the formula we just wrote, articulating
brieflyHOW exactly we followed the spec of Definition 4.1.3.

Practical Note. If one forgets numbering or anno-
tation, or that each line contains ONE wff ONLY,
then this results in a very bad grade! :)

□ �
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4.1.9 Example. (Some very simple Hilbert Proofs)

(a) We verify that “A,A ≡ B ⊢ B” (goes without say-
ing, for all wff A and B).

Well, just write a proof of B with “Γ” being {A,A ≡
B}.

BTW, we indicate a finite “Γ” like {A,A ≡ B} with-
out the braces “{ }” when writing it to the left of “⊢”.

(1) A ⟨hypothesis⟩
(2) A ≡ B ⟨hypothesis⟩
(3) B ⟨(1) + (2) + (Eqn)⟩

� Incidentally, members of Γ are annotated as “hypothe-
ses” and going forward we just write “ hyp”.

Members of Λ we annotate as “Axioms”. �
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� Since A and B are arbitrary undisclosed wff, the expres-
sion A,A ≡ B ⊢ B is a Theorem Schema (a theorem,
no matter what formulas we plug into A and B). �
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(b) Next verify the Theorem Schema

I will skip in class, but you study this!

A ≡ B ⊢ C[p := A] ≡ C[p := B]

Here you go:

(1) A ≡ B ⟨hyp⟩
(2) C[p := A] ≡ C[p := B] ⟨(1) + Leib⟩

C can be any wff (and p any actual Boolean variable)
so from ONE hypothesis for fixed A and B we can
derive an infinite number of theorems of the “shape”
C[p := A] ≡ C[p := B].
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(c) Something more substantial. Our First Derived
Rule!

We establish the following Theorem Schema that we
will refer to as Transitivity of ≡ —or simply “Trans”.
How? We write a Hilbert proof!

A ≡ B,B ≡ C ⊢ A ≡ C (Trans)

(1) A ≡ B ⟨hyp⟩
(2) B ≡ C ⟨hyp⟩
(3) (A ≡ B) ≡ (A ≡ C) ⟨(2) + (Leib), Denom. “A ≡ p”; p “fresh”⟩
(4) A ≡ C ⟨(1) + (3) + (Eqn)⟩

What is fresh? Can I always have it? Why must p

be fresh?

Say A is p ∧ q.

Then, feeding B to p of “A ≡ p” the latter

becomes

B ∧ q ≡ B

which is NOT the SAME STRING AS A ≡ B.

this is NOT A︷ ︸︸ ︷
B ∧ q ≡ B
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(d) And a Tricky One! Verify that “A ≡ A” is an
absolute theorem for all A. That is,

⊢ A ≡ A

No “HYP” in the proof below!!

(1) A ∨ A ≡ A ⟨axiom⟩
(2) A ≡ A ⟨(1) + (Leib): A[p := A ∨ A] ≡ A[p := A]

where p is “fresh”⟩

Can start the proof with any known equivalence that
is an axiom. For example, line one could contain ⊤ ≡
⊥ ≡ ⊥. □

Notes on Logic© G. Tourlakis



4.1 Rules and Axioms of Boolean Logic 109

4.1.10 Metatheorem. (Hypothesis Strengthening)
If Γ ⊢ A and Γ ⊆ ∆, then also ∆ ⊢ A.

Proof. A Γ-proof for A is also a ∆-proof, since every time
we say about a formula B in the proof “legitimate since
B ∈ Γ” we can say instead “legitimate since B ∈ ∆”.

□
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4.1.11 Metatheorem. (Transitivity of ⊢) Assume Γ ⊢
B1, Γ ⊢ B2, . . . ,Γ ⊢ Bn. Let also B1, . . . , Bn ⊢ A. Then
we have Γ ⊢ A.

Also: Using DERIVED RULES B1, . . . , Bn ⊢ A.

Proof.

We have Γ-proofs

. . . , B1 (1)

. . . , B2 (2)

...

. . . , Bn (n)

We also have a {B1, . . . , Bn}-proof

. . . , Bi, . . . , A (n+ 1)
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Concatenate all proofs (1)–(n) (in any order) and to
the right of the result glue the proof (n+ 1).

We have the following proof:

DON’T say “hyp”
↓

. . . , B1 , . . . , B2 , . . . , . . . , Bn , . . . , Bi, . . . , A

↑
SAY: “obtained earlier; see box i”

□

So if we viewB1, . . . , Bn ⊢ A as a (derived or “macro”
rule) then this “rule” is applicable!

If the Bi are Γ-theorems and B1, . . . , Bn ⊢ A, then
we can apply the latter as a “rule” to obtain the Γ-
theorem A.

We say “B1, . . . , Bn ⊢ A is a derived rule”.
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4.1.12 Corollary. If Γ ⊢ A and also Γ∪ {A} ⊢ B, then
Γ ⊢ B.

� In words, the conclusion says that A drops out as a hy-
pothesis and we get Γ ⊢ B.

That is, a THEOREM A can be invoked just like an
axiom OR a hyp in a proof! �
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Proof. We have two proofs:

from Γ︷︸︸︷
. . . A

and

from Γ ∪ {A}︷ ︸︸ ︷
. . . A . . . B

When the second box is standalone, the justification
for A is “hyp”.

Now concatenate the two proofs above in the order

from Γ︷︸︸︷
. . . A

from Γ ∪ {A}︷ ︸︸ ︷
. . . A . . . B

Now change all the justifications for the red A in the
right box from “hyp” to the same exact reason you gave
to the A in box one —OR, as in the proof of 4.1.11 say
about the red A: “obtained earlier in box 1”.

Thus, the status of A as “hyp” is removed and B is
proved from Γ alone. □
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4.1.13 Corollary. If Γ∪{A} ⊢ B and ⊢ A, then Γ ⊢ B.

Proof. By hyp strengthening, I have Γ ⊢ A. Now apply
the previous corollary. □
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Oct. 2, 2024

4.1.14 Theorem. A ≡ B ⊢ B ≡ A

Proof.

(1) A ≡ B ⟨hyp⟩
(2) (A ≡ B) ≡ (B ≡ A) ⟨axiom⟩
(3) B ≡ A ⟨(1,2) + Eqn⟩
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4.1.15 Theorem. ⊢ (A ≡ (B ≡ C)) ≡ ((A ≡ B) ≡ C)

NOTE. This is the mirror image of Axiom (1).

Proof.

(1) ((A ≡ B) ≡ C) ≡ (A ≡ (B ≡ C)) ⟨axiom⟩
(2) (A ≡ (B ≡ C)) ≡ ((A ≡ B) ≡ C) ⟨(1)+4.1.14⟩□

4.1.16� Remark. Thus, in a chain of two “≡” we can
shift brackets from left to right (axiom) but also right to
left (above theorem).

So it does not matter how brackets are inserted in such
chain.

An induction proof on chain length (see course URL,
bullet #4 under Notes:

http: // www. cs. yorku. ca/ ~ gt/ courses/ MATH1090F23/

1090. html ) extends this remark to any chain of “≡”,
of any length. □ �
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4.1.17 Theorem. (The other (Eqn)) B,A ≡ B ⊢ A

Proof.

(1) B ⟨hyp⟩
(2) A ≡ B ⟨hyp⟩
(3) B ≡ A ⟨(2) + 4.1.14⟩
(4) A ⟨(1, 3) + original (Eqn)⟩ □

4.1.18 Corollary. ⊢ ⊤

Proof.

(1) ⊤ ≡ ⊥ ≡ ⊥ ⟨axiom⟩
(2) ⊥ ≡ ⊥ ⟨the “A ≡ A” theorem⟩
(3) ⊤ ⟨(1, 2) + (Eqn)⟩ □
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4.1.19 Theorem. ⊢ A ≡ A ≡ B ≡ B

(1) (A ≡ B ≡ B) ≡ A ⟨axiom; brackets as I please!⟩
(2) A ≡ (A ≡ B ≡ B) ⟨(1) + 4.1.14⟩ □

4.1.20 Corollary. ⊢ ⊥ ≡ ⊥ ≡ B ≡ B and ⊢ A ≡ A ≡
⊥ ≡ ⊥

NOTE absence of brackets in theorem AND corol-
lary!
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4.1.21 Corollary. (Redundant ⊤ Theorem)
⊢ ⊤ ≡ A ≡ A and ⊢ A ≡ A ≡ ⊤.

Proof.

(1) ⊤ ≡ ⊥ ≡ ⊥ ⟨axiom⟩
(2) ⊥ ≡ ⊥ ≡ A ≡ A ⟨absolute theorem 4.1.20⟩
(3) ⊤ ≡ A ≡ A ⟨(Trans) + (1, 2)⟩
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4.1.22 Metatheorem. (Redundant ⊤ METAtheorem)
For any Γ and A, we have Γ ⊢ A iff Γ ⊢ A ≡ ⊤.

Proof. Say Γ ⊢ A.

Thus

Γ
...

(1) A ⟨Γ-theorem⟩
(2) A ≡ A ≡ ⊤⟨Red. ⊤ theorem; 4.1.21⟩
(3) A ≡ ⊤ ⟨(1, 2) +Eqn⟩

The other direction is similar. □
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4.2 Equational Proofs

Example from high school trigonometry.

Prove that 1 + (tanx)2 = (secx)2 given the identities

tanx =
sinx

cosx
(i)

secx =
1

cosx
(ii)

(sinx)2 + (cosx)2 = 1 (Pythagoras’ Theorem) (iii)
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Equational proof with annotation

1 + (tan x)2

= ⟨by (i)⟩
1 + (sin x/ cosx)2

= ⟨arithmetic⟩
(sinx)2 + (cosx)2

(cosx)2
(E)

= ⟨by (iii)⟩
1

(cosx)2

= ⟨by (ii)⟩
(secx)2
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An equational proof in Logic looks like:

reason︷ ︸︸ ︷
A1 ≡ A2,

reason︷ ︸︸ ︷
A2 ≡ A3,

reason︷ ︸︸ ︷
A3 ≡ A4 . . . ,

reason︷ ︸︸ ︷
An ≡ An+1 (1)

4.2.1 Metatheorem. (Important Derived Rule!)

A1 ≡ A2, A2 ≡ A3, . . . , An ≡ An+1 ⊢ A1 ≡ An+1 (2)

Proof. By induction on n ≥ 1 using the (derived) rule (Trans).

1. Basis for n = 1. We want A1 ≡ A2 ⊢ A1 ≡ A2. This
is “X ⊢ X” done! (see 4.1.7).

2. I.H. Assume (2) for fixed unspecified n.

3. I.S. Do the case n + 1 for the n we fixed above, so
we want (3) below:

A1 ≡ A2, A2 ≡ A3, . . . , An+1 ≡ An+2 ⊢ A1 ≡ An+2

(3)
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Here it goes

Oct. 7, 2024

Generalised ≡-Transitivity (Derived Rule)

(1) A1 ≡ A2 ⟨hyp⟩
(2) A2 ≡ A3 ⟨hyp⟩

...
...

(n) An ≡ An+1 ⟨hyp⟩
(n+ 1) A1 ≡ An+1 ⟨(1 + 2 + . . .+ n) + I.H.⟩
(n+ 2) An+1 ≡ An+2 ⟨hyp⟩
(n+ 3) A1 ≡ An+2 ⟨n+ 1, n+ 2 + Trans⟩

□
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All Equational Proofs are based on Metatheorem 4.2.1:

4.2.2 Corollary. In an Equational proof (from Γ) like
the one in (1) of p.123 we have Γ ⊢ A1 ≡ An+1.

Proof. So we have n Γ-proofs, for i = 1, . . . , n,

. . . , Ai ≡ Ai+1

Concatenate them all to get ONE Γ-proof

Γ-proof︷ ︸︸ ︷
. . . , A1 ≡ A2 . . .

Γ-proof︷ ︸︸ ︷
. . . , Ai ≡ Ai+1 . . .

Γ-proof︷ ︸︸ ︷
. . . , An ≡ An+1

By the DERIVED RULE 4.2.1 the following is a Γ-proof
of A1 ≡ An+1

. . . , A1 ≡ A2 . . . . . . , Ai ≡ Ai+1 . . . . . . , An ≡ An+1 , A1 ≡ An+1

□
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4.2.3 Corollary. In an Equational proof (from Γ) like
the one in (1) of p.123 we have Γ ⊢ A1 iff Γ ⊢ An+1.

Proof. From the above Corollary we have

Γ ⊢ A1 ≡ An+1 (†)

Now split the “iff” in two directions:

• IF (←): So we have

Γ ⊢ An+1

This plus (†) plus Eqn yield Γ ⊢ A1.

• ONLY IF (→): So we have

Γ ⊢ A1

This plus (†) plus Eqn yield Γ ⊢ An+1.

□
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Equational Proof Layout

Successive equivalences like “Ai ≡ Ai+1 and Ai+1 ≡
Ai+2” we write vertically, without repeating the shared
formula Ai+1.

WITH annotation in ⟨. . .⟩ brackets

A1

≡ ⟨annotation⟩
A2

≡ ⟨annotation⟩
... (ii)

An−1

≡ ⟨annotation⟩
An

≡ ⟨annotation⟩
An+1

EXCEPT FOR ONE THING!

(ii) is just ONE FORMULA, namely

A1 ≡ A2 ≡ . . . ≡ An ≡ An+1

where I can put brackets anywhere I please.
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It does NOT say the same thing as (1) of p.123.

For example, “⊤ ≡ ⊥ ≡ ⊥” is NOT the same
as “⊤ ≡ ⊥︸ ︷︷ ︸

f

∧ ⊥ ≡ ⊥︸ ︷︷ ︸
t

”

The former (blue) is true but the latter (red) is false.
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What do we do?

We introduce a metasymbol for an equivalence that
acts ONLY on TWO formulas!

AND

Such equivalences CANNOT be chained to form a SIN-
GLE formula.

The symbol we will use for such UNCHAINABLE equiv-
alences is “⇔” and thus

“A ⇔ B ⇔ C” MEANS “A ≡ B AND B ≡
C”, NOT “A ≡ B ≡ C”.

We say that “⇔” is CONJUNCTIONAL while “≡” is
associative.
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So the final layout is:

A1

⇔ ⟨annotation⟩
A2

⇔ ⟨annotation⟩
...

An−1

⇔ ⟨annotation⟩
An

⇔ ⟨annotation⟩
An+1
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A Lot of Practice Examples Now!

If I a say “I will skip this, but you should do it

(do study it)”, then indeed you do it and you must

know/remember both the proof technique AND

the theorem!

You can use the latter in assignments, midterm,
exam. As is!

4.2.4 Theorem. ⊢ ¬(A ≡ B) ≡ A ≡ ¬B

Proof. (Equational)

¬(A ≡ B)

⇔ ⟨axiom⟩
A ≡ B ≡ ⊥

⇔ ⟨(Leib) + axiom: ¬B ≡ B ≡ ⊥; Denom: A ≡ p; p fresh⟩
A ≡ ¬B □

Why do I need Leib above? Why not just use the
Axiom? Because I am replacing PART of a wff.
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▶Study this next one, but I will SKIP!

4.2.5 Corollary. ⊢ ¬(A ≡ B) ≡ ¬A ≡ B

Proof. (Equational)

¬(A ≡ B)

⇔ ⟨axiom⟩
A ≡ B ≡ ⊥

⇔ ⟨(Leib) + axiom: B ≡ ⊥ ≡ ⊥ ≡ B; Denom: A ≡ p; p fresh⟩
A ≡ ⊥ ≡ B

⇔ ⟨(Leib) + axiom: A ≡ ⊥ ≡ ¬A; Denom: q ≡ B; q fresh⟩
¬A ≡ B □
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4.2.6 Theorem. (Double Negation) ⊢ ¬¬A ≡ A

Proof. (Equational)

¬¬A
⇔ ⟨axiom “¬X ≡ X ≡ ⊥”⟩
¬A ≡ ⊥

⇔ ⟨(Leib) + axiom: ¬A ≡ A ≡ ⊥; Denom: p ≡ ⊥ ⟩
A ≡ ⊥ ≡ ⊥

⇔ ⟨(Leib) + axiom: ⊤ ≡ ⊥ ≡ ⊥; Denom: A ≡ q; q fresh⟩
A ≡ ⊤

⇔ ⟨red. ⊤ thm.⟩
A □
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4.2.7 Theorem. ⊢ ⊤ ≡ ¬⊥

Proof. (Equational)

⊤
⇔ ⟨axiom⟩
⊥ ≡ ⊥

⇔ ⟨axiom⟩
¬⊥ □
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4.2.8 Theorem. ⊢ ⊥ ≡ ¬⊤

Proof. (Equational)

¬⊤
⇔ ⟨axiom⟩
⊤ ≡ ⊥

⇔ ⟨red. ⊤⟩
⊥ □

� Practical Advise. In Equational Proofs move from the
most complex side towards the least complex one. �
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STARTING WITH WHAT YOU ARE PROVING

4.2.9 Theorem. ⊢ A ∨ ⊤

Proof.

A ∨ ⊤
⇔ ⟨(Leib) + axiom ⊤ ≡ ⊥ ≡ ⊥; “Denom:” A ∨ p; Mind brackets!⟩

A ∨ (⊥ ≡ ⊥)
⇔ ⟨axiom⟩

A ∨ ⊥ ≡ A ∨ ⊥ Bingo! Recognised an axiom or known theorem. □
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� Recall about ≡ that, by axiom (1) and a theorem we
proved in the NOTES posted in http://www.cs.yorku.

ca/~gt/courses/MATH1090F23/1090.html (4th bullet),
we have that

in a chain of any number of ≡ we may omit brackets.

The same holds for a chain of ∨ (and ∧) using the
same kind of proof, in the same link mentioned above. �

That is,

we do not need to show bracketing in a chain of ∨
(or one of ∧).
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� How about moving formulas around in such a chain?
(Permuting them). �

It is OK! I prove this for ∨-chains HERE. The proof
is identical for ≡-chains and ∧-chains (EXERCISE!!)
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Prove first this theorem:

⊢ B ∨ C ∨D ≡ D ∨ C ∨B

Indeed here is a proof:

B ∨ C ∨D
⇔ ⟨∨ commutes axiom (imagin brackets around B ∨ C)⟩

D ∨B ∨ C (∗)
⇔ ⟨(Leib) + ∨ commutes axiom. “Denom:” D ∨ p⟩

D ∨ C ∨B
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More generally we CAN DO an arbitrary swap (not
only the END-FORMULAS), that is, we have the theo-
rem

⊢ A ∨B ∨ C ∨D ∨ E ≡ A ∨D ∨ C ∨B ∨ E

� The boxed formulas may well be long ∨-chains! �

Follows by an application of the previous special case:

A ∨
︷ ︸︸ ︷
B ∨ C ∨D∨E

⇔ ⟨(Leib) + special case. “Denom:” A ∨ p ∨ E⟩
A ∨D ∨ C ∨B︸ ︷︷ ︸∨E
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Oct. 9, 2024

4.2.10 Theorem. ⊢ A ∨ ⊥ ≡ A

Proofs. (Equational)

This time we work with the entire formula, not just
one of the sides of “≡”.

� How do we know? We don’t! It is just a matter of practice. �

A ∨ ⊥ ≡ A

⇔ ⟨(Leib) + axiom A ≡ A ∨ A; “Denom:” A ∨ ⊥ ≡ p⟩
A ∨ ⊥ ≡ A ∨ A

⇔ ⟨axiom ∨ over ≡⟩
A ∨ (⊥ ≡ A)

⇔ ⟨(Leib) + axiom: ⊥ ≡ A ≡ ¬A; “Denom:” A ∨ p⟩
A ∨ ¬A Bingo! □

Comment on “same mouth” p used twice in above
proof. What about freshness?
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4.2.11 Theorem. ⊢ A→ B ≡ ¬A ∨B

Proof.

A→ B

⇔ ⟨axiom⟩
A ∨B ≡ B ◀HERE

⇔ ⟨(Leib) + 4.2.10; “Denom:” A ∨B ≡ p⟩
A ∨B ≡ ⊥ ∨B

⇔ ⟨axiom⟩
(A ≡ ⊥) ∨B

⇔ ⟨(Leib) + axiom; “Denom:” p ∨B⟩
¬A ∨B □
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4.2.12 Corollary. (IMPORTANT)

⊢ ¬A ∨B ≡ A ∨B ≡ B

Proof. Start the above proof from spot marked (above)
“HERE”. □
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READ THIS! I will skip. Uses IMPORTANT
Corollary above twice.

4.2.13 Theorem. (de Morgan 1)
⊢ A ∧B ≡ ¬(¬A ∨ ¬B)

Proof.

Long but obvious. Start with the most complex side!

¬(¬A ∨ ¬B)

⇔ ⟨axiom⟩
¬A ∨ ¬B ≡ ⊥

⇔ ⟨(Leib) + 4.2.12; “Denom:” p ≡ ⊥⟩
A ∨ ¬B ≡ ¬B ≡ ⊥

⇔ ⟨(Leib) + axiom; “Denom:” A ∨ ¬B ≡ p —order does not matter!⟩
A ∨ ¬B ≡ B

⇔ ⟨(Leib) + 4.2.12; “Denom:” p ≡ B⟩
A ∨B ≡ A ≡ B

⇔ ⟨GR axiom —order does not matter⟩
A ∧B □
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4.2.14 Corollary. (de Morgan 2)

⊢ A ∨B ≡ ¬(¬A ∧ ¬B)

Proof. See Text. Better still, EXERCISE!
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MORE About “∧”

DO ALL that I skip regarding “∧”.

4.2.15 Theorem. ⊢ A ∧ A ≡ A

Proof.

A ∧ A ≡ A

⇔ ⟨GR axiom —order does not matter⟩
A ∨ A ≡ A Bingo! □

4.2.16 Theorem. ⊢ A ∧ ⊤ ≡ A

Proof.

A ∧ ⊤ ≡ A

⇔ ⟨GR axiom⟩
A ∨ ⊤ ≡ ⊤

⇔ ⟨Red. ⊤ Thm.⟩
A ∨ ⊤ Bingo! □
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4.2.17 Theorem. ⊢ A ∧ ⊥ ≡ ⊥

Proof.

A ∧ ⊥ ≡ ⊥
⇔ ⟨GR axiom⟩

A ∨ ⊥ ≡ A Bingo! □

▶READ the following theorem and its proof!
REMEMBER the result!!!

4.2.18 Theorem. (Distributive Laws between ∨ and ∧)

(i) ⊢ A ∨B ∧ C ≡ (A ∨B) ∧ (A ∨ C)

and

(ii) ⊢ A ∧ (B ∨ C) ≡ A ∧B ∨ A ∧ C

� The above are written in least parenthesised notation!
It is part of your tool-set! �

Proof.

We just prove (i).
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(A ∨B) ∧ (A ∨ C)
⇔ ⟨GR⟩

A ∨B ∨ A ∨ C ≡ A ∨B ≡ A ∨ C
⇔ ⟨(Leib) + scramble an ∨-chain; “Denom:” p ≡ A ∨B ≡ A ∨ C⟩

A ∨ A ∨B ∨ C ≡ A ∨B ≡ A ∨ C
⇔ ⟨(Leib) + axiom; “Denom:” p ∨B ∨ C ≡ A ∨B ≡ A ∨ C⟩

A ∨B ∨ C ≡ A ∨B ≡ A ∨ C

HERE WE STOP, and try to reach this result from
the other side: A ∨B ∧ C.

A ∨B ∧ C
⇔ ⟨(Leib) + GR; “Denom:” A ∨ p; mind brackets!⟩

A ∨ (B ∨ C ≡ B ≡ C)

⇔ ⟨axiom⟩
A ∨B ∨ C ≡ A ∨ (B ≡ C)

⇔ ⟨(Leib) + axiom; “Denom:” A ∨B ∨ C ≡ p⟩
A ∨B ∨ C ≡ A ∨B ≡ A ∨ C

□
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Please Read. I Skip.

4.2.19 Theorem. (Important: “Proof by cases”)
⊢ A ∨B → C ≡ (A→ C) ∧ (B → C)

Proof.

A ∨B → C

⇔ ⟨4.2.11⟩
¬(A ∨B) ∨ C

⇔ ⟨(Leib) + 4.2.14; “Denom:” ¬p ∨ C⟩
¬¬(¬A ∧ ¬B) ∨ C

⇔ ⟨(Leib) + double neg.; “Denom:” p ∨ C⟩
(¬A ∧ ¬B) ∨ C

⇔ ⟨4.2.18⟩
(¬A ∨ C) ∧ (¬B ∨ C)

⇔ ⟨obvious (Leib), twice + 4.2.11⟩
(A→ C) ∧ (B → C) □
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Until now we only proved absolute theorems Equa-
tionally.

▶How about theorems with HYPOTHESES?

To do so we use the Redundant ⊤ METAtheorem:

Γ ⊢ A iff Γ ⊢ A ≡ ⊤

The Technique is demonstrated via Examples!

This “trick” converts a Γ-theorem to an equivalence
that is a Γ-theorem.

Such equivalences help: They allow the use of Leib!

4.2.20 Example.

(1) A,B ⊢ A ∧B

(2) A ∨ A ⊢ A

(3) A ⊢ A ∨B

(4) A ∧B ⊢ A
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For (1):

A ∧B
⇔ ⟨(Leib) + hyp B + Red. ⊤ META; “Denom:” A ∧ p⟩

A ∧ ⊤
⇔ ⟨4.2.16⟩

A Bingo!

NOTES:
▶ A,B ⊢ B. Hence A,B ⊢ B ≡ ⊤
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For (2):

A

⇔ ⟨axiom⟩
A ∨ A Bingo!

For (3):

A ∨B
⇔ ⟨(Leib) + Hyp A + Red-⊤-META; “Denom:” p ∨B⟩
⊤ ∨B ⟨Bingo!⟩
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(4) is a bit trickier:

A

⇔ ⟨4.2.16⟩
A ∧ ⊤

⇔ ⟨(Leib) + Hyp A ∧B + Red-⊤-META; “Denom:” A ∧ p⟩
A ∧ A ∧B

⇔ ⟨(Leib) + 4.2.15; “Denom:” p ∧B⟩
A ∧B Bingo! □
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I SKIP TO CUT-RULE! You read all :)

4.2.21� Metatheorem. (Hypothesis splitting/merging)

For any wff A,B,C and hypotheses Γ, we have Γ ∪
{A,B} ⊢ C iff Γ ∪ {A ∧B} ⊢ C.

Proof. ( Hilbert-style)
(I) ASSUME Γ∪{A,B} ⊢ C and PROVE Γ∪{A∧B} ⊢

C.

So, armed with Γ and A ∧ B as hypotheses I have to
prove C. OK, start!

(1) A ∧B ⟨hyp⟩
(2) A ⟨(1) + A ∧B ⊢ A rule ⟩
(3) B ⟨(1) + A ∧B ⊢ B rule ⟩
(4) C ⟨using HYP Γ + (2) and (3) ⟩

(II) ASSUME Γ ∪ {A ∧ B} ⊢ C and PROVE Γ ∪
{A,B} ⊢ C.

Exercise, or see Text. □ �
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4.2.22 Theorem. (Modus Ponens) A,A→ B ⊢ B

Proof.

A→ B

⇔ ⟨¬∨-theorem⟩
¬A ∨B

⇔ ⟨(Leib) + hyp A + Red-⊤-META; “Denom:” ¬p ∨B⟩
¬⊤ ∨B

⇔ ⟨(Leib) + theorem from class; “Denom:” p ∨B⟩
⊥ ∨B

⇔ ⟨thm from class⟩
B □
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4.2.23 Theorem. (Cut Rule) A∨B,¬A∨C ⊢ B ∨C

Proof. We start with an AUXILIARY theorem —
a Lemma— which makes the most complex hypothesis
¬A ∨ C usable (turns it into an EQUIVALENCE).

¬A ∨ C
⇔ ⟨how to lose a NOT⟩

A ∨ C ≡ C

Since ¬A ∨C is a HYP hence also a THEOREM, the
same is true for A ∨ C ≡ C from the Equational proof
above. Remember this below!

B ∨ C
⇔ ⟨(Leib) + Lemma; “Denom:” B ∨ p⟩

B ∨ (A ∨ C)
⇔ ⟨inserting brackets to our advantage AND swapping wff⟩

(A ∨B) ∨ C
⇔ ⟨(Leib) + HYP A ∨B + Red-⊤-Meta; “Denom:” p ∨ C⟩
⊤ ∨ C Bingo! □
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READ ME! SPECIAL CASES of CUT:

4.2.24 Corollary. A ∨B,¬A ∨B ⊢ B

Proof. From 4.2.23 we get A ∨B,¬A ∨B ⊢ B ∨B.

We have also learnt the rule B ∨B ⊢ B.

Apply this rule to the proof above that ends with “B∨
B” to get B.

Arrange this wordiness into a neat Hilbert proof! (Ex-
ercise!) □

4.2.25 Corollary. A ∨B,¬A ⊢ B

Proof. Apply the rule ¬A ⊢ ¬A ∨B.

We now can use the above Corollary! How exactly?

□
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4.2.26 Corollary. A,¬A ⊢ ⊥

Proof. Hilbert-style.

(1) A ⟨hyp⟩
(2) ¬A ⟨hyp⟩
(3) A ∨ ⊥ ⟨1 + rule X ⊢ X ∨ Y ⟩
(4) ¬A ∨ ⊥ ⟨2 + rule X ⊢ X ∨ Y ⟩
(5) ⊥ ⟨3 + 4 + rule 4.2.24⟩

Can you do the above Equationally without using CUT?

□
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SKIP this PROOF, but memorise the result!

4.2.27 Corollary. (Transitivity of →) A → B,B →
C ⊢ A→ C

Proof. (Hilbert style)

(1) A→ B ⟨hyp⟩
(2) B → C ⟨hyp⟩
(3) A→ B ≡ ¬A ∨B ⟨¬∨ thm⟩
(4) B → C ≡ ¬B ∨ C ⟨¬∨ thm⟩
(5) ¬A ∨B ⟨(1, 3) + (Eqn)⟩
(6) ¬B ∨ C ⟨(2, 4) + (Eqn)⟩
(7) ¬A ∨ C ⟨(5, 6) + CUT⟩ □

The last line is provably equivalent to A → C by the
¬∨ theorem.
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Chapter 5

A Weak Post’s Theorem
and the Deduction
Theorem Retold

Oct. 21, 2024

This note is about the Soundness and Completeness
(the latter is also known as “Post’s Theorem”) in Boolean
logic.

161



162 A Weak Post’s Theorem and the Deduction Theorem Retold

5.1 Soundness of Boolean Logic

MEMORISE RESULTS (but SKIP PROOFS):

1. SOUNDNESS of Boolean Logic.

2. POST’s THEOREM (completeness of Boolean Logic).

3. DEDUCTION THEOREM.

Soundness is the Property expressed by the state-
ment of themetatheory below—which in English says
“Boolean Logic tells ONLY the truth”:

If Γ ⊢ A, then Γ |=taut A (1)

5.1.1 Definition. The statement “Boolean logic is
Sound” means that Boolean logic satisfies (1).

For Γ = ∅ it means this:

If ⊢ A, then |=taut A (2)

□

SKIP TO STATEMENT OF POST’S THEO-
REM (5.2) AND EXAMPLE BEFORE IT.
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To prove soundness is an easy induction on the length
of Γ-proofs:

We prove that proofs preserve truth.
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5.1.2 Lemma. Eqn and Leib preserve truth, that is,

A,A ≡ B |=taut B (2)

and

A ≡ B |=taut C[p := A] ≡ C[p := B] (3)

Proof. (2) is trivial.

We prove (3) here:

So, let a state s make A ≡ B true (t).

Thus,
s(A) = s(B)

We will show that for any choice of instances of p, C
we have

C[p := A] ≡ C[p := B] is t in state s (4)

If p is not in C then (4) is C ≡ C, a tautology, so is true
in ANY STATE, THUS under s in particular.

Let then the distinct p,q, r, r′, r′′, . . . all occur in C.

Now in the lhs of (4) p gets the value s(A), while q, r, r′, r′′, . . .
get their values DIRECTLY from s—just as we did with
A and B.

Similarly, in the RHS of (4) p gets the value s(B), while
q, r, r′, r′′, . . . STILL get their values DIRECTLY from s.

▶ But s(A) = s(B).
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So both the lhs and rhs VARIABLES of (4) end up
with the same truth value assignments after the indicated
substitutions and also directly from s (into q, r, r′, r′′, . . .).

Then the computed values of lhs and rhs in (4) are the
same.

In short, the equivalence is true. □

Notes on Logic© G. Tourlakis



166 A Weak Post’s Theorem and the Deduction Theorem Retold

We can now prove:

5.1.3 Metatheorem. Boolean logic is Sound, that is,
(1) on p.162 holds.

Proof. By induction on the length of proof, n, needed to
obtain Γ ⊢ A we prove

Γ |=taut A (†)

So pick a state s that satisfies Γ. (‡)

1. Basis. n = 1. Then we have just A in the proof, and
no other wff.

If A ∈ Λ, then it is a tautology, so in particular is
true under s. We have (†).
If A ∈ Γ, then s satisfies A by (‡). Again we have (†).
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I.H. Assume claim for all proofs of length ≤ n.

I.S. Prove the theorem in the case Γ ⊢ A was estab-
lished by a proof of length n+ 1:

length ≤n︷︸︸︷. . . , A, . . .︸ ︷︷ ︸
length =n+1

(¶)

Now if A is in Λ∪Γ we are back to the Basis. Done.
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If not

• Case where A is the result of EQN on X and
X ≡ Y (so A is the same wff as Y ) that are
found in the left “. . .-area” of (¶).
By the I.H. (explain!) s satisfies X and X ≡ Y
hence, by the Lemma, satisfies Y , that is, A.

• Case where A is the result of LEIB on X ≡ Y
that is found in the left “. . .-area” of (¶).
By the I.H. (explain!) s satisfies X ≡ Y hence,
by the Lemma, satisfies A. □

5.1.4 Corollary. If ⊢ A then |=taut A. A is a tautology.

Proof. Γ = ∅ here. By the above, ∅ |=taut A.
BUT, ∅ |=taut A says EXACTLY |=taut A (EXER-

CISE). □
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5.1.5� Example. Soundness allows us to disprove formu-
las: To show they are NOT theorems.

• The statement “⊢ p” is false. If this were true, then
p would be a tautology!

• The statement “⊢ ⊥” is false! Because ⊥ is not a
tautology!

• The statement “p ⊢ p∧ q” is false. Because if it were
true I’d have to have p |=taut p ∧ q.
Not so: Take a state s such that s(p) = t and s(q) =
f . □ �
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5.2 Completeness of Boolean logic (“Post’s The-
orem”)

We prove here

(1) A weak form of Post’s theorem: If Γ is finite and
Γ |=taut A, then Γ ⊢ A
and derive as a corollary the Deduction Theorem:

(2) If Γ, A ⊢ B, then Γ ⊢ A→ B.

(1) can be formulated as

IF A1, . . . , An |=taut B THEN A1, . . . , An ⊢ B

That is,

Every |=taut SCHEMA can be read as a DERIVED RULE.

(2) Is the way practicing mathematicians prove
theorems like Γ ⊢ A→ B in everyday work.
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SKIP THIS METAPROOF! (Jump to 5.3.1)

We will employ ONE TOOL from class, RETOLD be-
low:

5.2.1 Theorem. ¬C ∨ E,¬D ∨ E ⊢ ¬(C ∨D) ∨ E.

Proof. Translating via the “¬∨-theorem”, the above says

C → E,D → E ⊢ (C ∨D)→ E (†)

Here is an Equational proof of (†):

(C ∨D)→ E

⇐⇒⟨4.2.19⟩
(C → E) ∧ (D → E)

Hence

(C → E) ∧ (D → E) ⊢ (C ∨D)→ E

and thus

C → E,D → E ⊢ (C ∨D)→ E

by hypothesis splitting (4.2.21). □
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5.2.2 Main Lemma. (Special Case) Suppose that A
contains none of the symbols ⊤,⊥,→,∧,≡. If |=taut A,
then ⊢ A.

Proof. The proof is long BUT EASY!

Under the assumption, A is an ∨-chain, that is, it has
the form

A1 ∨ A2 ∨ A3 ∨ . . . ∨ Ai ∨ . . . ∨ An (1)

where none of the Ai has the form B ∨ C.

In (1) we assumeWITHOUT LOSS OF GENERALITY
that n > 1, due to the axiom X ∨ X ≡ X —that is, in
the contrary case we can use A ∨ A instead, which is a
tautology as well and n = 2.

Moreover, (1), that is, A, is written in least parenthe-
sised notation.
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DEFINITION! Let us call an Ai in (1) reducible iff it
has the form ¬(C ∨D) or ¬(¬C).

� “Reducible”, since Ai is not alone in the ∨-chain, will be
synonymous to simplifiable without changing the mean-
ing of Ai, or indeed of A. �

Otherwise we say that Ai is irreducible. Not simplifi-
able.

Thus, the only possible irreducible Ai have the form
p or ¬p (where p is a variable).

By definition we will say that A is irreducible iff all
its Ai are.

� We define the reducibility degree, of EACH Ai —in sym-
bols, rd(Ai)— to be the total number, counting repetitions
of the ¬ and ∨ connectives in it, not counting a pos-
sible leading ¬. �
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The reducibility degree of the entire A is the sum of the
reducibility degrees of all its Ai.

For Example, rd(p) = 0, rd(¬p) = 0, rd(¬(¬p∨q)) =
2, rd(¬(¬p ∨ ¬q)) = 3, rd(¬p ∨ q) = 0.
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We say that p “occurs positively in . . .∨p∨ . . .”, while
it “occurs negatively in . . . ∨ ¬p ∨ . . .”.

In, for example, p ∨ ¬p it occurs both positively and
negatively.

By induction on rd(A) we now prove the main lemma,
that ⊢ A follows the stated hypothesis that |=taut A.

For the Basis, let A be an irreducible tautology —so,
rd(A) = 0.

� So rd(Ai) = 0 for all i �

It must be that A is a string of the form

“· · · ∨ p ∨ · · · ¬p ∨ · · · ”

for some p, otherwise,

if no p appears both “positively” and “negatively”,

then we can find a truth-assignment that makesA false
(f) —a contradiction to its tautologyhood.

To see that we can do this, just assign f to p’s that
occur positively only, and t to those that occur neg-
atively only.
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Now

A

⇔
〈
commuting the terms of an ∨-chain

〉
p ∨ ¬p ∨B (what is “B”?)

⇔
〈
Leib + axiom + Red. ⊤ META; Denom: r ∨B; fresh r

〉
⊤ ∨B bingo!

Thus ⊢ A, which settles the Basis-case: rd(A) = 0.

� We now argue the case where rd(A) = m+ 1,

on the I.H. that for any formula Q with rd(Q) ≤ m,
we do have that |=taut Q implies ⊢ Q.

�

Since we can shufle an ∨-chain any way we please, we
assume without restricting generality that rd(A1) > 0.

We have two cases:

(1) A1 is the string ¬¬C, hence A has the form
¬¬C ∨D.

Clearly |=taut C ∨D as well.

Moreover, rd(C ∨D) < rd(¬¬C ∨D), hence (by I.H.)

⊢ C ∨D (†)
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But,

¬¬C ∨D

⇔
〈
Leib + ⊢ ¬¬X ≡ X; Denom: r ∨D; fresh r

〉
C ∨D “bingo” by (†) above!

Hence, ⊢ ¬¬C ∨D, that is, ⊢ A in this case.
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One more case to go:

(2) A1 is the string ¬(C∨D), hence A has the form
¬(C ∨D) ∨ E.

We want: ⊢ ¬(C ∨D) ∨ E (i)

We are given
|=taut ¬(C ∨D) ∨ E (i′)

THAT IS |=taut A.
We immediately get that

|=taut ¬C ∨ E (ii)

and
|=taut ¬D ∨ E (iii)

from truth tables.

Check it!!!

Hint. To show (ii) let v be any state. Consider
cases: (1) where v(C) = f and (2) where v(C) = t.
In the second case use (i′) to show v(E) = t.

Since the rd of each of (ii) and (iii) is < rd(A), the
I.H. yields ⊢ ¬C ∨ E AND ⊢ ¬D ∨ E.

Apply the TOOL 5.2.1 to the above two theorems to
get (i).
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We are done, except for one small detail:

If we had changed the “original” A into A ∨ A (cf.
the “without loss of generality” remark just below (1)
on p.172), then all we proved above is ⊢ A ∨ A.

The contraction rule from Notes, and Text then yield
⊢ A. □

� Do you see now why we wanted n ≥ 2? �

But ALL this only proves “|=taut A implies ⊢ A”

▶ when A does not contain any of ∧,→,≡,⊥,⊤.

WHAT IF IT DOES?
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We are now removing the restriction on A regarding
its connectives and constants:

5.2.3 Metatheorem. (Post’s Theorem) If |=taut A,
then ⊢ A.

Proof. First, we note the following theorems stating equiv-
alences, where p is fresh for A.

The proof of the last one is in the notes and text but
it was too long (but easy) to cover in class.

⊢ ⊤ ≡ ¬p ∨ p

⊢ ⊥ ≡ ¬(¬p ∨ p)

⊢ C → D ≡ ¬C ∨D
⊢ C ∧D ≡ ¬(¬C ∨ ¬D)

⊢ (C ≡ D) ≡ ((C → D) ∧ (D → C))

(2)

Using (2) above, we eliminate, in order, all the ≡,
then all the ∧, then all the → and finally all the ⊥
and all the ⊤.
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Let us assume that our process eliminates one unwanted
symbol at a time.

� This leads to the Equational Proof below.

Starting from A we will generate a sequence of formu-
lae

F1 (same as A), F2, F3, . . . , Fn (same as A
′)

where the last, Fn, contains no ⊤,⊥,∧,→,≡. �

I am using here F1 as an alias for A. We will also give
to Fn an alias A′.

A

⇔
〈
Leib from (2)

〉
F2

⇔
〈
Leib from (2)

〉
F3

⇔
〈
Leib from (2)

〉
F4
...

⇔
〈
Leib from (2)

〉
A′ (Fn)
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Thus, ⊢ A′ ≡ A (∗)

By soundness, we also have |=taut A
′ ≡ A (∗∗)

So, say |=taut A. By (∗∗) we have |=taut A
′ as well, and

by the Main Lemma 5.2.2 we obtain ⊢ A′.

So bottom line, A′, being a theorem is a “bingo!” hence
the top line, A, is also a theorem. □

� Post’s theorem is the “Completeness Theorem”† of Boolean
Logic.

It shows that the syntactic manipulation apparatus —
proofs—DOES certify the “whole truth” (tautologyhood)
in the Boolean case. �

†Which is really a Metatheorem, right?
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5.2.4 Corollary. If

finite Γ︷ ︸︸ ︷
A1, . . . , An |=taut B

then
A1, . . . , An ⊢ B

Proof. It is an easy semantic exercise to see that the
assumption implies

|=taut A1 → . . .→ An → B

By 5.2.3,
⊢ A1 → . . .→ An → B

hence (hypothesis strengthening)

A1, A2 . . . , An ⊢ A1 → A2 → . . .→ An → B (1)

Applying modus ponens n times to (1) we get

A1, . . . , An ⊢ B □

� The above corollary is very convenient.
It says that every (correct) schema A1, . . . , An |=taut B

leads to a derived rule of inference, A1, . . . , An ⊢ B. �

In particular, combining with the transitivity of ⊢
metatheorem, we get

5.2.5 Corollary. If Γ ⊢ Ai, for i = 1, . . . , n, and if
A1, . . . , An |=taut B, then Γ ⊢ B.
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� Thus —unless otherwise required!— we can, from now
on, rigorously mix syntactic with semantic justifications
of our proof steps.

For example, we have at once A ∧ B ⊢ A, because
(trivially) A∧B |=taut A (compare with our earlier, much
longer, proof given in class). �
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5.3 Deduction Theorem and Proof by Contra-
diction

5.3.1 Metatheorem. (The Deduction Theorem) If Γ, A ⊢
B, then Γ ⊢ A → B, where “Γ, A” means “all the as-
sumptions in Γ, plus the assumption A” (in set notation
this would be Γ ∪ {A}).∗

Proof. Let G1, . . . , Gn ⊆ Γ be a finite set of formulae
from Γ that were used in a Γ, A-proof of B.

Thus we also have G1, . . . , Gn, A ⊢ B.

By Boolean Soundness, G1, . . . , Gn, A |=taut B.
But then,

finite!︷ ︸︸ ︷
G1, . . . , Gn |=taut A→ B Verify!

By 5.2.4, G1, . . . , Gn ⊢ A→ B and hence Γ ⊢ A→ B by
hypothesis strengthening. □

∗We can also write Γ +A.
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� The mathematician, or indeed the mathematics practi-
tioner, uses the Deduction theorem all the time, without
stopping to think about it. Metatheorem 5.3.1 above
makes an honest person of such a mathematician or prac-
titioner.

The everyday “style” of applying the Metatheorem
goes like this:

Say we have all sorts of assumptions and we want, un-
der these assumptions, to “prove” that “if A, then B”
(verbose form of “A→ B”).

We start by adding A to our assumptions, often with
the words, “Assume A”. We then proceed and prove just
B (not A→ B), and at that point we rest our case.

Thus, we may view an application of the Deduction
theorem as a simplification of the proof-task. It allows
us to “split” an implication A → B that we want to
prove, moving its premise to join our other assumptions.
We now have to prove a simpler formula, B, with the
help of stronger assumptions (that is, all we knew so far,
plus A). That often makes our task so much easier! �
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An Example. Prove

⊢ (A→ B)→ A ∨ C → B ∨ C

By DThm, suffices to prove

A→ B ⊢ A ∨ C → B ∨ C

instead.

Again By DThm, suffices to prove

A→ B,A ∨ C ⊢ B ∨ C

instead.

Let’s do it:

1. A→ B ⟨hyp⟩
2. A ∨ C ⟨hyp⟩
3. A→ B ≡ ¬A ∨B ⟨¬∨ thm⟩
4. ¬A ∨B ⟨1 + 3 + Eqn⟩
5. B ∨ C ⟨2 + 4 + Cut⟩

□
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5.3.2 Definition. A set of formulas Γ is inconsistent or
contradictory iff Γ proves every A in WFF. □

� Why “contradictory”? For if Γ proves everything, then
it also proves the contradiction p ∧ ¬p. �

5.3.3 Lemma. Γ is inconsistent iff Γ ⊢ ⊥

Proof. only if-part. If Γ is as in 5.3.2, then, in particu-
lar, it proves ⊥ since the latter is a well formed formula.

if-part. Say, conversely, that we have

Γ ⊢ ⊥ (9)

Let now A be any formula in WFF whatsoever. We have

⊥ |=taut A (10)

Pause. Do you believe (10)?

By Post (5.2), Γ ⊢ A follows from (9) and (10). □

5.3.4 Metatheorem. (Proof by contradiction) Γ ⊢
A iff Γ ∪ {¬A} is inconsistent.

Proof. if-part. So let (by 5.3.3)

Γ,¬A ⊢ ⊥

Hence
Γ ⊢ ¬A→ ⊥ (1)

by the Deduction theorem. However ¬A → ⊥ |=taut A,
hence, by Corollary 5.2.5 and (1) above, Γ ⊢ A.
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only if-part. So let

Γ ⊢ A

By hypothesis strengthening,

Γ,¬A ⊢ A (2)

Moreover, trivially,

Γ,¬A ⊢ ¬A (3)

Since A,¬A |=taut ⊥, (2) and (3) yield Γ,¬A ⊢ ⊥ via
Corollary 5.2.5, and we are done by 5.3.3. □

� 5.3.4 legitimises the tool of “proof by contradiction” that
goes all the way back to the ancient Greek mathemati-
cians: To prove A assume instead the “opposite”, ¬A.
Proceed then to obtain a contradiction. This being ac-
complished, it is as good as having proved A. �
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Chapter 6

Resolution

Proof by Resolution is an easy and self-documenting 2-
dimensional proof style.

It is essentially a Hilbert style proof that needs no
numbering due to its graphical presentation, where the
annotation is depicted by drawing certain lines.

The technique is used in “automatic theorem proving”,
i.e., special computer systems (programs) that prove the-
orems.

It is based on the proof by contradiction metatheorem:

6.0.1 Metatheorem.

Γ,¬A ⊢ ⊥ (1)

iff
Γ ⊢ A (2)

Thus, instead of proving (2) prove (1).
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(1) is proved using (almost) exclusively the CUT Rule.

The self-annotating diagram below says “apply the
CUT rule to premises A∨B and ¬A∨C to obtain B∨C”.

The technique can be best learnt via examples:
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6.0.2 Example. Use Resolution to prove (1) below:

A→ B,C → D ⊢ A ∨ C → B ∨D (1)

by DThm prove instead:

A→ B,C → D,A ∨ C ⊢ B ∨D

By 6.0.1 prove instead that the “Γ” in the top line below
proves ⊥

□
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6.0.3 Example. Next prove

⊢ (A→ (B → C))→ ((A→ B)→ (A→ C))

By the DThm prove instead

A→ (B → C) ⊢ (A→ B)→ (A→ C)

Two more applications of the DThm simplify what we
will prove into the following:

A→ (B → C), A→ B,A ⊢ C

By 6.0.1, prove instead that Γ ⊢ ⊥ where

Γ = {¬A ∨ ¬B ∨ C,¬A ∨B,A,¬C}

□

Notes on Logic© G. Tourlakis



195

6.0.4 Example. Prove

⊢ (A ∧ ¬B)→ ¬(A→ B)

By DThm do instead: A ∧ ¬B ⊢ ¬(A→ B).

By 6.0.1 do instead

A ∧ ¬B,A→ B ⊢ ⊥

or
A ∧ ¬B,¬A ∨B ⊢ ⊥

Use HYP Splitting, so do instead

A,¬B,¬A ∨B ⊢ ⊥

A,¬B,¬A ∨B
To this end, cut 1st and 3rd to get B.

Cut the latter with ¬B to get ⊥.
□

6.0.5 Example. Annotating hypothesis splitting and equivalence
graphically: We do not annotate the equivalence or
split lines any more than we annotate the CUT lines!

□
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Chapter 7

Predicate Logic

Extending Boolean Logic

Boolean Logic can deal only with the Boolean glue:
properties and behaviour.

Can certify tautologies, but it misses many other truths
as we will see, like x = x where x stands for a mathe-
matical object like a matrix, string, array, number, etc.

One of the obvious reasons is that Boolean logic can-
not even “see” or “speak” about mathematical objects.

� If it cannot see or speak about them, then naturally cannot reason
about them either! �
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E.g, we cannot even state inside Boolean logic the sen-
tence “every natural number greater than 1 has a prime
factor”.

Boolean Logic does not know what “every” means or
what a “number” is, what “natural” means, what is “1”,
what “greater” means, what “prime” is, or what “factor”
is.

In fact it is worse than not “knowing”: It cannot even
say any one of the concepts listed above.

Its alphabet and language are extremely limited.

We need a richer language!
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7.0.1 Example. Look at these two math statements.
The first says that two sets are equal IF they have the
same elements. The second says that any object is equal
to itself.

We read “(∀x)” below as “for all values of x”, usually
said MORE SIMPLY as, “for all x”.

(∀y)(∀z)
(
(∀x)(x ∈ y ≡ x ∈ z)→ y = z

)
(1)

and
x = x (2)

Boolean Logic is a very high level ( = very non-
detailed) abstraction of Mathematics.

Since Boolean Logic cannot see object variables x, y, z,
cannot see ∀ or =, nor can penetrate inside the so-
called “scope” of (∀z) —that is, the big brackets above—
it myopically understands (perceives) each of (1) and
(2) as atomic statements p and q (not seeing inside
the scope it sees NO “glue”).

Thus Boolean logic, if forced to opine about the above
it will say none of the above is a theorem (by soundness).

Yet, (1) is an axiom of Set Theory and (2) is an axiom
in ALL mathematics.

Says: “Every object is equal to itself.” □
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Enter First-Order Logic or Predicate Logic.

Predicate logic is the language AND logic of mathe-
matics and mathematical sciences.

In it we CAN “speak” (1) and (2) above and reason
about them.

7.1 The language of First-Order Logic

What symbols are absolutely necessary to include in
the Alphabet, V1 —the subscript “1” for “1st-order”—
of Predicate Logic?

Well, let us enumerate:

7.1.1 Definition. (The 1st-order alphabet; first part)

1. First of all, we are EXTENDING, NOT discarding,
Boolean Logic. So we include in V1 all of Boolean
Logic’s symbols

p,⊥,⊤, (, ),¬,∧,∨,→,≡

where p stands for any of the infinitely many Boolean
variables.
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2. Then we need object variables —that is, variables
that stand for mathematical objects— x, y, z, u, v, w
with or without primes or subscripts. These are in-
finitely many.

Metanotation that stands for any of them will be
bold face, but using the same letters with or without
primes or subscripts: x,x′′5,y,w

′′′
123, etc.

3. Equality between mathematical objects: =

4. New glue: ∀
We call this glue universal quantifier. It is pro-
nounced “for all”.

Is that all? No. But let’s motivate with two examples.

□
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7.1.2 Example. (Set theory) The language of set the-
ory needs also a binary relation or predicate up in front:
Denoted by “∈”. BUT nothing else.

All else is “manufactured” in the theory, that is,
introduced by definitions.

The manufactured symbols include constants like our
familiar N (the set of natural numbers, albeit set theorists
often prefer the symbol “ω”), our familiar constant “∅”
(the empty set).

Also include functions like ∪,∩ and relations or pred-
icates like ⊂,⊆.

So set theory needs no constants or functions up in front
to start “operating” (proving theorems, that is). □
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7.1.3 Example. (Number theory) The language of Num-
ber theory —also called Peano arithmetic— needs —in
order to get started:

• A constant, the number zero: 0

• A binary predicate (“less than”): <

• A unary function: “S”. (This, informally/intuitively
is the “successor function” which with input x pro-
duces output x+ 1.)

• Two binary functions, “+,×” with the obvious mean-
ing.

All else is “manufactured” in the theory, that is, intro-
duced by definitions.

The manufactured symbols include constants like our
familiar 1, 2, 1000234000785:

S0, SS0,

1000234000785 S symbols︷ ︸︸ ︷
SS . . . S 0

Also include functions like xy, ⌊x/y⌋ and more relations
or predicates like ≤. □
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We will do logic for the user, that is, we are aiming
to teach the USE of logic.

But will do so without having to learn and do
set theory or number theory or any specific mathematical
theory (geometry, algebra, etc.).

So equipped with our observations from the examples
above, we note that various theories start up with DIF-
FERENT sets of constants, functions and predicates —
according to their specific needs.

So we will complete the Definition 7.1.1 in a UNI-
FIED way thatAPPLIES TO ANY AREA OF MATH-
EMATICAL APPLICATION.

Notes on Logic© G. Tourlakis



7.1 The language of First-Order Logic 205

Oct. 30, 2024

7.1.4 Definition. (The 1st-order alphabet; part 2)
Our 1st-order alphabet also includes the following sym-
bols

(1) Symbols for zero or more constants. Generically, we
use a, b, c, d with or without primes or subscripts for
constants.

(2) Symbols for zero or more functions. Generically we
use f, g, h with or without primes or subscripts for
functions.

Each such symbol will have the need for a certain
number of arguments, this number called the func-
tion’s “arity” (must be ≥ 1). For example, S has
arity 1; it is unary. Each of +,× have arity two;
they are binary.

You see where the word “arity” comes from?

(3) Symbols for zero or more predicates, generically de-
noted as ϕ (“fe”, as in “see”), ψ (“pse”), with or
without primes or subscripts.

Each predicate symbol will have the need for a cer-
tain number of arguments called its “arity” (must be
≥ 1). For example, < has arity 2. □
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206 Predicate Logic

The first-order LANGUAGE is a set of strings of two
types —terms and formulas— over the alphabet 7.1.1
AND 7.1.4.

By now we should feel comfortable with first-order in-
ductive definitions.

In fact we gave inductive definitions of first-order Boolean
formulas and used it quite a bit, but also more recently
gave an inductive definition of Boolean proofs.

Thus we inductively introduce first-order Terms that
denote objects —the notation is that of function calls—
and first-order formulas, that denote statements, in
two separate definitions.
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First terms:

7.1.5 Definition. (Terms)
A term is a string over the alphabet V1 that satisfies

ONE of:

(1) It is just an object variable x (recall that x is metan-
otation and stands for any object variable).

� BTW, we drop the qualifier “object” from “object
variable” from now on, but RETAIN the qualifier
“Boolean” in “Boolean variable”. �

(2) An object constant a (this stands for any constant
—generically).

� BTW, we ALSO drop the qualifier “object” from
“object constant” from now on, but RETAIN the
qualifier “Boolean” in “Boolean constant”. �

(3) General case. It is a string of the form ft1t2 . . . tn
where the function symbol f has arity n and the ti
are (I mean, STAND FOR) terms.

As noted already, objects —with the exception
of trivial ones, like variables and constants, these
are denoted by function calls.

Surprised? Function calls do return as values
objects!

We will denote arbitrary terms generically by the meta-
symbols t, s with or without primes or subscripts just as
we did above. □
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� We will often abuse notation and write “f(t1, t2, . . . , tn)”
for “ft1t2 . . . tn”.

This is one (rare) case where the human eye prefers
extra brackets! Be sure to note that the comma “,” is
not in our alphabet! �

Examples from number theory.
x, 0 are terms. x + 0 is a term (abuse of the actual

“+x0” notation).

(x+ y)× z is a term (abuse of the actual ×+ xyz).
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With the concept of terms out of the way we now de-
fine 1st-order formulas:

First the Atomic Case:

Reminder: Arbitrary (non specific) terms are de-
noted by the letters t and s with or without subscripts
or primes.

7.1.6 Definition. (1st-order Atomic formulas) The
following are the atomic —that is, glue-less— formulas
of 1st-order logic:

(i) Any Boolean atomic formula.

(ii) The expression (string) “t = s”, for any choice of t
and s (probably, the t and s name the same term).

(iii) For any predicate ϕ of arity n, and any n terms
t1, t2, . . . , tn, the string “ϕt1t2 . . . tn”.

We denote the set of all atomic formulas here defined
by AF. □

In practice, we prefer writing x < y (infix) rather than < xy (prefix)
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7.1.7� Remark.
(1) As in the case of “complex” terms ft1t2 . . . tn, we

often abuse notation using “ϕ(t1, t2, . . . , tn)” in place of
the correctly written “ϕt1t2 . . . tn”.

(2) The symbol “=” is a binary predicate and is al-
ways written as it is here (never “ϕ, ψ”).

(3) We absolutely NEVER confuse “=” with the Boolean

“glue” “≡”.

They are more different than apples and oranges! □ �
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7.1.8 Definition. (1st-order formulas) A first-order
formula A —or wff A— is one of

� We let context fend for us as to what formulas we have
in mind when we say “wff”: 1st Order or Boolean?

From here on it is 1st-order ones!

If we want to talk about Boolean wff we WILL AL-
WAYS USE the qualifier “Boolean”! �

(1) Amember of 1st-order AF set—in particular it could
be a Boolean atomic wff!

(2) (¬B) if B is a wff.

(3) (B◦C) if B and C are wff, and ◦ is one of ∧,∨,→,≡.

(4)
(
(∀x)B

)
, where B is a wff and x any variable.

� TWO things: (1) we already agreed that “variable”
means object variable otherwise I’d say “Boolean vari-
able”. (2) Nowhere in the definition —of item (4)—
is required that x occurs in B as a substring. �

We call “∀” the universal quantifier.

The configuration (∀x) is pronounced “for all x” —
intuitively meaning “for all values of x” rather than
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“for all variables x, y′′, z′′′1234009, . . . that xmay stand for”.

We say that the part of A between the two large
red brackets above is the scope of (∀x).

Thus the x in (∀x) and the entire B are in this
scope.

□

� The “in particular” observation in case (1) along with
the cases (2) and (3) make it clear that every Boolean
wff is also a (1st-order) wff.

Thus first-order logic can “speak” Boolean (but not
the other way around, as we made abundantly clear!)

�
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7.1.9 Example. x = y, ⊥ and p are wff. In fact, Atomic.
The last two are also Boolean wff.

((∀x)((∀y)(¬x = y))) is a wff. Note that ¬ in (¬x = y)
applies to x = y NOT to x!

Glue cannot apply to an object like x. Must apply to
a statement (a wff)!

((∀y)((¬x = y)∧p)) and (((∀y)(¬x = y))∧p) are also
formulas.

BTW, in the two last examples: p is in the scope of
(∀y) in the first, but not so in the second. □
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7.1.10 Definition. (Existential quantifier)
It is convenient —but NOT NECESSARY— to intro-

duce the “existential quantifier”, ∃.

This is only ametatheoretical abbreviation symbol that
we introduce by this Definition, that is, by a “naming”

For any wff A, we define ((∃x)A) to be a short name
for (

¬
(
(∀x)(¬A)

))
(1)

We pronounce ((∃x)A) “for some (value of) x, A holds”.

The intuition behind this ((∃x)A) naming is captured
by the diagram below( it is not the case that︷︸︸︷¬ (

(∀x)︸︷︷︸
all values of x

make A false︷ ︸︸ ︷
(¬A)

))

So SOME value of x makes A TRUE.

The scope of (∃x) in (
(∃x)A

)
(2)

is the area between the two red brackets.

In particular, the leftmost x in (2) is in the scope. □
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Priorities Revisited

We augment our priorities table, from highest to lowest:

equal priorities︷ ︸︸ ︷
∀,∃,¬ ,∧,∨,→,≡

Associativities remain right! Thus, ¬(∀x)¬A is a short
form of (1) in 7.1.10.

Another example: (u = v → (((∀x)x = a) ∧ p)) sim-
plifies into

u = v → (∀x)x = a ∧ p
More examples:

(2) Instead of ((∀z)(¬x = y)) we write

(∀z)¬x = y

(3) Instead of ((∀x)((∀x)x = y)) we write

(∀x)(∀x)x = y
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BOUND vs FREE.

7.1.11 Definition. A variable x occurs free in a wff A iff
it is NOT inside the scope of a (∀x) or (∃x) —otherwise
it occurs bound.

We say that a bound variable x in (∀x)A other than
the one in the displayed (∀x), belongs to the displayed
leftmost “(∀x)” iff x occurs free in A —thus it was this
leftmost “(∀x)”, which we added to the left of A that did
the bounding!

The terminology “belongs to” is now clear.

We apply this criterion to subformulas of A of the form
(∀x)(. . .) to determine where various bound x found in-
side A belong. □

7.1.12 Example. Consider

(∀x)
A︷ ︸︸ ︷

(x = y → (∀x)x = z))

Here the red x in A belongs to the red ∀x. The black x
belongs to the black ∀x. □
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7.1.13� Remark. We saw that a Boolean wff, is also a
1st-order wff.

We view Boolean formulas as abstractions of 1st-order
ones.

How is this Abstraction accomplished?

� Well, in any given 1st-order wff we just “hide” all 1st-order features
inside certain glue-less subformulas that take up the role
of NEW Boolean variables. �

That is, we view any wff among the following three
forms as Boolean variables —none of them has exposed
glue

These have no exposed glue so are viewed as Boolean variables

1. t = s

2. ϕt1t2t3 . . . tn

3. (∀x)A

WAIT! I do see “glue” in (∀x)(A→ B) ; don’t I ???

No, you don’t if you are a citizen of Boolean! The “→”
is hidden inside the scope of (∀x).
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So an inhabitant of Boolean logic has an INTEREST
in the above “Boolean variables” if and only if they are
connected with VISIBLE Boolean glue to form Boolean
wff.

� Of course, Boolean logic whose job is to certify tautolo-
gies —by either truth tables or proofs— has no use for
isolated Boolean variables, that is, ones that are not
glued to anything! �

Examples.

• In Boolean Country you see this “x = y → x =
y ∨ x = z” as “ x = y → x = y ∨ x = z ” where
the first and second box is the same —say variable
p— while the last one is different. You recognize a
tautology!

• You see this “x = x” as “ x = x ”. Just a Boolean
variable.

Not a tautology.

• The same goes for this “(∀x)x = y → x = y”
which the Boolean citizen views as “ (∀x)x = y →
x = y ”, that is, a Boolean wff p→ q. Not a tautol-
ogy.
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Process of abstraction: We only abstract (that is,
we see as “Boolean variables”) the expressions 1.–3.
above in order to turn a 1st-order wff into a Boolean
wff.

The three forms above are known in logic as Prime
Formulas.
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More Boolean abstraction examples:

• If A is

p→ x = y∨(∀x)ϕx∧q
(
note that q is not in the scope of (∀x)

)
then we abstract as

p→ x = y ∨ (∀x)ϕx ∧ q (1)

so the Boolean citizen sees

p→ p′ ∨ p′′ ∧ q

� If we ask “show ALL the prime formulas in A by
boxing them” then we —who understand 1st-order
language and we can see inside scopes— would have
also boxed ϕx above. The Boolean citizen cannot see
ϕx in the scope of (∀x) anyway so the boxing done
by such a citizen would be exactly as we gave it in
(1) �

• First box all prime formulas in (2) below.

(∀x)(x = y → (∀z)z = a ∨ q) (2)

Here it is.

(∀x)( x = y → (∀z) z = a ∨ q)

Now abstract the above as if you were a Boolean
citizen:

(∀x)(x = y → (∀z)z = a ∨ q)
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You see no glue at all because you cannot see inside
the scope of the leftmost (∀x)!
The abstraction is something like

“p”

• x = y → x = y abstracts as x = y → x = y . That
is, p→ p —a tautology.

Why bother with abstractions? Well, the last exam-
ple is a tautology so a Boolean citizen can prove it.

However x = x and (∀x)x = y → x = y are not
tautologies and we need predicate logic techniques to
settle their theoremhood.

□ �
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Nov. 4, 2024

We can now define:

7.1.14 Definition. (Tautologies and Tautological Implications)

We say that a (1st-order) wff, A, is a tautology and
write |=taut A iff its Boolean abstraction is.

In 1st-order Logic Γ |=taut A is applied to the Boolean
abstraction of A and to the abstractions of the wff in Γ.

Goes without saying that ALL the identical occur-
rences of Prime Formulas . . . in Γ ∪ {A} will stand
for the same Boolean variable.

For example, x = y |=taut x = y ∨ z = v is correct as
we see from

p︷ ︸︸ ︷
x = y |=taut

p︷ ︸︸ ︷
x = y ∨

q︷ ︸︸ ︷
z = v

□

� Definition. A 1st-Order formula Q is a Tautology IFF
its Boolean Abstraction is.

It is a tautological implication of {A,B,C, . . .} iff
the Abstractions of A,B,C, . . . tautologically imply the
Abstraction of Q. �
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Nov.4, 2024

Substitutions

A substitution is a textual substitution: Find and
Replace.

In A[x := t] we will replace all occurrences of a free x
in A by the term t: Find and replace.

In A[p := B] we will replace all occurrences of a p in
A by B: Find and replace.

7.1.15� Example. (What to avoid) Consider the sub-
stitution below (

(∃x)¬x = y
)
[y := x]

If we go ahead with it as a brute force “find and replace”
asking no questions, then we are met by a serious prob-
lem:

The result

(∃x)¬x = x (1)

says something DIFFERENT than what the original for-
mula says!

The original —((∃x)¬x = y)— says “no matter what
the value of y is, there is a different x-value”.
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The above is true in any application of logic where we
have infinitely many objects. For example, it is true of
real numbers and natural numbers.

On the other hand, (1) is NEVER true! It says that
there is an object that is different from itself! □ �
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7.1.16 Definition. (Substitution) Each of

1. In A[x := t] replace all occurrences of a free x in A
by the term t: Find and replace.

2. In A[p := B] replace all occurrences of a p in A by
B: Find and replace.

However we abort the substitution 1 or 2 if it so hap-
pens that going ahead with it

� forces a free variable y of t or B to become
bound because t or B ended up inside the scope of a
(∀y) or (∃y). �

We say that the substitution is undefined in such cases,
and that the reason is that we had a “free variable cap-
ture”.

There is a variant of substution 2, above:

3. In A[p \B] replace all occurrences of a p in A by B:
Find and replace.

� For technically justified reasons to be learnt later, we
never abort this one, capture or not. �

We call the substitutions 1. and 2. conditional or con-
strained, while the substitution 3. unconditional or un-
constrained.
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There is NO unconditional version of 1.
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PRIORITIES (AGAIN!)

[x := t], [p := B], [p \ B] have higher priority than
all connectives ∀,∃,¬,∧,∨,→,≡. They associate from
LEFT to RIGHT that is A[x := t][p := B] means((

A[x := t]
)
[p := B]

)
□
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7.1.17 Example. Several substitutions based on Defi-
nition 7.1.16.

(1) (y = x)[y := x].

The red brackets are META brackets. I need them to
show the substitution applies to the whole formula.

The result is x = x.

(2)
(
(∀x)x = y

)
[y := x]. By 7.1.16, this is undefined

because if I go ahead then x is captured by (∀x).

(3) (∀x)(x = y)[y := x]. According to priorities, this

means (∀x)
{
(x = y)[y := x]

}
.

That is, “apply the quantifier (∀x) to x = x”, which
is all right.

Result is (∀x)x = x.

(4)
(
(∀x)(∀y)ϕ(x, y)

)
[y := x]. This says

• Do

(
(∀x)

(
(∀y)ϕ(x, y)

))
[y := x]

• This is all right since y is not free in
(
(∀y)ϕ(x, y)

)
—so not found; no replace!

Result is the original formula UNCHANGED.

Notes on Logic© G. Tourlakis



7.1 The language of First-Order Logic 229

(5)
(
z = a ∨ ((∀x)x = y)

)
[y := x]. Abort: x is cap-

tured when we attempt substitution in the subformula
(∀x)x = y.

(6)
(
(∀x)p

)
[p \ x = y] Unconditional substitution.

Just find and replace, no questions asked!

Result: (∀x)x = y.

(7)
(
(∀x)p

)
[p := x = y] Undefined. x in x = y will

get captured if you go ahead! □

Notes on Logic© G. Tourlakis



230 Predicate Logic

7.1.18 Definition. (Partial Generalisation) We say
that B is a partial generalisation of A if B is formed by
adding as a PREFIX to A zero or more strings of the
form (∀x) for any choices whatsoever of the variable x
—repetitions allowed. □

7.1.19 Example. Here is a small list of partial general-
isations of the formula x = z:

x = z,

(∀w)x = z,

(∀x)(∀x)x = z,

(∀x)(∀z)x = z,

(∀z)(∀x)x = z,

(∀z)(∀y)(∀z)(∀x)(∀u)x = z. □
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7.2 Axioms and Rules for Predicate Logic

7.2.1 Definition. (1st-Order Axioms) These are all
the partial generalisations of all the instances of the
following schemata.

1. All tautologies (e.g., x = y → x = y is here)

2. (∀x)A→ A[x := t]

� Note that we get an instance of this schema ONLY
IF the substitution is not aborted. �

3. A→ (∀x)A —PROVIDED x is not free in A.

4. (∀x)(A→ B)→ (∀x)A→ (∀x)B

5. x = x

6. t = s→ (A[x := t] ≡ A[x := s])

� Note that we get an instance of this schema ONLY IF
none of the substitutions above is aborted. �

The set of all first-order axioms is named “Λ1” —“1”
for 1st-order.

□

Our only INITIAL (or Primary or Primitive) rule is
Modus Ponens:

A,A→ B

B
(MP )
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You may think that including all tautologies as axioms
is overkill.

However

1. It is customary to do so in the literature ([Tou08,
Sho67, End72, Man77, Tou03a])

2. After Post’s Theorem we do know that every tautol-
ogy is a theorem of Boolean logic.

Adopting axiom 1. makes every tautology also a
theorem of Predicate Logic outright!

This is the easiest way (a literature favourite) to
incorporate Boolean logic as a sublogic of 1st-
order logic.
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7.3 First-order Proofs and Theorems

A Hilbert-style proof from Γ (Γ-proof) is exactly as de-
fined in the case of Boolean Logic. Namely:

� It is a finite sequence of wff

A1, A2, A3, . . . , Ai, . . . , An

such that each Ai is ONE of

1. Axiom from Λ1 OR a member of Γ

OR

2. Is obtained by MP from X → Y and X that appear
to the LEFT of Ai (Ai is the same string as Y then.)

However, here “wff” is 1st-order, and Λ1 is a DIFFERENT
set of axioms than the old Λ. Moreover we have ONLY
one rule up in front.

As in Boolean definitions, a 1st-order theorem from Γ
(Γ-theorem) is a formula that occurs in a 1st-order Γ-
proof.

As before we write “Γ ⊢ A” to say “A is a Γ-theorem”
and write “⊢ A” to say “A is an absolute theorem”. �
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Hilbert proofs in 1st-order logic are written
vertically as well, with line numbers and anno-
tation.

The following metatheorems about proofs and theo-
rems

▶ proof tail removal,

▶ proof concatenation,

▶ a wff is a Γ-theorem iff it occurs at the end of a proof

▶ hypothesis strengthening,

▶ hypothesis splitting,

▶ Transitivity of ⊢ (4.1.11),

and hence

▶ usability of derived rules,

▶ usability of previously proved theorems

hold with the same metaproofs as in the Boolean case.
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We TRIVIALLY have Post’s Theorem (the weak form
that we proved for Boolean logic).

7.3.1 Metatheorem. (Weak Post’s Theorem for 1st-order logic)

If A1, . . . , An |=taut B then A1, . . . , An ⊢ B

Proof. Exactly the same as in Boolean logic, see 5.2.4
and 5.2.3, since —as in class— the assumption yields
|=taut A1 → . . . → An → B and hence we have ⊢ A1 →
. . .→ An → B, by Axiom 1 —NO POST USED!

For the rest see 5.2.4. □

� Thus we may use

A1, . . . , An ⊢ B

as a DERIVED rule in any 1st-order proof, if we know
that

A1, . . . , An |=taut B

.
THIS IS DONE A LOT IN Hilbert PROOFS! �
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7.4 Deduction Theorem

Nov. 6, 2024

This Metatheorem of First-Order Logic says:

7.4.1 Metatheorem. If Γ, A ⊢ B, then also Γ ⊢ A →
B

OR

7.4.2 Metatheorem. If I want to prove Γ ⊢ A → B it
is enough to prove Γ, A ⊢ B instead.

� WAIT! Did we not already prove this for Boolean Logic?
Yes, but to do so we used in an essential way Boolean
Soundness. See proof of 5.3.1, where we write “By Boolean
Soundness, etc.”

Boolean Semantics will NOT help in Predicate Logic,
and First-Order Semantics are tricky, AND DIFFER-
ENT, in particular 1st-order Soundness is totally unlike
Boolean Soundness, and we will do it at the end of the course!

So here we use a direct proof by Induction on the length
of First-Order Proofs from Γ + A.∗ �

∗Recall that “Γ ∪ {A}”, “Γ, A” and “Γ +A” are alternative notations for the same set of
wff!
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Proof. We do Induction on the proof length L that we
used for Γ, A ⊢ B:

1. Proof of length L = 1 (Basis). There is only one formula
in the proof: The proof must be

B

Only three subcases apply:

• B ∈ Γ. Then Γ ⊢ B. Hence Γ ⊢ A→ B by Post
.

• B IS A. So, A → B is a tautology hence axiom
hence Γ ⊢ A→ B.

• B ∈ Λ1. Then Γ ⊢ B. Conclude as in the first
bullet.
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2. Assume (I.H.) the claim for all proofs of lengths L ≤ n.

3. I.S.: The proof has length L = n+ 1:

n+1︷ ︸︸ ︷
. . . , B

Let B ∈ Γ ∪ {A} ∪ Λ1. Done as in the Basis.

Assume instead that it is the result of MP on formu-
las to the left of B:

Γ+A-proof where L=n+1︷ ︸︸ ︷
. . . , X, . . . , X → B︸ ︷︷ ︸

≤n

, . . . ,︸ ︷︷ ︸
n

B

By the I.H. the metatheorem is true for proofs of
length L ≤ n. Thus we have

Γ ⊢ A→ X (∗)

and
Γ ⊢ A→ (X → B) (∗∗)

The following Hilbert proof concludes the case and
the entire proof:

1) A→ X ⟨Γ-thm by (∗)⟩
2) A→ (X → B) ⟨Γ-thm by (∗∗)⟩
3) A→ B ⟨1 + 2 + Post⟩

The last line proves the metatheorem. □
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We learn here HOW exactly to handle the quantifier
∀.

7.5 Adding (Removing) “(∀x) ” to (from) the
beginning of a wff.

7.5.1 Metatheorem. (Weak Generalisation) Suppose
that no wff in Γ has any free occurrences of x.

Then if we have Γ ⊢ A, we will also have Γ ⊢ (∀x)A.

The last line above does NOT say that somehow A

“implies” (∀x)A.
It rather says that from a proof of A from Γ a proof

of (∀x)A —probably quite different— can be found,
in fact, constructed.

� It is normally the case and of no adverse consequence

that A does have free occurrences of x, else (∀x)A
would be trivial. �
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Proof. Induction on the length L of the Γ-proof used for
A.

1. L = 1 (Basis). There is only one formula in the
proof: The proof must be the 1-wff sequence

A

Only two subcases apply:

• A ∈ Γ. Then A has no free x, hence A→ (∀x)A
is axiom 3. Thus, we have a Hilbert proof (writ-
ten horizontally for speed),

Γ−proved︷︸︸︷
A ,

axiom︷ ︸︸ ︷
A→ (∀x)A,

MP on the previous two︷ ︸︸ ︷
(∀x)A

• A ∈ Λ1. Then so is (∀x)A ∈ Λ1 by partial generalisation:

� Note that if axiomA is (∀z)(∀z′) . . . (∀z1) B︸︷︷︸
axiom schema inst.

,

then (∀x)A is (∀x)(∀z)(∀z′) . . . (∀z1)B. Hence an
axiom too. �

Hence (∀x)A is in Λ1, thus Γ ⊢ (∀x)A once more.
(Definition of Γ-proof.)

� AHA! So that’s what “partial gen-
eralisation” does for us! �
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2. Assume (I.H.) the claim for all proofs of lengths L ≤
n.

3. I.S.: The proof has length L = n+ 1:

n+1︷ ︸︸ ︷
. . . , A

If A ∈ Γ∪Λ1 then we are done by the argument in 1.

Assume instead that A is the result of MP on formu-
las to the left of it:

n+1︷ ︸︸ ︷
. . . , X, . . . , X → A︸ ︷︷ ︸

≤n

, . . . ,︸ ︷︷ ︸
n

A

By the I.H. we have

Γ ⊢ (∀x)X (∗)

and
Γ ⊢ (∀x)(X → A) (∗∗)

The following Hilbert proof concludes this case and
the entire proof:

1) (∀x)X ⟨Γ-thm by (∗)⟩
2) (∀x)(X → A) ⟨Γ-thm by (∗∗)⟩
3) (∀x)(X → A)→ (∀x)X → (∀x)A ⟨axiom 4⟩
4) (∀x)X → (∀x)A ⟨2 + 3 + MP⟩
5) (∀x)A ⟨1 + 4 + MP⟩

The last line proves the metatheorem. □
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7.5.2 Corollary. If ⊢ A, then ⊢ (∀x)A.

Proof. The condition that no X in Γ has free x is met:
Vacuously. Γ is empty! □

7.5.3� Remark.

1. HOW TO USE Generalisation: So, the
Metatheorem says that if A is a Γ-theorem then so
is (∀x)A as long as the restriction of 7.5.1 is met.

But then, since I can invoke Γ-THEOREMS (not
only axioms and hypotheses) in a proof, I can insert
the Γ-theorem (∀x)A anywhere AFTER A in any Γ-
proof of A where Γ obeys the restriction on x.

. . . , A, . . . ,

insert at any time after A︷ ︸︸ ︷
(∀x)A , . . .

2. Why “weak”? Because I need to know how the A
was obtained† before I may use (∀x)A. □ �

†From an x-less Γ.
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7.5.4 Metatheorem. (Specialisation Rule)(
(∀x)A

)
⊢ A[x := t]

� Goes without saying that IF the expression A[x := t]
is undefined (in the event of “capture”), then we have
nothing to prove. �

Proof.

(1) (∀x)A ⟨hyp⟩
(2) (∀x)A→ A[x := t] ⟨axiom 2⟩
(3) A[x := t] ⟨1 + 2 + MP⟩ □

7.5.5 Corollary. (∀x)A ⊢ A

Proof. This is the special case where t is x. □
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Specialisation removes a (∀x) iff the quantifier is the
very first symbol a of a formula B and the entire re-
maining part of the formula is the scope of that lead-
ing (∀x):

B︷ ︸︸ ︷
(∀x) A︸︷︷︸

A is in the scope of (∀x)

a“(∀x)” is ONE compound symbol.
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The (∀x) in the following two CANNOT be removed:
(∀x)A ∨B, A ∨ (∀x)B.
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� Really Important! The metatheorems 7.5.5 and 7.5.1
(or 7.5.2) —which we nickname “spec” and “gen” respec-
tively— are tools that make our life easy in Hilbert proofs
where handling of ∀ is taking place.

7.5.5 with no restrictions allows us to REMOVE a
leading “(∀x)”.

Doing so we might uncover Boolean glue and thus ben-
efit from applications of “Post” (7.3.1).

If we need to re-INSERT (∀x) before the end of proof,
we employ 7.5.1 to do so.

This is a good recipe for success in 1st-order proofs!

�

Notes on Logic© G. Tourlakis



7.5 Adding (Removing) “(∀x) ” to (from) the beginning of a wff. 247

7.5.1 Examples

� Ping-Pong proofs.

Hilbert proofs are not well-suited to handle equiva-
lences.

However, trivially

A→ B,B → A |=taut A ≡ B

and —by 7.3.1—

A→ B,B → A ⊢ A ≡ B (1)

Thus, to prove Γ ⊢ A ≡ B in Hilbert style it suffices
—by (1), which is a derived rule!— to offer TWO Hilbert
proofs:

Γ ⊢ A→ B AND Γ ⊢ B → A

This back and forth motivates the nickname “ping-
pong” for this proof technique. �
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7.5.2 A Few Memorable Examples

7.5.6 Theorem. (Distributivity of ∀ over ∧)
⊢ (∀x)(A ∧B) ≡ (∀x)A ∧ (∀x)B

Proof. By Ping-Pong argument.

We will show TWO things:

1. ⊢ (∀x)(A ∧B)→ (∀x)A ∧ (∀x)B

and

2. ⊢ (∀x)A ∧ (∀x)B → (∀x)(A ∧B)

(→) (“1.” above)

By DThm, it suffices to prove (∀x)(A ∧B) ⊢ (∀x)A ∧
(∀x)B.

(1) (∀x)(A ∧B) ⟨hyp⟩
(2) A ∧B ⟨1 + spec (7.5.5)⟩
(3) A ⟨2 + Post⟩
(4) B ⟨2 + Post⟩
(5) (∀x)A ⟨3 + gen; OK: hyp contains no free x⟩
(6) (∀x)B ⟨4 + gen; OK: hyp contains no free x⟩
(7) (∀x)A ∧ (∀x)B ⟨(5,6) + Post⟩

NOTE.WeABSOLUTELY MUST acknowledge for each
application of “gen” that the restriction is met.
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(←) (“2.” above)

By DThm, it suffices to prove (∀x)A∧(∀x)B ⊢ (∀x)(A∧
B).

(1) (∀x)A ∧ (∀x)B ⟨hyp⟩
(2) (∀x)A ⟨1 + Post⟩
(3) (∀x)B ⟨1 + Post⟩
(4) A ⟨2 + spec⟩
(5) B ⟨3 + spec⟩
(6) A ∧B ⟨(4,5) + Post⟩
(7) (∀x)(A ∧B) ⟨6 + gen; OK: hyp has no free x⟩□

Easy and Natural! Right?
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7.5.7 Theorem. ⊢ (∀x)(∀y)A ≡ (∀y)(∀x)A

Proof. By Ping-Pong. ⊢ (∀x)(∀y)A→←(∀y)(∀x)A.

(→) direction.

By DThm it suffices to prove (∀x)(∀y)A ⊢ (∀y)(∀x)A

(1) (∀x)(∀y)A ⟨hyp⟩
(2) (∀y)A ⟨1 + spec⟩
(3) A ⟨2 + spec⟩
(4) (∀x)A ⟨3 + gen; OK hyp has no free x⟩
(5) (∀y)(∀x)A ⟨4 + gen; OK hyp has no free y⟩

(←)
Exercise! Justify that you can write the above proof

backwards! □

7.5.8� Example. Say A has no free x. Then ⊢ (∀x)A ≡
A. Indeed, ⊢ (∀x)A→ A by ax. 2 and ⊢ A→ (∀x)A by
ax. 3. □ �
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7.5.9 Metatheorem. (Monotonicity of ∀) If Γ ⊢ A→
B, then Γ ⊢ (∀x)A→ (∀x)B, as long as no wff in Γ has
a free x.

Proof.

(1) A→ B ⟨invoking a Γ-thm⟩
(2) (∀x)(A→ B) ⟨1 + gen; OK no free x in Γ⟩
(3) (∀x)(A→ B)→ (∀x)A→ (∀x)B ⟨axiom 4⟩
(4) (∀x)A→ (∀x)B ⟨(2, 3) +MP ⟩ □

We annotate an application of “Monotonicity of ∀”
by either of “A-MON” or “∀-MON”.

7.5.10 Corollary. If ⊢ A→ B, then ⊢ (∀x)A→ (∀x)B.

Proof. Case of Γ = ∅. The restriction is vacuously satis-
fied. □
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7.5.11 Corollary. If Γ ⊢ A ≡ B, then also Γ ⊢ (∀x)A ≡
(∀x)B, as long as Γ does not contain wff with x free.

Proof.

(1) A ≡ B ⟨Γ-theorem⟩
(2) A→ B ⟨1 + Post⟩
(3) B → A ⟨1 + Post⟩
(4) (∀x)A→ (∀x)B ⟨2 + ∀-MON (7.5.9)⟩
(5) (∀x)B → (∀x)A ⟨3 + ∀-MON (7.5.9)⟩
(6) (∀x)A ≡ (∀x)B ⟨(4,5) + Post⟩ □

7.5.12 Corollary. If ⊢ A ≡ B, then also ⊢ (∀x)A ≡
(∀x)B.

Proof. Take Γ = ∅. □
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7.6 Weak Leibniz for 1st-Order Logic

Note that since Post’s theorem holds in first-order logic,
we have that the Boolean primary rules (and all Boolean
derived rules; WHY?) hold in predicate logic.

For example, the Boolean Leibniz rule

A ≡ B ⊢ C[p := A] ≡ C[p := B]

holds since we have

A ≡ B |=taut C[p := A] ≡ C[p := B]

What makes the rule “Boolean” is that we look at all
of A,B,C and p from the Boolean “citizen’s” point of
view (Boolean abstractions). In particular, p is NOT
in the scope of any quantifier! Because if IT IS, then the
Boolean practitioner CANNOT SEE IT, thus rendering
the rule trivial:

A ≡ B

C ≡ C

� � Hmmm. Can I do Leibniz with a p that is IN the scope
of a quantifier? You bet!! � �
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7.6.1 Metatheorem. (Weak (1st-order) Leibniz “WL”)

If ⊢ A ≡ B, then also ⊢ C[p \ A] ≡ C[p \B].

Proof. This generalises 7.5.12.

The metatheorem is proved by Induction on the (for-
mation of) wff C.

Basis. Atomic case for C:

(1) C is p. The metatheorem boils down to “if ⊢ A ≡
B, then ⊢ A ≡ B”, which trivially holds!

(2) C is NOT p —that is, it is q (other than p), or
is ⊥ or ⊤, or is t = s, or it is ϕ(t1, . . . , tn). That is, C
does not contain the “text” p.

Then our Metatheorem statement becomes “if ⊢ A ≡
B, then ⊢ C ≡ C”.

Given that ⊢ C ≡ C is indeed the case by Axiom 1,
the “if” part is irrelevant. Done.
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The complex cases.

(i) C is ¬D. From the I.H. we have ⊢ D[p \ A] ≡
D[p \B],

hence ⊢ ¬D[p \ A] ≡ ¬D[p \B] by Post.

But

I want and DO have ⊢
C︷ ︸︸ ︷

(¬D)[p\A] ≡
C︷ ︸︸ ︷

(¬D)[p\B]

because

(¬D)[p\A] is the same wff as ¬D[p\A] WHY?

(ii) C is D ◦ E, where ◦ ∈ {∧,∨,→,≡}.

The I.H. yields ⊢ D[p \A] ≡ D[p \B] and ⊢ E[p \
A] ≡ E[p \B] hence

⊢
X︷ ︸︸ ︷

D[p \ A] ◦
Y︷ ︸︸ ︷

E[p \ A] ≡
X ′︷ ︸︸ ︷

D[p \B] ◦
Y ′︷ ︸︸ ︷

E[p \B] by Post.

To see Post relevance, the above follows from this:

Rename:

• D[p \ A]: X
• E[p \ A]: Y
• D[p \B]: X ′

• E[p \B]: Y ′

Then X ≡ X ′, Y ≡ Y ′ |=taut X ◦ Y ≡ X ′ ◦ Y ′.
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I want and have

⊢
C︷ ︸︸ ︷

(D ◦ E)[p \ A] ≡
C︷ ︸︸ ︷

(D ◦ E)[p \B]

due to the way substitution works, namely,

(D◦E)[p\A] is the same wff as D[p\A]◦E[p\A] WHY?

(iii) C is (∀x)D. This is the “interesting case”.

From the I.H. follows ⊢ D[p \ A] ≡ D[p \B].

From 7.5.12 we get

⊢ (∀x)
(
D[p \ A]

)
≡ (∀x)

(
D[p \B]

)
also written as

⊢
C︷ ︸︸ ︷(

(∀x)D
)
[p \ A] ≡

C︷ ︸︸ ︷(
(∀x)D

)
[p \B]

because(
(∀x)D

)
[p \ A] is the same wff as (∀x)

(
D[p \ A]

)
□
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� WL is the only “Leibniz” we will ever need (practically)
in our use of 1st-order logic in these lectures.

Why “weak”? Because of the restriction on the Rule’s
Hypothesis: A ≡ B must be an absolute theorem. (Re-
call that the Boolean Leibniz was not so restricted).
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SKIP to “END SKIP”, p.263.
Why not IGNORE the restriction and “adopt” the

strong rule (i) below?

Well, in logic you do NOT arbitrarily “adopt” derived
rules; you prove them.

BUT, CAN I prove (i) below then?

NO, our logic does not allow it; here is why: If I can
prove (i) then I can also prove STRONG generalisation
(ii) from (i).

A ≡ B ⊢ C[p \ A] ≡ C[p \B] (i)

strong generalisation: A ⊢ (∀x)A (ii)

But I can PROVE strong generalisation. No?

NO!

� � Here is why (this is premature, but important; hence
the � � symbol.

We will revisit after we have done 1st-Order Sound-
ness:

1. Let us accept that all first-order theorems are “true”
everywhere.
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2. If I can prove (ii), p.258, then by DThm I can also
prove A→ (∀x)A.
So, this theorem is “true” everywhere, no matter
what A and x are. In particular, if I take z to be
x and A to be z = 0 over the natural numbers N, I
must conclude that

z = 0→ (∀z)z = 0

is true.

Then the following special cases is true

t︷ ︸︸ ︷
0 = 0→

f︷ ︸︸ ︷
(∀z)z = 0︸ ︷︷ ︸
f

is true. But it is NOT!

Tracing this if-then-chain argument backwards I see
that I contradicted that I can prove (ii).

� �
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That settled, I can now prove that my logic CANNOT
prove (i) EITHER.

Why? If it can, then it can prove (ii) of p.258. Forget
it then!

So, assume I have “Rule” (i). THEN (towards prov-
ing (ii))

(1) A ⟨hyp⟩
(2) A ≡ ⊤ ⟨(1) + Post⟩
(3) (∀x)A ≡ (∀x)⊤ ⟨(2) + (i), p.258; “Denom:” (∀x)p⟩
(4) (∀x)⊤ ≡ ⊤ ⟨Ax2 +Ax3 + ping-pong; cf. Example 7.5.8⟩
(5) (∀x)A ≡ ⊤ ⟨(3, 4) + Post⟩
(6) (∀x)A ⟨(5) + Post⟩

So if I have (i) I have (ii) too. THUS, I CANNOT have
(i), p.258.
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▶ SKIP Strong Leibniz in Predicate Logic, but here
it is for the curious!

We CAN have a MODIFIED (i) where the substitution
into p is restricted.

7.6.2 Metatheorem. (Strong Leibniz —Acronym “SL”)
A ≡ B ⊢ C[p := A] ≡ C[p := B]

� Goes without saying that if the rhs of ⊢ is NOT de-
fined, then there is nothing to prove since the expresion
“C[p := A] ≡ C[p := B]” represents no wff.

Remember this comment during the proof! �

Proof. As we did for WL, the proof is an induction on
the definition/formation of C.

Basis. C is atomic:

subcases

• C is p. We need to prove A ≡ B ⊢ A ≡ B, which is
the familiar X ⊢ X.

• C is not p. The metatheorem now claims A ≡ B ⊢
C ≡ C which is correct since C ≡ C is an axiom.

The complex cases.

(i) C is ¬D. By the I.H. we have A ≡ B ⊢ D[p :=
A] ≡ D[p := B], thus, A ≡ B ⊢ ¬D[p := A] ≡
¬D[p := B] by Post.
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We can rewrite the above as A ≡ B ⊢ (¬D)[p :=
A] ≡ (¬D)[p := B] since when substitution is al-
lowed

C︷ ︸︸ ︷
(¬D)[p := A] is the same as ¬D[p := A], etc.

(ii) C is D ◦ E. By the I.H. we get A ≡ B ⊢ D[p :=
A] ≡ D[p := B]

and

A ≡ B ⊢ E[p := A] ≡ E[p := B].

Thus, by Post,

A ≡ B ⊢ D[p := A]◦E[p := A] ≡ D[p := B]◦E[p := B]

The way substitution works (when defined), the
above says

A ≡ B ⊢
C︷ ︸︸ ︷

(D ◦ E)[p := A] ≡
C︷ ︸︸ ︷

(D ◦ E)[p := B]

(iii) C is (∀x)D. This is the “interesting case”.

From the I.H. we get

A ≡ B ⊢ D[p := A] ≡ D[p := B]

Now, since the expressions C[p := A] and C[p :=
B] ARE defined —else we wouldn’t be doing all
this— the definition of conditional (restricted) sub-
stitution implies that neither A nor B have any free
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occurrences of x.

Then x does not occur free in A ≡ B either.

From 7.5.11 we get

A ≡ B ⊢ (∀x)D[p := A] ≡ (∀x)D[p := B]

which —the way substitution works— is the same
as

A ≡ B ⊢
C︷ ︸︸ ︷(

(∀x)D
)
[p := A] ≡

C︷ ︸︸ ︷(
(∀x)D

)
[p := B]

□

END SKIP.
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More Memorable Examples and “Techniques”.

7.6.3 Theorem. ⊢ (∀x)(A → B) ≡ (A → (∀x)B), as
long as x has no free occurrences in A.

Proof.
Ping-Pong using DThm.

(→) I want

⊢ (∀x)(A→ B)→ (A→ (∀x)B)

Better still, let me do (DThm)

(∀x)(A→ B) ⊢ A→ (∀x)B

and, even better, (DThm!) I will do

(∀x)(A→ B), A ⊢ (∀x)B

(1) (∀x)(A→ B) ⟨hyp⟩
(2) A ⟨hyp⟩
(3) A→ B ⟨(1) + spec⟩
(4) B ⟨(2, 3) + MP⟩
(5) (∀x)B ⟨(4) + gen; OK: no free x in (1) or (2)⟩
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(←) I want

⊢ (A→ (∀x)B)→ (∀x)(A→ B)

or better still (DThm)

A→ (∀x)B ⊢ (∀x)(A→ B) (1)

Seeing that A → (∀x)B has no free x, I can prove the
even easier

A→ (∀x)B ⊢ A→ B (2)

and after this proof is done, then I can apply gen to
A→ B to get (∀x)(A→ B).

OK! By DThm I can prove the even simpler than (2)

A→ (∀x)B,A ⊢ B (3)

Here it is:

(1) A→ (∀x)B ⟨hyp⟩
(2) A ⟨hyp⟩
(3) (∀x)B ⟨(1, 2) + MP⟩
(4) B ⟨(3) + spec ⟩ □
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7.6.4 Corollary. If Γ ⊢ A → B and x is not free in
either Γ or A, then we have also Γ ⊢ A→ (∀x)B.

� The operation expressed in the corollary is called “∀-
Introduction”, in short, “A-intro”. �

Proof. We have Γ ⊢ (∀x)(A→ B) by Gen (restriction on
Γ makes it OK!). Then viewing 7.6.3 as an Equational
proof

(∀x)(A→ B)
⇔ ⟨7.6.3⟩

A→ (∀x)B

we have Γ ⊢ A→ (∀x)B. □
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7.6.5 Corollary. ⊢ (∀x)(A ∨ B) ≡ A ∨ (∀x)B, as long
as x does not occur free in A.

Proof.

(∀x)(A ∨B)

⇔ ⟨WL + ¬∨ (axiom, so abs. thm!); “Denom:” (∀x)p⟩
(∀x)(¬A→ B)

⇔ ⟨“∀ →” (7.6.3)⟩
¬A→ (∀x)B

⇔ ⟨tautology, hence axiom⟩
A ∨ (∀x)B □
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� Most of the statements we prove in what follows have
Dual counterparts obtained by swapping ∀ and ∃ and ∨
and ∧.

Let us give a theorem version of the definition of ∃.
This is useful in Equational proofs in Predicate Logic.

Definition (Recall):

(∃x)A is short name for ¬(∀x)¬A (1)

Next consider the axiom

¬(∀x)¬A ≡ ¬(∀x)¬A (2)

Let me use the ABBREVIATION (1) ONLY on ONE
side of “≡” in (2). I get the theorem

(∃x)A ≡ ¬(∀x)¬A

So I can write the theorem without words like this:

⊢ (∃x)A ≡ ¬(∀x)¬A (3)

HEY! I can apply (3) in Equational proofs —viaWL—
easily!

I will still refer to (3) in proofs as “Def of E”. �
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Here’s something useful AND good practise too! It is
the Dual of 7.6.5.

7.6.6 Corollary. ⊢ (∃x)(A ∧ B) ≡ A ∧ (∃x)B, as long
as x does not occur free in A.

� In annotation we may call the above the “∃∧ theorem”. �

Proof.

(∃x)(A ∧B)

⇔ ⟨Def of E⟩
¬(∀x)¬(A ∧B)

⇔ ⟨WL + axiom 1 (deM); “Denom:” ¬(∀x)p⟩
¬(∀x)(¬A ∨ ¬B)

⇔ ⟨WL + ∀ over ∨ (7.6.5) —no free x in ¬A; “Denom:” ¬p⟩
¬(¬A ∨ (∀x)¬B)

⇔ ⟨Ax1 (deM)⟩
A ∧ ¬(∀x)¬B

⇔ ⟨WL + Def of E; “Denom:” A ∧ p⟩
A ∧ (∃x)B □
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7.7 Ad hoc Memorable Examples

1. While the following theorem —nicknamed “One-point
rule”— will not play a big role in our lectures, still,
on one hand it gives us an example of how we use
the axioms of equality (Axioms 5 and 6) and on the
other hand every mathematician uses it without even
thinking about it, in the form, for example,

“A(3) is the same as (∃x)(x = 3 ∧ A(x))”

7.7.1 Theorem. (One point rule —∀ version) On
the condition that x does not occur in t,† we have
⊢ (∀x)(x = t→ A) ≡ A[x := t].‡

Proof. By Ping-Pong.

(→) Note that since x does not occur in t, we have

(x = t→ A)[x := t] means the same thing as t = t→ A[x := t]

Thus,

(1) (∀x)
B︷ ︸︸ ︷

(x = t→ A)→
B[x:=t]︷ ︸︸ ︷

t = t→ A[x := t] ⟨Ax2⟩
(2) (∀x)x = x ⟨partial gen. of Ax5⟩
(3) t = t ⟨(2) + spec⟩
(4) (∀x)(x = t→ A)→ A[x := t] ⟨(1, 3) + Post⟩

†We can also say “does not occur free in t”, but that is an overkill: A term t has NO
bound variables.

‡Of course, if A[x := t] is undefined, then there is nothing to prove!
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(←) Recall the General form of Axiom 6:

s = t→ (A[x := s] ≡ A[x := t])

(1) x = t→ (A ≡ A[x := t]) ⟨Ax6⟩
(2) A[x := t]→ x = t→ A ⟨(1) + Post⟩

Re above step: p→ (q ≡ r) |=taut r → p→ q
(3) A[x := t]→ (∀x)(x = t→ A) ⟨(2) + A-Intro 7.6.4⟩

2.

7.7.2 Corollary. (One point rule —∃ version) On
the condition that x does not occur in t, we have
⊢ (∃x)(x = t ∧ A) ≡ A[x := t].

Proof. Exercise! (Hint. Use the ∀ version and an
Equational proof to prove the ∃ version (use the “Def
of E” Theorem).) □
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7.7.3 Theorem. (Bound variable renaming (∀)) IF
z is fresh for A —that is, does not occur as either free
or bound in A— then

⊢ (∀x)A ≡ (∀z)A[x := z].← Read this right: “(∀z)A(z)”

� “Everyday mathematician’s” notation is ⊢ (∀x)A(x) ≡
(∀z)A(z).

But NOT our notation! �

Proof. Ping-Pong.

(→)

(1) (∀x)A→ A[x := z] ⟨Ax2 —fresh z; no capture: NO

“(∀z)(. . . ,x, . . .)” in A⟩
(2) (∀x)A→ (∀z)A[x := z] ⟨1 + 7.6.4; Γ = ∅⟩

(←) Let us first settle a useful “lemma” for the proof
below:

7.7.4 Lemma. Under the assumptions about z (fresh-
ness), we have that A[x := z][z := x] is just the original
A.

Proof. Now, z is NEITHER

• Bound in A. That is, there is NO “(∀z)(. . .)” in A.
So the substitution A[x := z] GOES THROUGH,
AND “flags” (and replaces) ALL FREE x in A as z.

▶ NOR is
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• Free in A. So NO FREE z pre-existed in A before
doing A[x := z]. That is, ALL FREE z in A[x := z]
are EXACTLY the FORMER x that BECAME z.

These z are PLACEHOLDERS for THE ORIGI-
NAL FREE x in A.

BUT then! Doing now [z := x] changes ALL z in
A[x := z] back to x.

We are back to the original A!

□

(1) (∀z)
B︷ ︸︸ ︷

A[x := z]→
B︷ ︸︸ ︷

A[x := z][z := x] ⟨Ax2 —A[x := z][z := x]

OK by lemma⟩
(1′) (∀z)A[x := z]→ A ⟨same as (1) —see lemma⟩
(2) (∀z)A[x := z]→ (∀x)A ⟨(1′) + 7.6.4; Γ = ∅⟩ □
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7.8 Adding and Removing the Quantifier “(∃x)”

First, introducing (adding) ∃ is easy via the following
tools:

7.8.1 Theorem. (Dual of Ax2) ⊢ A[x := t]→ (∃x)A

Proof.

A[x := t]→
says “(∃x)A”︷ ︸︸ ︷
¬(∀x)¬A

⇔ ⟨tautology⟩
(∀x)¬A→ ¬A[x := t] Bingo! □

7.8.2 Corollary. (The Dual of Specialisation)
A[x := t] ⊢ (∃x)A

Proof. A[x := t] plus 7.8.1 and MP. □

7.8.3 Corollary. A ⊢ (∃x)A

Proof. 7.8.2, taking x as t. □

� Either corollaries above we call “Dual Spec” in annotat-
ing proofs. �
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But how can I remove a leading (the entire formula)
∃?

We need one preliminary result to answer this.

7.8.4 Corollary. (∃ Introduction or “E-Intro”)
IF x does not occur free in Γ nor in B, then Γ ⊢ A→

B IMPLIES Γ ⊢ (∃x)A→ B.

Proof. (Hilbert-style)

1) A→ B ⟨Γ-thm⟩
2) ¬B → ¬A ⟨1 + Post⟩
3) ¬B → (∀x)¬A ⟨2 + A-intro (7.6.4); no free x in Γ and B⟩
4) ¬(∀x)¬A→ B ⟨3 + Post⟩

Line (4) says that (∃x)A→ B is a Γ-theorem. □
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7.8.5 Metatheorem. (Aux. Hypothesis Metatheorem)
Suppose that Γ ⊢ (∃x)A.

Moreover, suppose that we know that

Γ +

Aux. Hyp.︷ ︸︸ ︷
A[x := z] ⊢ B

where z is fresh for ALL of:


Γ

(∃x)A
and B

Then we have Γ ⊢ B.
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� In our annotation we call A[x := z] an “auxiliary HY-
POTHESIS associated with —or “for”— (∃x)A”.
z is called the auxiliary variable that we chose.

Essentially the fact that we proved (∃x)A allows us to
adoptA[x := z] as aNEW AUXILIARYHYPOTHESIS
to help in the proof of B.

▶ How does it help? (1) I have a new hypothesis to
work with; (2) A[x := z] has NO LEADING QUANTI-
FIER.

(2), in general, results in uncovering the Boolean struc-
ture of A[x := z] to enable proof by “Post”!

Stop-and-Take-Notice: Important! A[x := z] is
an ADDED HYPOTHESIS!

▶ It is NOT TRUE that either (∃x)A ⊢ A[x := z]
or that Γ ⊢ A[x := z].◀

WE WILL PROVE LATER IN THE COURSE
THAT SUCH A THING IS NOT TRUE! �
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Proof. of the Metatheorem.

By the DThm, the metatheorem assumption yields

Γ ⊢ A[x := z]→ B

Thus, by ∃-Intro (7.8.4) we get

Γ ⊢ (∃z)A[x := z]→ B (1)

A two-line Equational proof

(∃z)A[x := z]→ B

⇔⟨WL + 7.7.3; Denom: p→ B⟩
(∃x)A→ B

now yields

Γ ⊢ (∃x)A→ B

hence (see our main assumptions)

Γ ⊢ B

□
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The most frequent form encountered in using Metathe-
orem 7.8.5 is the following corollary.

7.8.6 Corollary. To prove (∃x)A ⊢ B IT SUFFICES to

• pick a z that is FRESH for (∃x)A and B and

• PROVE INSTEAD (∃x)A,A[x := z] ⊢ B.

Proof. Take Γ = {(∃x)A} and invoke Metatheorem 7.8.5.

□
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7.8.7 Example. ⊢ (∃x)(∀y)A→ (∀y)(∃x)A.

Proof. By DThm it suffices to prove instead:

(∃x)(∀y)A ⊢ (∀y)(∃x)A

(1) (∃x)(∀y)A ⟨hyp⟩
(2) (∀y)A[x := z] ⟨aux. hyp for (1); z fresh⟩
(3) A[x := z] ⟨(2) + spec⟩
(4) (∃x)A ⟨(3) + Dual spec: B[x := t] ⊢ (∃x)B⟩
(5) (∀y)(∃x)A ⟨(4) + gen; OK, all hyp lines, (1,2), have no free y⟩

We used the Corollary 7.8.6 of Metatheorem 7.8.5. □
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7.8.8 Example. We prove (∃x)(A→ B), (∀x)A ⊢ (∃x)B.

(1) (∃x)(A→ B) ⟨hyp⟩
(2) (∀x)A ⟨hyp⟩
(3) A[x := z]→ B[x := z]

〈
aux. hyp for (1); z fresh

〉
(4) A[x := z] ⟨(2) + spec⟩
(5) B[x := z] ⟨(3, 4) + MP ⟩
(6) (∃x)B ⟨(5) + Dual spec⟩

□
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7.8.9 Example. We prove (∀x)(A→ B), (∃x)A ⊢ (∃x)B.

(1) (∀x)(A→ B) ⟨hyp⟩
(2) (∃x)A ⟨hyp⟩
(3) A[x := z] ⟨aux. hyp for (2); z fresh⟩
(4) A[x := z]→ B[x := z] ⟨(1) + spec⟩
(5) B[x := z] ⟨(3, 4) + MP ⟩
(6) (∃x)B ⟨(5) + Dual spec⟩ □
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7.8.10� Example. Here is a common mistake people make
when arguing informally.

Let us prove the following informally.

⊢ (∃x)A ∧ (∃x)B → (∃x)(A ∧B).

So let (∃x)A(x) and (∃x)B(x) be true.†

Thus, for some value c of x we have that A(c)
and B(c) are true.

But then so is A(c) ∧B(c).

The latter implies the truth of (∃x)
(
A(x)∧B(x)

)
.

Nice, crisp and short.

And very, very wrong as we will see once we have 1st-
order Soundness in hand. Namely, we will show in the
near future that (∃x)A ∧ (∃x)B → (∃x)(A ∧B) is NOT
a theorem schema. It is NOT provable.

†The experienced mathematician considers self-evident and unworthy of mention at least
two things:

(1) The deduction theorem, and

(2) The Split Hypothesis metatheorem.
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What went wrong above?

We said

“Thus, for some value c of x we have that A(c) and
B(c) are true”.

The blunder was to assume that THE SAME c verified
BOTH A(x) and B(x).
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Let us see that formalism protects even the inexperienced
from such blunders.

Here are the first few steps of a(n attempted) FORMAL proof
via the Deduction theorem:

(1) (∃x)A ∧ (∃x)B ⟨hyp⟩
(2) (∃x)A ⟨(1) + Post⟩
(3) (∃x)B ⟨(1) + Post⟩
(4) A[x := z] ⟨aux. hyp for (2); z fresh⟩
(5) B[x := w] ⟨aux. hyp for (3); w fresh⟩

The requirement of freshness makesw DIFFERENT from
z. These variables play the role of two distinct c and c′.
Thus the proof cannot be continued. Saved by freshness!

□ �
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7.8.11 Example. The last Example in this section makes
clear that the Russell Paradox was the result of applying
bad Logic, not just bad Set Theory!

I will prove that for any binary predicate ϕ we have

⊢ ¬(∃y)(∀x)(ϕ(x,y) ≡ ¬ϕ(x,x)) (R)

By the Metatheorem “Proof by Contradiction” I can
show

(∃y)(∀x)(ϕ(x,y) ≡ ¬ϕ(x,x)) ⊢ ⊥
instead. Here it is

(1) (∃y)(∀x)(ϕ(x,y) ≡ ¬ϕ(x,x)) ⟨hyp⟩
(2) (∀x)(ϕ(x, z) ≡ ¬ϕ(x,x)) ⟨aux. hyp for (1); z fresh⟩
(3) ϕ(z, z) ≡ ¬ϕ(z, z) ⟨(2) + spec⟩
(4) ⊥ ⟨(3) + Post⟩

If we let the atomic formula ϕ(x,y) be Set Theory’s
“x ∈ y” then (R) that we just proved (in fact for ANY
binary predicate ϕ not just ∈) morphs into

⊢ ¬(∃y)(∀x)(x ∈ y ≡ x /∈ x) (R′)

In plain English (R′) says that there is NO set y that
contains ALL x satisfying x /∈ x.

This theorem was proved without using even a sin-
gle axiom of set theory, indeed not even using “{. . .}-
notation” for sets, or any other symbols from set theory.
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After all we proved (R′) generally and abstractly in
the form (R) and that expression and its proof has NO
SYMBOLS from set theory!

In short, Russell’s Paradox can be expressed AND
demonstrated in PURE LOGIC.

It is remarkable that Pure Logic can tell us that NOT
ALL COLLECTIONS are SETS, a fact that escaped
Cantor! □
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Semantics of First-Order
Languages —Simplified

7.9 Interpretations

Systematically translate an abstract formula —symbol
by symbol— until it becomes a concretemathematical
formula in an area of MATH familiar to you.

In this translation ensure that there are no free
variables, so the mathematical formula evaluates ex-
actly as ONE of true or false.

HOW do I translate? (Read On!)

An interpretation ofONE wff—and of THE ENTIRE
language, that is, the set of ALL Terms and wff— is
INHERITED from an interpretation of all sym-
bols of the Alphabet.

This tool —the Interpretation— Translates each wff to
some formula of a familiar branch of mathematics that

289
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we choose, and thus questions such as “is the translated
formula true?” can in principle be dealt with (see 7.9.2
below for details).

An interpretation is totally up to us, just as states were
in Boolean logic but the process is a bit more complex.

Here we need to interpret not only wff but also terms
as well.

The latter requires that we choose a NONEMPTY
set of objects to begin with. We call this set the Do-
main of our Interpretation and generically call it “D”
but in specific cases it could be D = N or D = R (the
reals) or even something “small” like D = {0, 5}.
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� An Interpretation of a 1st-order language consists of a
PAIR of two things:

The aforementioned domainD and a translationmapping
M —the latter translates the abstract symbols of the
Alphabet of logic to concrete mathematical symbols.

▶ This translation of the ALPHABET INDUCES a
translation for each term and wff of the language; thus
of ALL THE LANGUAGE. ◀
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We denote the interpretation “package” asD = (D,M)
displaying the two ingredients D and M in round
brackets.

The unusual calligraphy here is German capital letter
calligraphy that is usual in the printed literature to name
an interpretation package.

On the chalk board I would use ordinary calligraphy,
like “D”.

The package name chosen is usually the same as that
of the Domain. �

� Let me stress that both D and M are OUR choice. �
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7.9.1 Definition. (Translating the Alphabet V1)
An Interpretation D = (D,M) gives concrete counter-

parts (translations) to ALL elements of the Alphabet as
follows:

In the listed cases below we may use notationM(X)
to indicate the concrete translation (mapping) of an
abstract linguistic symbol X.

We also may use XD as an alternative notation for
M(X).

� The literature favours XD and so will we. �
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Here are the actual translation RULES:

(1) For each FREE variable (of a wff) x, xD —that
is, the translation M(x)— is some chosen (BY US!)
FIXED member of D.

� BOUND variables are NOT translated! They stay AS
IS. �

(2) For each Boolean variable p, pD is a member of {t, f}
that WE CHOOSE!

(3) ⊤D = t and ⊥D = f .

This is just as we did—via states— in the Boolean case.
As was the case there we choose the value pD any-
way we please, but for ⊤ and ⊥ we follow the fixed
(Boolean) rule.

(4) For any (object) constant of the alphabet, say, c, we
choose a FIXED cD, as we wish, in D.

(5) For every function symbol f of the alphabet, the
translation fD is amathematical function of the “real”
or “concrete” MATH. It has the same arity as f .

fD —which WE choose!— takes inputs from D and
gives outputs in D.

(6) For every predicate ϕ of the alphabet OTHER THAN “=”,
our CHOSEN translation ϕD is a mathematical RELATION
of the metatheory with the same arity as ϕ. It takes
its inputs from D while its outputs are one or the
other of the truth values t or f.
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▶ NOTE THAT ALL the Boolean glue as
well as the equality symbol translate exactly
as THEMSELVES: “=” for “equals”, ∨ for
“OR”, etc.

Finally, brackets translate as the SAME
TYPE of bracket (left or right).

□
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We have all we need now to translate wff, terms and
thus the entire Language:

7.9.2 Definition. (The Translation of wff)
Consider a wff A in a† first-order language.

Suppose we have chosen an interpretationD = (D,M)
of the alphabet.

The interpretation or translation of A viaD is a math-
ematical (“concrete”) formula of the metatheory or a con-
crete object of the metatheory that we will denote by

AD

It is constructed as follows one symbol at a time, scan-
ning A from left to right until no symbol is left:

†A, not THE. For every choice of constant, predicate and function symbols we get a
different alphabet, as we know, hence a different first-order language. Remember the examples
of Set Theory vs. Peano Arithmetic!
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(i) We replace every occurrence of⊥,⊤ inA by⊥D,⊤D

—that is, by f , t— respectively.

(ii) We replace every occurrence of p in A by pD —this
is an assigned by US TRUTH VALUE; we assigned
it when we translated the alphabet.

(iii) We replace each FREE occurrence of an object vari-
able x of A by the value xD from D that we chose
to assign when we translated the alphabet.

(iv) We replace every occurrence of (∀x) in A by (∀x ∈
D), which means AND is read “for all values of x
in D”.

(iv′) We replace every occurrence of (∃x) in A by (∃x ∈
D), which means AND is read “for some value of x
in D”.

(v) We emphasise again that Boolean connectives (glue)
translate as themselves, and so do “=” and the
brackets “(” and “)”.

Theory-specific symbols in A:

(vi) We replace every occurrence of a(n object) constant
c in A by the specific fixed cD from D —which we
chose when translating the alphabet.

(vii) We replace every occurrence of a function f in A by
the specific fixed fD —which we chose when trans-
lating the alphabet.

(viii) We replace every occurrence of a predicate ϕ inA by
the specific fixed ϕD —which we chose when trans-
lating the alphabet. □
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7.9.3 Definition. (Partial Translation of a wff) Given
a wff A in a first-order language and an interpretation D

of the alphabet.

Sometimes we do NOT wish to translate a FREE vari-
able x of A. Then the result of the translation that leaves
x as is is denoted by AD

x .

Similarly, if we choose NOT to translate ANY of

x1,x2, . . . ,xn, . . .

that (may) occur FREE in A, then we show the result
of such “partial” translation as

AD
x1,...,xn,...

� Thus AD has no free variables, but AD
xwill have x free IF

x actually DID occur free in A—the notation guarantees
that if x so occurred, then we left it alone. �

□
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7.9.4 Remark. AD has no free variables. AD
x has ex-

actly one, x. We can write —as in algebra— AD
x (x) to

depict the input variable x.

Correspondingly, AD
x (k) depicts the result of assign-

ing (inputing!) the value i ∈ D into x.
We do NOT assign values to the subscript Ax

D(x)
since its symbolic meaning is “I am not translated”;
NOT “give me inputs!”

What is the need for the concept and notation “AD
x ”?

Well, for one, note that when we translate (∀x)A FROM
LEFT TO RIGHT, we get “(∀x ∈ D)” followed by the
translation of A.

However, ANY x symbols that occur free IN A BE-
LONG to (∀x) in the wff (∀x)A thus are NOT FREE in
the latter and hence are NOT translated!

Therefore, “(∀x ∈ D)” concatenated with “AD
x ” is

what we get: “(∀x ∈ D)AD
x ”. □
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Study ALL Examples! But I will skip trivial ones.

7.9.5 Example. Consider the AF ϕ(x, x), ϕ is a binary
predicate.

Here are some possible interpretations:

(a) D = N, ϕD =<.

Here “<” is the “less than” relation on natural num-
bers.

So
(
ϕ(x, x)

)D
, which is the same as ϕD(xD, xD) —in

familiar notation is the formula over N:

xD < xD

More specifically, if we took xD = 42, then
(
ϕ(x, x)

)D
is specifically “42 < 42”.

Incidentally,
(
ϕ(x, x)

)D
is false for ANY choice of xD.

� We will write
(
ϕ(x, x)

)D
= f to denote the above

sentence symbolically.

This practice in “real” (informal) mathematics is not
unlike the expression t = s in formal logic. The latter
states an equality, but each of t and s may be syn-
tactically complex terms, although s could be just a
constant.

Example,

t︷ ︸︸ ︷
cos(2π) =

s︷︸︸︷
1 . �
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For the sake of practice, here are two partial inter-
pretations.

In the first we exempt the variables y, z. In the sec-
ond we exempt x:

(i)
(
ϕ(x, x)

)D

y,z
is xD < xD. WHY?

(ii)
(
ϕ(x, x)

)D

x
is x < x.

(b) D = N, ϕD =≤ (the “less than or equal” relation on
N).
So,

(
ϕ(x, x)

)D
is the concrete xD ≤ xD on N.

Clearly, independently of the choice of xD, we have(
ϕ(x, x)

)D
= t

□
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7.9.6 Example. Consider next the wff

f(x) = f(y)→ x = y (1)

where f is a unary function.

Here are some interpretetions:

1. D = N and fD is chosen to be fD(x) = x+1, for all
values of x in D.

Thus
(
f(x) = f(y) → x = y

)D
translates as this

formula over N:

fD(xD) = fD(yD)→ xD = yD

xD + 1 = yD + 1→ xD = yD

Note that every choice of xD and yD makes the above
true.

2. D = Z, where Z is the set of all integers,

{. . . ,−2,−1, 0, 1, 2, . . .}

Take fD(x) = x2, for all x in Z.
Then,

(
f(x) = f(y) → x = y

)D
is, more concretely,

the following formula over Z:

(xD)2 = (yD)2 → xD = yD

The above is true for some choices of xD and yD but
not for others:

E.g., it is false if we took xD = −2 and yD = 2.
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Finally here are two partial interpretations of (1) at
the beginning of this example:

(i)
(
f(x) = f(y) → x = y

)D
x
is x2 = (yD)2 → x =

yD.

(ii)
(
f(x) = f(y)→ x = y

)D
x,y

is x2 = y2 → x = y.

□

7.9.7 Example. The following is the equality axiom (known
as Axiom of Extensionality) of set theory.

(∀y)(∀z)
(
(∀x)(x ∈ y ≡ x ∈ z)→ y = z

)
We can interpet this over the natural number interpre-
tation N = (N,M) given by ∈N=<. I.e., interpret ∈ as
< on N. Can I do this? You bet!

I get the translation (interpretation):

(∀y ∈ N)(∀z ∈ N)
(
(∀x ∈ N)(x < y ≡ x < z)→ y = z

)
(1)

Is (1) true? Yes! Indeed if for each of the natural
numbers y and z we obtain the sets of their predecessors,
{x : x < y} and {x : x < z}, and find them equal —as
(1) claims to the left of “→”— then y = z.

Hint : We can have neither of y < z nor z < y. Can
you argue that to the end? Exercise! □
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Nov. 25, 2024

7.9.8� Example. (Important!) Consider the wff

x = y → (∀x)x = y (1)

Here are a few interpretations:

1. D = {3}, xD = 3, yD = 3.

SinceD contains one element only the above “choice”
is ALL we HAVE, being unique.

Thus (1) translates as

3 = 3→ (∀x ∈ D)x = 3 (2)

Incidentally, (2) is TRUE.

2. This time I take

D = {3, 5}, and again xD = 3 and yD = 3.

Thus (1) translates as:

3 = 3→ (∀x ∈ D)x = 3 (3)

This time (3) is FALSE since “3 = 3” is TRUE as
before, BUT

“(∀x ∈ D)x = 3” is FALSE.

□ �
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7.9.9 Example. (7.9.7 Revisited) Let’s interpret inN =
(D,M) the following in a two different ways:

(∀x)(x ∈ y ≡ x ∈ z)→ y = z (1)

1. Let D = N and ∈D= |, where “|” indicates the rela-
tion “divides” (with remainder zero).

E.g., 2 | 3 and 2 | 1 are FALSE but 2 | 4 and 2 | 0 are
TRUE.

Then (1) translates as:

(∀x ∈ N)(x | yD ≡ x | zD)→ yD = zD

which is also TRUE for all choices of yD, zD.

It says: “Two natural numbers, yD and zD, are EQUAL
if they have exactly the same divisors”.

2. But consider something slightly different now: Take
D = Z —the set of all integers— and ∈D= |. Take
also yD = 2 and zD = −2.

Then (1) translates as

(∀x ∈ Z)(x | 2 ≡ x | − 2)→ 2 = −2

This is FALSE, for 2 and −2 have the same divisors,
but 2 ̸= −2.

So (1) is NOT TRUE IN ALL INTERPRETATIONS.

□
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7.10 Soundness in Predicate Logic

7.10.1 Definition. (Universally Valid wff)

Suppose that AD = t for some A and D.

We say that A is true in the interpretation D or that
D is a model of A.

We write this thus:

|=D A (1)

A 1st-order wff, A, is universally valid —or just “valid”—

iff EVERY interpretation of the wff is a model of it,
that is, we have that (1) holds for every interpretation
D of the language of A.

In symbols,

A is valid iff, for all D, we have |=D A (2)

(2) has the short expression (3) below (i.e., drop the
subscript from |=):

|= A (3)

A formula A that satisfies (3) is sometimes also called
Logically or Absolutely valid. □
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SKIP the Soundness Proof.
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7.10.2 Metatheorem. (Soundness of Predicate Logic)

If ⊢ A, then |= A.

We omit the trivial proof by induction on proof length.

For length one we NOTE that the ONLY formula that
appears in the proof is an axiom. But that is valid!

The induction step notes that our ONLY PRIMARY†

rule, MP, preserves truth.

†Given up in front.
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7.10.3� Example. (Strong Gen; Again!) Can our logic
prove strong generalisation as a “derived rule”?

Namely, can we have If Γ ⊢ A, then Γ ⊢ (∀x)A, with
NO restriction on Γ relating to x? If yes, take Γ =
{A}.† We get

A ⊢ (∀x)A (1)

By the DThm, (1) allows this:

⊢ A→ (∀x)A (2)

Soundness OBJECTS to (2):

If we got (2) then, by Soundness, we get

|= A→ (∀x)A (3)

I will contradict (3) by showing

̸|= A→ (∀x)A (4)

The Definition of “|=” (7.10.1) (4) dictates that I find
just ONE D such that

(A→ (∀x)A)D = f (5)

� This D is called a countermodel of (2). �

†Then A ⊢ A, hence A ⊢ (∀x)A.
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PRACTICAL ADVISE: It is hopeless to search
for a countermodel D FOR A GENERAL A:

Some instances of A do have one and some
don’t, in general.

For a countermodel I ONLY need a SPECIFIC A
(a countermodel is a counterexample!)

▶ Always work with an atomic formula in
place of A.

Now then! TakeA to be atomic, for example, take A to be “x = y”
If (3) works, it should work with this special case of

A!

DOES IT?

NO. We saw in Example 7.9.8(2.) (cf. Definition 7.10.1)

̸|= x = y → (∀x)x = y

So (2) is wrong and so is (1). □ �

7.10.4 Example. We have proved in class/NOTES/Text

⊢ (∃y)(∀x)A→ (∀x)(∃y)A

We hinted in class that we cannot also prove

⊢ (∀x)(∃y)A→ (∃y)(∀x)A (1)
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To show that (1) is unprovable I pick a countermodel
(=an interpretation that makes the wff in it false).

Pick A to be something simple. Atomic is best!

I takeD = N and x = y forA. Translating the wff in (1)
I note

t︷ ︸︸ ︷
(∀x ∈ N)(∃y ∈ N)x = y→

f︷ ︸︸ ︷
(∃y ∈ N)(∀x ∈ N)x = y

Since the interpretation falsifies a special case of (1)
the latter is not provable (by soundness). □
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7.10.5 Example. We we cannot prove

⊢ (∀x)(A ∨B)→ (∀x)A ∨ (∀x)B (1)

To demonstrate this fact we use Soundness, and con-
struct a countermodel D so that we get

̸|=D (∀x)(A ∨B)→ (∀x)A ∨ (∀x)B (2)

Pick A and B to be something simple. Atomic is best!

I takeD = N and “x < 42” for A while I take “x ≥ 42”
for B. Translating the wff in (1) I note

t︷ ︸︸ ︷
(∀x ∈ N)(x < 42 ∨ x ≥ 42)→

f︷ ︸︸ ︷
(∀x ∈ N)x < 42︸ ︷︷ ︸

f

∨ (∀x ∈ N)x ≥ 42︸ ︷︷ ︸
f

I established (2) via the chosen D. Thus (1) is not a
theorem (by soundness). □

7.10.6� Example. The statement ⊢ (∃x)A → A[x := c]
where c is a constant is invalid!

We need a countermodel D for a special instance of A.

Well, take D = (N,M) and let “A” be x = y.

Take

cD = 1

yD = 2. We then have
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t︷ ︸︸ ︷
(∃x ∈ N)x = 2→

f︷ ︸︸ ︷
1
↑
cD

= 2
↑
yD

By the DThm, (∃x)A ⊢ A[x := c] is invalid too.

EXERCISE: Prove that (∃x)A→ A[x := z] (z fresh)
is NOT a theorem either. □ �

� � Wait! “I thought that ‘(∃x)A(x)’ says, ‘for some value c
of x, A(c) is true’. How come we contradicted this?”

Because the singly-quoted part is ‘broken English’. We
should have said instead:

“Say (∃x)A(x) be true. LET then c be a value
that makes A(c) true”. Or, “some c” verifies A(x)”.
In symbols (that are not allowed!!!) this is the same as
“(∃x)A(x)”; says “(∃c)A(c)”, which is NOT NEW!! � �
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7.10.7� Example. (Important!) Why is D ̸= ∅ impor-
tant?

Well let us start by proving

⊢ (∀x)A→ (∃x)A (1)

Use DThm to prove instead

(∀x)A ⊢ (∃x)A

1) (∀x)A ⟨hyp⟩
2) A ⟨1 + spec⟩
3) (∃x)A ⟨2 + Dual spec⟩

However, if I took D = (D,M) with D = ∅ then look at
the transaction of the formula in (1):

(∀x)(x∈D→AD
x )︷ ︸︸ ︷

(∀x ∈ D)AD
x︸ ︷︷ ︸

t vacuously

‡ →

(∃x)(x∈D∧AD
x )︷ ︸︸ ︷

(∃x ∈ D)AD
x︸ ︷︷ ︸

f

(2)

So soundness fails for the formula in (1). We DON’T
like this! So we NEVER allow D = ∅. □ �

‡Do not forget that “(∀x ∈ D)AD
x ” means “(∀x)(x ∈ D → AD

x )”, while “(∃x ∈ D)AD
x ”

means “(∃x)(x ∈ D ∧AD
x )”.
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