York University Department of Electrical Engineering and Computer Science Lassonde School of Engineering

MATH 1028Z. <u>MID TERM —SOLUTIONS</u>, March 3, 2025; 13:30-14:30 Professor George Tourlakis

Question 1. (4 MARKS)

Suppose we know NOTHING about stages, but know two FACTS instead:

FACT 1. For any set A, $\{A\}$ is also a set.

FACT 2. Let $B \neq \emptyset$ be a set. THEN

There is a $C \in B$, such that **NO** $D \in B$ is also in C.

From these two (FACT 1 and FACT 2) PROVE that for any set $A, A \in A$ is false.

Hint. By FACT 1, $\{A\}$ is a set. Use "FACT 2" where $B = \{A\}$. Now, $B \neq \emptyset$, ETC., ETC. **Proof**. Pick <u>ANY</u> set A.

Following the *Hint*.

So, we want to prove for the arbitrary A, that $A \notin A$.

Let us take $B = \{A\}$, a SET by FACT 1.

As $A \in B$ trivially, $B \neq \emptyset$. Thus by FACT 2 there is a C in B

that "C" can only be
$$C = A$$
 (2)

Ş

such that

NO $D \in B$ is also in C

Now, the only "D in B" is A, so $A \notin C$. By (2), C = A, so we got $A \notin A$.

Question 2. (a) (2 MARKS) Give the MATHEMATICAL definition of $\bigcup F$ where F is a <u>set</u> family of <u>sets</u>. Answer. The <u>definition</u> of $\bigcup F$ (class/NOTEs/Text) is the definition of **membership** in $\bigcup F$:

$$x \in \bigcup F \text{ iff } \overbrace{(\exists A)}^{for \ some \ A} \left(A \in F \land x \in A \right)$$
(1)

(b) (4 MARKS) Calculate $\bigcup \emptyset$.

Caution. Be sure to follow the definition of $\bigcup F$.

Answer. To calculate $\bigcup \emptyset$ we just apply (1) from subquestion 2a.

$$x \in \bigcup \emptyset \text{ iff } \underbrace{\underbrace{(\exists A)}_{f \in \emptyset} \land x \in A}_{\mathbf{f} \in \mathbf{by} ``\wedge"} \underbrace{\underbrace{(A \in \emptyset \land x \in A)}_{\mathbf{f} \text{ by }``\wedge"}}_{\mathbf{f}}$$
(2)

Thus, $x \in \bigcup \emptyset$ is false for any x and therefore $(\bigcup \emptyset) = \emptyset$.

Question 3. (4 MARKS) Prove that the relation \mathbb{P} is a set iff \mathbb{P}^{-1} is a set.

Caution. Be mathematically precise!

Hint. There are two directions in "iff".

Proof.

(a) *Assume* \mathbb{P} is a set and prove \mathbb{P}^{-1} is a set.

By Assumption and *thm* from class/NOTEs/text, we know that dom(\mathbb{P}) and ran(\mathbb{P}) are sets. But (class/NOTEs/text) we also know that dom(\mathbb{P}^{-1}) = ran(\mathbb{P}) and ran(\mathbb{P}^{-1}) = dom(\mathbb{P}). Thus $\mathbb{P}^{-1} \subseteq \text{dom}(\mathbb{P}^{-1}) \times \text{ran}(\mathbb{P}^{-1}) = \text{ran}(\mathbb{P}) \times \text{dom}(\mathbb{P})$ and we are done by the subclass theorem.

(b) <u>Assume</u> \mathbb{P}^{-1} is a set and prove \mathbb{P} is a set. We prove this by *using* rather than *aping* the proof of 3a. Indeed this case is true because $(\mathbb{P}^{-1})^{-1} = \mathbb{P}$. Here is why:

$$x\left(\mathbb{P}^{-1}\right)^{-1}y \stackrel{Def}{\Longleftrightarrow} y\mathbb{P}^{-1}x \stackrel{Def}{\Longleftrightarrow} x\mathbb{P}y$$

using the conjunctional equivalence " \iff ".

Question 4. (5 MARKS) Let P and R be (set) relations.

Prove that $(P \circ R)^{-1} = R^{-1} \circ P^{-1}$.

Caution. An "=" between sets requires two directions to prove, or a *conjunctional* chain of correct equivalences.

$$\begin{array}{ccc} some & same \ z \\ \mathbf{Proof.} \ x(P \circ R)^{-1}y \Leftrightarrow y(P \circ R)x \Leftrightarrow yP \stackrel{\downarrow}{z} \ Rx \Leftrightarrow xR^{-1} \quad \stackrel{\downarrow}{z} \ P^{-1}y \Leftrightarrow xR^{-1} \circ P^{-1}y. \qquad \Box$$