Lassonde School of Engineering

Dept. of EECS

Professor G. Tourlakis EECS 1028 Z. Problem Set No3 —Solutions Posted: Mar. 24, 2025

1. (4 MARKS) Show that if \mathbb{F} is a function and dom(\mathbb{F}) is a set then \mathbb{F} is a set.

Proof. Note that $ran(\mathbb{F})$ is also a set —by the function (forward) image theorem 5.1.10— since

$$\operatorname{ran}(\mathbb{F}) = \mathbb{F}[\operatorname{dom}(\mathbb{F})]$$

We are done by the subclass theorem and $\mathbb{F} \subseteq \operatorname{dom}(\mathbb{F}) \times \operatorname{ran}(\mathbb{F})$.

2. (3 MARKS) Show by an easy counterexample that "if \mathbb{F} is a function and $\operatorname{ran}(\mathbb{F})$ is a set then \mathbb{F} is a set" is <u>false</u>.

Answer. Define the function \mathbb{F} by $\mathbb{F}(x) = 0$ for all $x \in \mathbb{U}$. Then $\operatorname{ran}(\mathbb{F}) = \{0\}$, a <u>set</u>, but dom $(\mathbb{F}) = \mathbb{U}$, a proper class.

3. (4 MARKS) Define a **DIFFERENT implementation**

$$\langle x, y \rangle \stackrel{Def}{=} \left\{ \{x\}, \{x, y\} \right\}$$

for **ordered pair** where this time we denote the latter as " $\langle x, y \rangle$ " (angular brackets).

Prove that

$$\langle x, y \rangle = \langle x', y' \rangle \to x = x' \land y = y' \tag{1}$$

Caution. This does NOT require arguments via "set formation by stages". **Proof**. Assume LHS of (1). Then, applying the function " \bigcap " to the same input $\langle x, y \rangle = \langle x', y' \rangle$), that is,

$$\bigcap \left\{ \{x\}, \{x, y\} \right\} = \bigcap \left\{ \{x'\}, \{x', y'\} \right\}$$

G. Tourlakis

Page 1

•

we get $\{x\} = \{x'\}$, hence

$$x = x' \tag{2}$$

Next, applying the function " \bigcup " to the same input $\langle x, y \rangle = \langle x', y' \rangle$, that is,

$$\bigcup \left\{ \{x\}, \{x, y\} \right\} = \bigcup \left\{ \{x'\}, \{x', y'\} \right\}$$

we get (mindful of (2))
$$\{x, y\} = \{x, y'\}$$
(3)

We now have two cases:

- Case x = y. Then $y' \in \{x, y\} = \{y\}$, hence y = y' which along with (2) settles RHS of (1).
- Case $x \neq y$. Now, $y \in \{x, y'\}$ by (3). Since the Case forbids y = x we must have the only alternative, y = y'. This, along with (2), proves the RHS of (1) one last time.

4. (a) (2 MARKS) State the definition given in Class/NOTEs/Text for

$$A \text{ is countable} \tag{2}$$

Definition: A is countable **iff** we have some **onto** (not necessarily total) $g : \mathbb{N} \to A$.

(b) (4 MARKS) Prove that the Definition from Class/NOTEs/Text is equivalent to

A is countable **iff**, there is a total and 1-1
$$f : A \to \mathbb{N}$$
 (3)

Proof.

i. Suppose A is <u>countable</u> according to Definition 4a. That means some (not necessarily total) onto function $g : \mathbb{N} \to A$ exists.

By Theorem 5.1.30 of the Notes, we also have a <u>total</u> and <u>1-1</u> $f: A \to \mathbb{N}$. (The theorem from Notes adds: "such that $gf = 1_A$ " but this part is <u>irrelevant</u> to this problem).

- ii. Conversely, suppose that we have $f : A \to \mathbb{N}$ that is <u>total and 1-1</u>. By Theorem 5.1.29 of the Notes, there is an onto function $g : \mathbb{N} \to A$, so A is <u>countable</u> by 4a. (The quoted theorem from Notes also observes: "such that $gf = 1_A$ " but this part is <u>irrelevant</u> to this problem).
- 5. (4 MARKS) Prove transitivity of \sim , that is, if $A \sim B \sim C$, then $A \sim C$. **Proof.** Hypothesis says that
 - (a) We have a total, 1-1 and onto $f : A \to B$.
 - (b) We have a total, 1-1 and onto $g: B \to C$.

To prove transitivity we need to prove that

$$gf: A \to C$$

is a 1-1 correspondence.

(1) gf is <u>onto</u> C. Indeed, let $z \in C$. By ontoness of g there is a $y \in B$ such that g(y) = z. By ontoness of f there is a $x \in A$ such that f(x) = y.

So, (gf)(x) = g(f(x)) = g(y) = z. So gf is onto.

- (2) Prove gf is <u>total</u> on A. OK, show (gf)(a) is defined for any $a \in A$. But (gf)(a) = g(f(a)). Since f is total, we have f(a) is an object in B. But g is total, so g(f(a)) is an object in C.
- (3) Prove (gf) is <u>1-1</u>. Let

$$(gf)(x) = (gf)(y) = z \tag{(\dagger)}$$

We shall show x = y. Now, (†) says g(f(x)) = g(f(y)) = z. But g is 1-1, hence

$$f(x) = f(y) = w \tag{\ddagger}$$

the w since f is total. Now we remember that f is 1-1 too. So x = y by (‡) and we proved 1-1ness of (gf).

G. Tourlakis

Page 3