Lassonde School of Engineering

Dept. of EECS

Professor G. Tourlakis EECS 1028 Z. Problem Set No2 —Solutions Posted: Feb. 26, 2025

1. (3 MARKS) Find the equivalence class —IDENTIFIED BY THE SMALLEST NON-NEGATIVE integer possible— for \equiv_3 where the integer -1010546 belongs to.

Answer. By "long division of 1010546 by 3" we get the quotient q = 336848 and the remainder r = 2. Thus (accounting for the *leading minus* in "-1010546")

$$-1010546 = -336848 \times 3 - 2 \tag{1}$$

(1) means

$$-1010546 \equiv_3 -2$$
 (2)

But 3 divides 3 = 1 - (-2). Thus,

 $-2 \equiv_3 1$

which along with (2) yields

$$-1010546 \equiv_3 1 \tag{3}$$

In other words $-1010546 \in [1]_3$, hence $[-1010546]_3 = [1]_3$.

2. (2 MARKS) TRUE or FALSE and *WHY*? (No correct "WHY" yields 0 MARKS)

"If the range of a relation \mathbb{R} is a set, then \mathbb{R} is a set."

Answer. FALSE. Consider the relation

$$\mathbb{R} \stackrel{Def}{=} \{ (x, 0) : x \in \mathbb{U} \}$$

Indeed ran(\mathbb{R}) = {0}, a set. Now, if \mathbb{R} is a *set*, then so is its domain. NOT SO! dom(\mathbb{R}) = \mathbb{U} .

G. Tourlakis

Page 1

3. (3 MARKS) Show that the relation \subseteq —where NO left/right fields are chosen a priori— is a proper class.

Proof. $\emptyset \subseteq A$, for *ANY* set *A*. Why? Because simply,

$$\overbrace{x \in \emptyset}^{\mathbf{f}} \to x \in A$$

But this says that

$$(\emptyset) \subseteq = \mathbb{V} \tag{1}$$

where

- (a) we know $\mathbb{V} = \{x : x \text{ is a set}\}$ is a *proper class*.
- (b) we know $ran(\subseteq) = \mathbb{V}$ because every member of \mathbb{V} is an output of the relation \subseteq for <u>SOME</u> INPUT. WHICH input? But look at (1) above! Input \emptyset causes as outputs all the members of \mathbb{V} .

Hence the Relation \subseteq is a proper class, else its range would be a set.

4. (2 MARKS) Show for a relation S that if both the range and the domain are sets, then S is a set.

Proof. From our NOTES: Indeed, $\mathbb{S} \subseteq \text{dom}(\mathbb{S}) \times \text{ran}(\mathbb{S})$. By the Cartesian Product theorem, $\text{dom}(\mathbb{S}) \times \text{ran}(\mathbb{S})$ is a set, thus so in \mathbb{S} by the subclass theorem.

5. (3 MARKS) Prove that \mathbb{N}^2 is an equivalence relation on \mathbb{N} .

Proof. (I learnt in the fall term that **ChatGPT** does not know how to solve this problem! :)

 N^2 is a set of pairs. I must *verify three properties* of

$$\mathbb{N}^2 = \{ (x, y) : x \in \mathbb{N} \land y \in \mathbb{N} \}$$

$$\tag{1}$$

(a) (**Reflexive**). Indeed, since (x, y) is in $\mathbb{N}^2 = \mathbb{N} \times \mathbb{N}$ for *any* x and y in \mathbb{N} , in particular all $(x, x) \in \mathbb{N}^2$, for all $x \in \mathbb{N}$.

Page 2

G. Tourlakis

- (b) (Symmetric). By definition (1), ANY(x, y) is in $\mathbb{N}^2 = \mathbb{N} \times \mathbb{N}$ as long as x and y are both in \mathbb{N} . For any such (x, y), WHAT ABOUT (y, x)? This TOO is in \mathbb{N}^2 since y and x are in \mathbb{N} .
- (c) (**Transitive**). We want $(x, y) \in \mathbb{N}^2$ and $(y, z) \in \mathbb{N}^2$ to imply $(x, z) \in \mathbb{N}^2$.

But we <u>have</u> that! WHY? Because the assumption requires x, y in \mathbb{N} and y, z in \mathbb{N} —see definition of \mathbb{N}^2 in (1) above!

But then all three, x, y, z, are in \mathbb{N} . In particular, x, z are. But that says that $(x, z) \in \mathbb{N}^2$.

6. (4 MARKS) Let R be symmetric. Show that so is R^+ .

Hint. Is the same true if we replace " R^+ " in the statement with " R^n ", for $n \ge 1$?

Proof. I am taking the *Hint*. Indeed, if R is symmetric, then so is \mathbb{R}^n for all $n \geq 1$.

Here is why:

Let xR^ny . Thus (class and NOTEs)

$$x \overbrace{Ra_1Ra_2Ra_3\cdots Ra_{n-2}Ra_{n-1}R}^{n \ R \ copies \ and \ n-1 \ a_i \ copies} y \tag{1}$$

hence —because of the symmetry of R, I can swap the a_i/a_{i+1} in each a_iRa_{i+1} of (1) above and also swap the xRa_1 and $a_{n-1}Ry$ at the two ends— and I obtain the true statement

$$y \overbrace{Ra_{n-1}Ra_{n-2}Ra_{n-3}\cdots Ra_2Ra_1R}^{n \ R \ copies \ and \ n-1 \ a_i \ copies} x$$
(2)

The display (2) says yR^nx , so indeed R^n is symmetric if R is.

Back to R^+ . This is symmetric too.

So let xR^+y . Then (by $R^+ = \bigcup_{i=1}^{\infty} R^i$) we have $x\left(\bigcup_{i=1}^{\infty} R^i\right)y$. By definition

of \bigcup the last box says xR^iy for some value of $i \ge 1$, say i = n, so it says

G. Tourlakis

Page 3

 xR^ny . By what we showed at the onset of this proof, we also have yR^nx

which implies $y\left(\bigcup_{i=1}^{\infty} R^i\right) x$ —that is, yR^+x . Done!

7. (3 MARKS) Show that a relation \mathbb{R} is symmetric iff, for all x, y,

$$xRy \equiv y\mathbb{R}x$$

Caution 1. <u>Be sure</u> (by consulting <u>the NOTEs</u>, not any other "authority"; that we start this problem <u>on the same page</u> as to what "symmetric relation" is <u>defined</u> as.

Caution 2. There are two directions in "iff".

Proof. We are asked to prove that a symmetric relation R <u>must</u> satisfy

$$xRy \text{ iff } y\mathbb{R}x \tag{1}$$

(a) (\rightarrow) This direction of (1) is the <u>usual definition</u> of "*R* is symmetric". So what DOES the definition SAY in plain words?

To say "R is symmetric" is the same as, for any letters x, y that stand for elements in the field of R, we have xRy implies yRx

But there is no a priori meaning or values in the arbitrarily chosen letters x, y. So, the boxed statement below is equally valid to the boxed statement above. I can choose other letters to say the same thing! So, I can prove the same thing that I did above, but here with different letters!

(b) (\leftarrow)

To say "R is symmetric" is the same as, for any letters x, y that stand for elements in the field of R, we have yRx implies xRy. This is (1) right-to-left!

8. (3 MARKS) Show that a relation S is transitive iff $S = S^+$.

Hint. There are two directions in "iff".

Proof.

- (a) (\rightarrow) <u>Let S be transitive</u>. The definition of "S⁺" requires **ALL** of i.–iii. below
 - i. S^+ is transitive
 - ii. $S \subseteq S^+$
 - iii. If T is transitive and $S \subseteq T$, then $S^+ \subseteq T$.

Now take <u>*T*</u> to be <u>S</u>. This is legitimate by $S \subseteq S$ and by the underlined, red, hypothesis above. Thus, $S^+ \subseteq S$ by iii. and hence $S = S^+$ by ii.

- (b) (\leftarrow) Let $S = S^+$. But S^+ is transitive by-Def, and thus so is its equal, S.
- **9.** (4 MARKS) Let R on A be reflexive. Prove that R^+ is also reflexive.

Proof. Hypothesis means "for all $x \in A$, $(x, x) \in R$ " or $\Delta_A \subseteq R$.

Now,

$$R^{+} = \bigcup_{i=1}^{\infty} R^{i} = R \cup \left(\bigcup_{i=2}^{\infty} R^{i}\right)$$
(2)

By (2) and the "boxed" observation above we have $\Delta_A \subseteq R^+$, thus R^+ is reflexive.