York University Department of Electrical Engineering and Computer Science Lassonde School of Engineering

EECS1028 Z April 9 FINAL EXAM, SOLUTIONS Professor George Tourlakis

Questions Start HERE!

Question 1. (a) (1 MARK) For any relation \mathbb{P} define the notation $(a)\mathbb{P}$. Please do so *NOT* with words! Rather, do so with a formula!

Definition. $(a)\mathbb{P} \stackrel{Def}{=} \{y : a\mathbb{P}y\}.$

(b) (2 MARKS) Introduce an EXAMPLE of a relation \mathbb{P} such that for some input a, $(a)\mathbb{P}$ is demonstrably a proper class.

Caution. Please act on "demonstrably".

Here is an Example. Take \mathbb{P} to be \subseteq defined everywhere in \mathbb{V} : Then $\emptyset \subseteq A$ for each $A \in \mathbb{V}$, or, using notation from 1a, if I take $a = \emptyset$, then

$$(a)\mathbb{P} = (\emptyset) \subseteq = \mathbb{V}$$

We learnt from class early on that $\mathbb V$ is a proper class: NOT a set.

Question 2. (a) (1 MARK) Define: "Set A is uncountable". Definition: "Set A is NOT countable".

(b) (3 MARKS) Prove that an *uncountable* set is *infinite*.
Proof. The alternative to "infinite" is "finite". But "finite" is **countable** while our set is *uncountable*. Cannot be.

- Question 3. (1) (1 MARK) What does the acronym "MC" stand for? Answer. "Minimal Condition".
 - (2) (3 MARKS) Define MC. (Not in words! Use an appropriately short formula, as in Class/NOTEs).

An order relation \mathbb{P} has the minimal condition means that for all $\emptyset \neq \mathbb{A}$, we have some $a \in \mathbb{A}$ such that $\mathbb{A} \cap \{y : y\mathbb{P}a\} = \emptyset$.

With fewer words MC is the condition of an order relation $\mathbb P$ described by the formula

 $\emptyset \neq \mathbb{A} \to (\exists a) (a \in \mathbb{A} \land \mathbb{A} \cap \{y : y \mathbb{P}a\} = \emptyset)$

Also with fewer symbols

$$\emptyset \neq \mathbb{A} \to (\exists a \in \mathbb{A}) \mathbb{A} \cap \{y : y \mathbb{P}a\} = \emptyset$$

Question 4. (a) (2 MARKS) Define "Set A is enumerable" (<u>NOT in words</u>. Use a simple short formula that uses " \sim ")

Definition. A is enumerable means $A \sim \mathbb{N}$.

(b) (4 MARKS) Prove that the set $\{7^m : m \ge 0\}$ is **enumerable**.

Proof. I need to exhibit a 1-1 correspondence $f : \mathbb{N} \to \{7^m : m \ge 0\}$.

Define $f(m) = 7^m$ for each $m \in \mathbb{N}$. **Prove**:

- (a) f is total: Yes: For every $m \in \mathbb{N}$, f gives output 7^m , a number in \mathbb{N} .
- (b) f is 1-1. Yes: Distinct inputs $m \neq n$ give distinct outputs:

$$7^m \neq 7^n \tag{2}$$

Why is (2) true? By *unique factorisation* theorem: If (2) is false then $7^m = 7^n$ and since $m \neq n$ we have two different prime factorisations of the number 7^m .

(c) f is onto. Well, pick any entry in $\{7^m:m\geq 0\},$ say, $7^j.$ Is there an input that maps to $7^j?$

<u>You bet</u>: The way we defined $f, f(j) = 7^j$. We proved $\mathbb{N} \sim \{7^m : m \ge 0\}$ via f.

So $\{7^m : m \ge 0\}$ is enumerable.

Question 5. (4 MARKS) Prove, using techniques of predicate logic and a *Hilbert Proof*, that if A has no free occurrences of x, then

 $A \to B \vdash A \to (\forall x)B$

Proof.

By DThm prove

$$A \to B, A \vdash (\forall x) B$$

- 1) $A \to B \langle hyp \rangle$
- 2) A $\langle Dthm. hyp \rangle$
- 3) B $\langle 1+2 Post \rangle$
- 4) $(\forall x)B$ $\langle 3 + Gen \ OK \ no \ free \ x \ in \ 2 \rangle$

Question 6. (4 MARKS) What *EXACTLY* is wrong with the following "proof" that

$$\vdash x = 0 \to (\forall x)x = 0?$$

Recall that " \vdash " says "is a theorem" .

"**Proof**" By DThm, suffices to prove instead $x = 0 \vdash (\forall x)x = 0$. Here it goes!

1) x = 0 $\langle \text{hyp} \rangle$ 2) $(\forall x)x = 0$ $\langle 1 + \text{Gen} \rangle$

Answer. Step 2 is illegal since I cannot do Gen on x if I am below line 1: Line 1 is a DThm hyp *WITH* a free x!

Question 7. (4 MARKS) Use Induction to prove that

$$2^{2n+1} + 5^{2n+1}$$
 is divisible by 7 for all $n \ge 0.$ (1)

ProofWe do SI.

Basis: n = 0. Verify: $2^{2 \cdot 0 + 1} + 5^{2 \cdot 0 + 1} = 7$. This is divisible by 7.

I.H. Fix n and assume (1). $2^{2n+1} + 5^{2n+1} = 7k$ (some k).

I.S. Prove case for n + 1 (same *fixed* n as above). From I.H., we have $2^{2n+1} + 5^{2n+1} = 7k$ (some k). Thus, (replacing n by n + 1 for I.S.): $2^{2n+3} + 5^{2n+3} = 4(7k - 5^{2n+1}) + 5^{2n+3} = 28k - 4 \cdot 5^{2n+1} + 5^{2n+3} = 28k - 4 \cdot 5^{2n+1} + 25 \cdot 5^{2n+1} = 28k + 21 \cdot 5^{2n+1}$.

First red term is the case for n + 1 and the last red term has 7 as a factor. Done.

Question 8. (4 MARKS) Use CVI-type induction to prove that *every* number $n \in \mathbb{N}$ can be expressed in decimal notation as below:

$$n = a_k 10^k + a_{k-1} 10^{k-1} + \dots + a_1 10 + a_0, \text{ where } 0 \le a_i \le 9, \text{ for } i = 0, \dots, k$$
(1)

Proof. We do CVI:

Basis. n = 0, OK! "0" has the form (1) above.

I.H. Fix n. Now **Assume** the statement (1) for all m < n.

I.S. Prove for n. By Euclid's division theorem, let

$$n = 10q + r, \text{ were } 0 \le r < 10 \tag{(†)}$$

We assumed n > 0 in the I.H. Thus q < n,

Else $n \le q$ and thus $10n \le 10q \le 10q + r = n$. The last inequality is incompatible with n > 0. So apply I.H. to q to get

$$q = b_t 10^t + b_{t-1} 10^{t-1} + \dots + b_1 10 + b_0, \text{ where } 0 \le b_i < 10, \text{ for } i = 0, 1, 2, \dots, t$$
(2)

Substituting (2) into (\dagger) we get

$$n = b_t 10^{t+1} + b_{t-1} 10^t + \dots + b_1 10^2 + b_0 10 + r$$

which has the form (1) since $0 \le r < 10$.