
12 2. Safe Set Theory

We have just proved a theorem above:

2.3.2 Theorem. If A,B are sets or atoms, then {A,B} is a set.

2.3.3 Exercise. Without referring to stages in your proof, prove that if A is a
set or atom, then {A} is a set. �

2.3.4� Remark. A very short digression into Boolean Logic —for now.
It will be convenient —but not necessary; we are doing fine so far— to use truth
tables to handle many simple situations that we will encounter where “logical
connectives” such as “not”, “and”, “or”, “implies” and “is equivalent” enter
into our arguments.

We will put on record here how to compute things such as “S1 and S2”,
“S1 implies S2”, etc., where S1 and S2 stand for two arbitrary statements of
mathematics. In the process we will introduce the mathematical symbols for
“and”, “implies”, etc.

The symbol translation table from English to symbol is:

NOT ¬
AND ∧
OR ∨

IMPLIES (IF. . . ,THEN) →
IS EQUIVALENT ≡

The truth table below has a simple reading. For all possible truth values
—true/false, for short t/f— of the “simpler” statements S1 and S2 we indicate
the computed truth value of the compound (or “more complex)” statement that
we obtain when we apply one or the other Boolean connective of the previous
table.

S1 S2 ¬S1 S1 ∧ S2 S1 ∨ S2 S1 → S2 S1 ≡ S2 S2 → S1

f f t f f t t t
f t t f t t f f
t f f f t f f t
t t f t t t t t

Comment. All the computations of truth values satisfy our intuition, ex-
cept perhapsthat for “→”: ¬ flips the truth value as it should, ∧ is eminently
consistent with common sense, ∨ is the “inclusive or” of the mathematician,
and ≡ is just equality on the set {f , t}, as it should be.

The “problem” with → is that there is no causality from left to right. The
only “sane” entry is for t → f . The outcome should be false for a “bad impli-
cation” and so it is. But look at it this way:

Fragments of “safe” set theory; from the EECS 1028 lecture notes c© G. Tourlakis, W 2020.



2.3. Some useful sets 13

• Looking at → also in the “red column” see how the given table for → is
eminently consistent with that for ≡. Intuitively ≡ is→ from left to right
AND → from right to left. It IS!

• This version of→ goes way back to Aristotle. It is the version used by the
vast majority of practising mathematicians and is nicknamed “material
implication”.

Practical considerations. Thus

1. if you want to demonstrate that S1 ∨S2 is true, for any component state-
ments S1, S2, then show that at least one of the S1 and S2 is true.

2. If you want to demonstrate that S1 ∧ S2 is true, then show that both of
the S1 and S2 are true.

Note, incidentally, the if we know that S1∧S2 is true, then the truth table
guarantees that each of S1 and S2 must be true.

3. If now you want to show the implication S1 → S2 is true, then the only
real work is to show that if we assume S1 is true, then S2 is true too.

If S1 is known to be false, then no work is required to prove the implication
because of the first two lines of the truth table!!

4. If you want to show S1 ≡ S2, then —because the last three columns show

that this is equivalent to (same truth values as)
(
S1 → S2

)
∧
(
S2 → S1

)
—

that is, you just prove each of the two implications S1 → S2 and S2 → S1

An important variant of → and ≡ Pay attention to this point
since almost everybody gets it wrong! In the literature and in the
interest of creating a usable shorthand many practitioners of mathematical
writing use notation

S1 → S2 → S3 (1)

attempting to convey the meaning

(S1 → S2) ∧ (S2 → S3) (2)

Alas, (2) is not the same as (1)! But what about a < b < c ostensibly
meaning a < b ∧ b < c? That is wrong too!

Back to →-chains like (1) vs. chains like (2): Take S1 to be t (true),
S2 to be f and S3 to be t. Then (1) is true because in a chain using
the same Boolean connective we put brackets from right to left : (1) is
S1 → (S2 → S3) and evaluates to t, while (2) evaluates clearly to false (f)
since S1 → S2 = f and S2 → S3 = t.
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14 2. Safe Set Theory

So we need a special symbol to denote (2) “economically”. We need a
conjunctional implies! Most people use (correctly) =⇒ for that:

S1 =⇒ S2 =⇒ S3 (3)

that means, by definition, (2) above.

Similarly,
S1 ≡ S2 ≡ S3 (4)

is NOT conjunctional. It is not two equivalences —two statements—
connected by an implied “∧”, rather it says

S1 ≡ (S2 ≡ S3)

Now if S1 = f , S2 = f and S3 = t, then (4) evaluates as t but the
conjunctional version

(S1 ≡ S2) ∧ (S2 ≡ S3) (5)

evaluates as f since the second side of ∧ is f .

So how do we denote (5) correctly without repeating the consecutive S2’s
and omitting the implied “∧”? This way:

S1 ⇐⇒ S2 ⇐⇒ S3 (4)

By definition, “⇐⇒” is conjunctional: It applies to two statements only
—Si and Si+1— and implies an ∧ before the adjoining next similar equiv-
alence Si+1 ⇐⇒ Si+2. � �

2.3.5 Theorem. (The subclass theorem) Let A ⊆ B (B a set). Then A is
a set.

Proof. Well, B being a set there is a stage Σ where it is built (Principle 1). By
Principle 0, all members of B are available or built before stage Σ.

But by A ⊆ B, all the members of A are among those of B.
Hey! By Principle 0 we can build A at stage Σ, so it is a set. �
Some corollaries are useful:

2.3.6 Corollary. (Modified comprehension I) If for all x we have

P (x)→ x ∈ A (1)

for some set A, then B = {x : P (x)} is a set.

Proof. I will show that B ⊆ A, that is,

x ∈ B→ x ∈ A

Indeed (see 3 under Practical considerations in 2.3.4), let x ∈ B. Then P (x)
is true, hence x ∈ A by (1). Now invoke 2.3.5. �
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2.4. Operations on classes and sets 15

2.3.7 Corollary. (Modified comprehension II) If A is a set, then so is
B = {x : x ∈ A ∧ P (x)} for any property P (x).

Proof. The defining property here is “x ∈ A ∧ P (x)”. This implies x ∈ A —by
2 in 2.3.4— that is, we have

(x ∈ A ∧ P (x))→ x ∈ A

Now invoke 2.3.6. �

2.3.8� Remark. (The empty set) The class E = {x : x 6= x} has no members
at all; it is empty. Why? Because

x ∈ E ≡ x 6= x

but the condition x 6= x is always false, therefore so is the statement

x ∈ E (1)

Is the class E a set?

Well, take A = {1}. This is a set as the atom 1 is given at stage 0, and thus
we can construct the set A at stage 1.

Note that, by (1) and 3 in 2.3.4 we have that

x ∈ E→ x ∈ {1}

is true (for all x). That is, E ⊆ {1}.

By 2.3.5, E is a set.

But is it unique so we can justify the use of the definite article “the”? Yes.
The specification of the empty set is a class with no members. So if D is another
empty set, then we will have x ∈ D always false. But then

x ∈ E ≡ x ∈ D (both sides of ≡ are false)

and we have E = D by 2.1.1.

The unique empty set is denoted by the symbol ∅ in the literature. � �

2.4. Operations on classes and sets

The reader probably has seen before (perhaps in calculus) the operations on
sets denoted by ∩,∪,− and others. We will look into them in this section.
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16 2. Safe Set Theory

2.4.1 Definition. (Intersection of two classes) We define for any classes A
and B

A ∩ BDef
=
{
x : x ∈ A ∧ x ∈ B

}
We call the operator ∩ intersection and the result A ∩ B the intersection of A
and B.

If A∩B = ∅—which happens precisely when the two classes have no common
elements— we call the classes disjoint.

It is meaningless to have ∩ operate on atoms.† �

We have the easy theorem below:

2.4.2 Theorem. If B is a set, as its notation suggests, then A ∩B is a set.

Proof. I will prove A ∩B ⊆ B which will rest the case by 2.3.5. So, I want

x ∈ A ∩B → x ∈ B

To this end, let then x ∈ A∩B (cf. 3 in 2.3.4). This says that x ∈ A∧ x ∈ B is
true, so x ∈ B is true (cf. 2 in 2.3.4). �

2.4.3 Corollary. For sets A and B, A ∩B is a set.

2.4.4 Definition. (Union of two classes) We define for any classes A and B

A ∪ BDef
=
{
x : x ∈ A ∨ x ∈ B

}
We call the operator ∪ union and the result A ∪ B the union of A and B.

It is meaningless to have ∪ operate on atoms. �

2.4.5 Theorem. For any sets A and B, A ∪B is a set.

Proof. By assumption say A is built at stage Σ while B is built at stage Σ′.
Without loss of generality (for short, “wlg”) say Σ is no later than Σ′, that is,
Σ ≤ Σ′.

By Principle 2 I can pick a state Σ′′ > Σ′, thus

Σ′′ > Σ′ (1)

and

Σ′′ > Σ (2)

Lets us examine any item x ∈ A ∪B:
I have two (not necessarily mutually exclusive) cases (by 2.4.4):

†The definition expects ∩ to operate on classes. As we know, atoms (by definition) have
no set/class structure thus no class and no set is an atom.

Fragments of “safe” set theory; from the EECS 1028 lecture notes c© G. Tourlakis, W 2020.



2.4. Operations on classes and sets 17

• x ∈ A. Then x was available or built† at a stage < Σ,

hence, by (2), x is available before Σ′′ (3)

• x ∈ B. Then x was available or built at a stage < Σ′,

hence, by (1), x is available before Σ′′ (4)

In either case, (3) or (4), the arbitrary x from A ∪ B is built before Σ′′, so we
can collect all those x-values at stage Σ′′ in order to form a set : A ∪B. �

2.4.6 Definition. (Difference of two classes) We define for any classes A
and B

A− BDef
=
{
x : x ∈ A ∧ x /∈ B

}
We call the operator − difference and the result A− B the difference of A and
B, in that order.

It is meaningless to have “−” operate on atoms. �

2.4.7 Theorem. For any set A and class B, A− B is a set.

Proof. The reader is asked to verify that A−B ⊆ A. We are done by 2.3.5. �

� Notation. The definitions of ∩ and “−” suggest a shorter notation for the rhs
for A ∩ B and A− B. That is, respectively, it is common to write instead{

x ∈ A : x ∈ B
}

and {
x ∈ A : x /∈ B

}
�

2.4.8 Exercise. Demonstrate —using Definition 2.4.1— that for any A and B
we have A ∩ B = B ∩ A. �

2.4.9 Exercise. Demonstrate —using Definition 2.4.4— that for any A and B
we have A ∪ B = B ∪ A. �

2.4.10 Exercise. By picking two particular very small sets A and B show that
A−B = B −A is not true for all sets A and B.

Is it true of all classes? �

Let us generalise unions and intersections next. First a definition:

†As x may be an atom, we allow the possibility that it was available with no building
involved, hence we said “available or built”. For A and B though we are told they are sets,
so they were built at some stage, by Principle 1!
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18 2. Safe Set Theory

2.4.11 Definition. (Family of sets) A class F is called a family of sets iff it
contains no atoms. The letter F is here used generically (“F” for family), and a
family may be given any name, usually capital (blackboard bold if we have not
said it is a set). �

2.4.12 Example. Thus, ∅ is a family of sets; the empty family.
So are {{2}, {2, {3}}} and V, the latter given by

VDef
=
{
x : x is a set

}
BTW, as V contains all sets (but no atoms!) it is a proper class! Why? Well,
if it is a set, then it is one of the x-values that we are collecting, thus V ∈ V.
But we saw that this statement is false for sets!

Here are some classes that are not families: {1}, {2, {{2}}} and U, the latter
being the universe of all objects —sets and atoms— and equals Russell’s “R”
as we saw in Section 2.2. These all are disqualified as they contain atoms. �

2.4.13 Definition. (Intersection and union of families) Let F be a family
of sets. Then

(i) the symbol
⋂
F denotes the class that contains all the objects that are

common to all A ∈ F.

In symbols the definition reads:⋂
FDef

=
{
x : for all A,A ∈ F→ x ∈ A

}
(1)

(ii) the symbol
⋃
F denotes the class that contains all the objects that are

found among the various A ∈ F. That is, imagine that the members of
each A ∈ F are “emptied” into a single —originally empty— container
{. . .}. The class we get this way is what we denote by

⋃
F.

In symbols the definition reads (and I think it is clearer):⋃
FDef

=
{
x : for some A,A ∈ F ∧ x ∈ A

}
(2)

�

2.4.14 Example. Let F = {{1}, {1, {2}}}. Then emptying all the contents of
the members of F in some (originally) empty container we get

{1, 1, {2}} (3)

This is
⋃
F.

Would we get the same answer from the mathematical definition (2)? Of
course:
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2.4. Operations on classes and sets 19

1 is in some member of F, indeed in both of the members {1} and {1, {2}},
and in order to emphasise this I wrote two copies of 1 —it is empties/contributed
twice. Then {2} is the member that only {1, {2}} of F contributes.

What is
⋂
F? Well, only 1 is common between the two sets —{1} and

{1, {2}}— that are in F. So,
⋂
F = {1}. �

2.4.15 Exercise.

1. Prove that
⋃{

A,B
}

= A ∪B.

2. Prove that
⋂{

A,B
}

= A ∩B.

Hint. In each of part 1. and 2. show that lhs ⊆ rhs and rhs ⊆ lhs. For that
analyse membership, i.e., “assume x ∈ lhs and prove x ∈ rhs”, and conversely
(cf. 2.1.1 and 2.1.2.) �

2.4.16 Theorem. If the set F is a family of sets, then
⋃

F is a set.

Proof. Let F be built at stage Σ. Now,

x ∈
⋃

F ≡ x ∈

some
↓
A ∈ F

Thus x is available or built before A which is built before stage Σ since that
is when F was built. x being arbitrary, all members of

⋃
F are available/built

before Σ, so we can build
⋃
F as a set at stage Σ. �

2.4.17 Theorem. If the class F 6= ∅ is a family of sets, then
⋂
F is a set.

Proof. By assumption there is some set in F. Fix one such and call it D.
First note that

x ∈
⋂

F→ x ∈ D (∗)

Why? Because (1) of Definition 2.4.13 says that

x ∈
⋂

F ≡ for all A ∈ F we have x ∈ A

Well, D is one of those “A” sets in F, so if x ∈
⋂

F then x ∈ D. We estab-
lished (∗) and thus we established ⋂

F ⊆ D

by 2.1.1. We are done by 2.3.5. �
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20 2. Safe Set Theory

2.4.18� Remark. What if F = ∅? Does it affect Theorem 2.4.17? Yes, badly!
In Definition 2.4.13 we read⋂

FDef
=
{
x : for all A,A ∈ F→ x ∈ A

}
(∗∗)

However, as the hypothesis (i.e., lhs) of the implication in (∗∗) is false, the
implication itself is true. Thus the entrance condition “for all A,A ∈ F→ x ∈
A” is true for all x and thus allows ALL objects x to get into

⋂
F,

Thus
⋂
F = U, the universe of all objects which we saw that (cf. Section 2.2)

it is a proper class. � �

2.4.19 Exercise. What is
⋃
F if F = ∅? Set or proper class? Can you “com-

pute” which class exactly it is? �

2.4.20� Remark. (More notation)
Suppose the family of sets Q is a set of sets Ai, for i = 1, 2, . . . , n where

n ≥ 3.

Q = {A1, A2, . . . , An}

Then we have a few alternative notations for
⋂
Q:

(a)

A1 ∩A2 ∩ . . . ∩An

or, more elegantly,

(b)
n⋂

i=1

Ai

or also

(c) ⋂n

i=1
Ai

Similarly for
⋃
Q:

(i)

A1 ∪A2 ∪ . . . ∪An

or, more elegantly,

(ii)
n⋃

i=1

Ai

or also
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2.4. Operations on classes and sets 21

(iii) ⋃n

i=1
Ai

If the family has so many elements that all the natural numbers are needed to
index the sets in the set family Q we will write

∞⋂
i=0

Ai

or ⋂∞
i=0

Ai

or ⋂
i≥0

Ai

or ⋂
i≥0

Ai

for
⋂
Q and

∞⋃
i=0

Ai

or ⋃∞
i=0

Ai

or ⋃
i≥0

Ai

or ⋃
i≥0

Ai

for
⋃
Q � �

2.4.21 Example. Thus, for example, A∪B∪C∪D can be seeing —just chang-
ing the notation— as A1 ∪A2 ∪A3 ∪A4, therefore it means,

⋃
{A1, A2, A3, A4},

or
⋃
{A,B,C,D}.

Same comment for ∩. �

Pause. How come for the case for n = 2 we proved† A ∪ B =
⋃
{A,B}

(2.4.15) but here we say (n ≥ 3) that something like the content of the previous
remark and example are notation (definitions)?

Well, we had independent definitions (and associated theorems re set status
for each, 2.4.5 and 2.4.16) for A∪B and

⋃
{A,B} so it makes sense to compare

the two definitions after the fact and see if we can prove that they say the same
thing. For n ≥ 3 we opted to NOT give a definition for A1 ∪ . . . ∪ An that is
independent of

⋃
{A1 ∪ . . . ∪ An}, rather we gave the definition of the former

in terms of the latter. No independent definitions, no theorem to compare the
two!J

†Well, you proved! Same thing :-)
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22 2. Safe Set Theory

2.5. The powerset

2.5.1 Definition. For any set A the symbol P(A) —pronounced the powerset
of A— is defined to be the class

P(A)
Def
=
{
x : x ⊆ A

}
Thus we collect all the subsets x of A to form P(A).

The literature most frequently uses the symbol 2A in place for of P(A). �

� (1) The term “powerset” is slightly premature, but it is apt. Under the condi-
tions of the definition —A a set— 2A is a set as we prove immediately below.

(2) We said “all the subsets x of A” in the definition. This is correct. As
we know from 2.3.5, if X ⊆ Y and Y is a set, then so is X. �

2.5.2 Theorem. For any set A, its powerset P(A) is a set.

Proof. Let A be built at stage Σ. Then each of its members y are given or built
before Σ.

Thus, since every subset x of A is a set of y-values, every such subset x
can be built at stage Σ.

But then, just take any Σ′ > Σ. Since all x-values (such that x ⊆ A) are
built before Σ′, at stage Σ′ we can collect them all and build the set 2A. �

2.5.3 Example. Let A = {1, 2, 3}. Then

P(A) =
{
∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {3, 2}, {1, 2, 3}

}
Thus the powerset of A has 8 elements.

We will later see that if A has n elements, for any n ≥ 0, then 2A has 2n

elements. This observation is at the root of the notation “2A”. �

2.5.4 Remark. For any set A it is trivial (verify!) that we have ∅ ⊆ A and
A ⊆ A. Thus, for any A, {∅, A} ⊆ 2A. �
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2.6. The ordered pair and finite sequences 23

2.6. The ordered pair and finite sequences

To introduce the concepts of cartesian product —so that, in principle, plane
analytic geometry can be developed within set theory— we need an object
“(A,B)” that is like the set pair (2.3.1) in that it contains two objects, A and
B (A = B is a possibility), but in (A,B) order and length (here it is 2) matter!

We want (A,B) = (A′, B′) implies A = A′ and B = B′. Moreover,
(A,A) is not {A}! It is still an ordered pair but so happens that the
first and second component, as we call the members of the ordered
pair, are equal in this example.

� So, are we going to accept a new type of object in set theory? Not at all ! We
will build (A,B) so that it is a set! �

2.6.1 Definition. (Ordered pair) By definition, (A,B) is the abbreviation
(short name) given below:

(A,B)
Def
=
{
A, {A,B}

}
(1)

We call “(A,B)” an ordered pair, and A its first component, while B is its
second component. �

2.6.2� Remark.

1. Note that A 6= {A,B} and A 6= {A,A}, because in either case we would
otherwise get A ∈ A, which is false for sets or atoms A. Thus (A,B) does
contain exactly two members, or has length 2 : A and {A,B}.
Pause. We have not said in 2.6.1 that A and B are sets or atoms. So
what right do we have in the paragraph above to so declare?J

2. What about the desired property that

(A,B) = (X,Y )→ A = X ∧B = Y (2)

Well, assume the lhs of “→” in (2) and prove the rhs, “A = X∧B = Y ”.
From our truth table we know that we do the latter by proving each of
A = X and B = Y true (separately).

The lhs that we assume translates to{
A, {A,B}

}
=
{
X, {X,Y }

}
(3)

By the remark #1 above there are two distinct members in each of the
two sets that we equate in (3).

So since (3) is true (by assumption) we have (by definition of set equality)
one of:
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24 2. Safe Set Theory

(a) A = {X,Y } and {A,B} = X, that is, 1st listed element in lhs of
“=” equals the 2nd listed in rhs; and 2nd listed element in
lhs of “=” equals the 1st listed in rhs.

(b) A = X and {A,B} = {X,Y }.

Now case (a) above cannot hold, for it leads to A = {{A,B}, Y }. This in
turn leads to

{A,B} ∈ A

and thus the set {A,B} is built before of its member A, which contradicts
Principle 0.

Let’s then work with case (b).
We have

{A,B} = {A, Y } (4)

Well, all the members on the lhs must also be on the rhs. I note that A is.

• What if B is also equal to A? Then we have {B} = {A, Y } and thus
Y ∈ {B} (why?). Hence Y = B. We showed so far A = X (listed in case
(b)) and B = Y (proved here); great!

• Here B is not equal to A. But B must be in the rhs of (4), so the only
way is B = Y . All Done! � �

Worth noting as a theorem what we proved above:

2.6.3 Theorem. If (A,B) = (X,Y ), then A = X and B = Y .

But is (A,B) a set? (atom it is not, of course!) Yes!

2.6.4 Theorem. (A,B) is a set.

Proof. Now (A,B) =
{
A, {A,B}

}
. By 2.3.1, {A,B} is set. Applying 2.3.1 once

more,
{
A, {A,B}

}
is a set. �

2.6.5 Example. So, (1, 2) = {1, {1, 2}}, (1, 1) = {1, {1}}, and ({a}, {b}) =
{{a}, {{a}, {b}}}. �

2.6.6� Remark. We can extend the ordered pair to ordered triple, ordered
quadruple, and beyond!

We take this approach in these notes:

(A,B,C)
Def
=
(

(A,B), C
)

(1)

(A,B,C,D)
Def
=
(

(A,B,C), D
)

(2)
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2.6. The ordered pair and finite sequences 25

(A,B,C,D)
Def
=
(

(A,B,C), D
)

(3)

etc. So suppose we defined what an n-tuple is, for some fixed unspecified n, and
denote it by (A1, A2, . . . , An) for convenience. Then

(A1, A2, . . . , An, An+1)
Def
=
(

(A1, A2, . . . , An), An

)
(∗)

This is an “inductive” or “recursive” definition, defining a concept (n+1-tuple)
in terms of a smaller instance of itself, namely, in terms of the concept for an
n-tuple, and in terms of the case n = 2 that we dealt with by direct definition
(not in terms of the concept itself!) in 2.6.1.

Suffice it to say this “case of n + 1 in terms of case of n” provides just
shorthand notation to take the mystery out of the red “etc.” above. We con-
dense/codify infinitely many definitions (1), (2), (3), . . . into just two:

• 2.6.1

and

• (∗)

The reader has probably seen such recursive definitions before (likely in calculus
and/or high school).

The most frequent example that occurs is to define, for any natural number
n and any real number a > 0, what an means. One goes like this:

a0 = 1
an+1= a · an

The above condenses infinitely many definitions such as

a0= 1
a1= a · a0= a
a2= a · a1= a · a
a3= a · a2= a · a · a
a4= a · a3= a · a · a · a
...

into just two!
We will study inductive definitions and induction soon!

Before we exit this remark note that (A,B,C) = (A′, B′, C ′) implies A =
A′, B = B′, C = C ′ because it implies

C = C ′ and (A,B) = (A′, B′)

That is, (A,B,C) is an ordered triple (3-tuple).

Fragments of “safe” set theory; from the EECS 1028 lecture notes c© G. Tourlakis, W 2020.



26 2. Safe Set Theory

We can also prove that (A1, A2, . . . , An, An+1) is an ordered n + 1-tuple,
i.e.,

(A1, A2, . . . , An+1) = (A′1, A
′
2, . . . , A

′
n+1)→ A1 = A′1 ∧ . . . ∧An+1 = A′n+1

if we have followed the “etc.” all the way to the case of (A1, A2, . . . , An). We
will do the “etc.”-argument elegantly once we learn induction! � �

2.6.7 Definition. (Finite sequences) An n-tuple for n ≥ 1 is called a finite
sequence of length n, where we extend the concept to a one element sequence
—by definition— to be

(A)
Def
= A

�

� Note that now we can redefine all sequences of lengths n ≥ 1 using again (∗)
above, but this time with starting condition that of 2.6.7. Indeed, for n = 2 we
rediscover (A1, A2):

the “new” 2-tuple pair: (A1, A2)
by (∗)

=
(

(A1), A2

)
by 2.6.7 the “old”

=
(
A1, A2

)
The big red brackets are applications of the ordered pair defined in 2.6.1, just
as it was in the general definition (∗). �

2.7. The Cartesian product

We are ready to define classes of pairs.

2.7.1 Definition. (Cartesian product of classes) Let A and B be classes.
Then we define

A× BDef
=
{

(x, y) : x ∈ A ∧ y ∈ B
}

The definition requires both sides of × to be classes. It makes no sense if one
or both are atoms. �

2.7.2 Theorem. If A and B are sets, then so is A×B.

Proof. By 2.7.1 and 2.6.1

A×B =
{{

x, {x, y}
}

: x ∈ A ∧ y ∈ B
}

(1)

So, for each
{
x, {x, y}

}
∈ A × B we have x ∈ A and {x, y} ⊆ A ∪ B, or x ∈ A

and {x, y} ∈ 2A∪B . Thus
{
x, {x, y}

}
⊆ A∪2A∪B and hence (changing notation)

(x, y) ∈ 2A∪2
A∪B

.
We have established that

A×B ⊆ 2A∪2
A∪B

thus A×B is a set by 2.3.5, 2.4.5 and 2.5.2. �
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2.7.3 Definition. Mindful of the Remark 2.6.6 where
(

(A,B), C
)

,
(

(A,B,C), D
)

,

etc. were defined, we define here A1 × . . .×An for any n ≥ 3 as follows:

A×B × C
Def
= (A×B)× C

A×B × C ×D
Def
= (A×B × C)×D

...

A1 ×A2 × . . .×An ×An+1
Def
= (A1 ×A2 × . . .×An)×An+1

...

We may write
n×

i=1

Ai for A1 ×A2 × . . .×An

If A1 = . . . = An = B we may write Bn for A1 ×A2 × . . .×An. �

2.7.4 Remark. Thus, what we learnt in 2.7.3 is, in other words,

n×
i=1

Ai
Def
=
{

(x1, . . . , xn) : xi ∈ Ai, for i = 1, 2, . . . , n
}

and

Bn Def
=
{

(x1, . . . , xn) : xi ∈ B
}

�

2.7.5 Theorem. If Ai, for i = 1, 2, . . . , n is a set, then so is
n×

i=1

Ai.

Proof. A×B is a set by 2.7.2. By 2.7.3, and in this order, we verify that so
is A×B × C and A×B × C ×D and . . . and A1 ×A2 × . . .×An and . . . �

� If we had inductive definitions available already, then Definition 2.7.3 would
simply read

A1 ×A2
Def
=
{

(x1, x2) : x1 ∈ A1 ∧ x2 ∈ A2

}
and, for n ≥ 2,

A1 ×A2 × . . .×An ×An+1
Def
= (A1 ×A2 × . . .×An)×An+1

Correspondingly, the proof of 2.7.5 would be far more elegant, via induction. �
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