
Contents

1 Some Elementary Informal Set Theory 3
1.1 Russell’s “Paradox” . 9

2 Safe Set Theory 23
2.1 The “real sets” —Introduction to Stages . 28
2.2 What caused Russell’s paradox . 38
2.3 Some useful sets . 42
2.4 Operations on classes and sets . 55
2.5 The powerset . 61

3 The Ordered Pair and Cartesian Products 75
3.1 The Cartesian product . 83

4 Relations and functions 87
4.1 Relations . 89

4.1.1 Fields . 95
4.1.2 Totalness and Ontoness . 98
4.1.3 Diagonal or Identity and other Special Types of Relations 102

4.2 Relational Composition . 104
4.3 Transitive closure . 112
4.4 Equivalence relations . 120
4.5 Partial orders . 139

4.5.1 Preliminaries . 139
4.5.2 Definitions and Some Results . 144

5 Functions 171
5.1 Preliminaries . 172
5.2 Finite and Infinite Sets . 209
5.3 Diagonalisation and uncountable sets . 241

6 A Short Course on
Predicate (also called “First-Order”) Logic 253
6.1 Enriching our proofs to manipulate quantifiers . 256
6.2 Boolean Abstractions;

or How to Use Truth Tables inside 1st-Order Logic 267

Notes on Discrete MATH (EECS1028)© G. Tourlakis

2 CONTENTS

6.3 Proofs and Theorems . 275
6.4 Proof Examples . 292
6.5 Induction . 315
6.6 Induction Practice . 324

7 Inductively defined sets; Structural induction 333
7.1 Inductively Defined Sets . 335

Notes on Discrete MATH (EECS1028)© G. Tourlakis

Chapter 1

Some Elementary Informal Set
Theory

Sep. 6, 2024

Set theory is due to Georg Cantor.

• “Elementary” in the title above does not apply to the body of his
work, since he went into considerable technical depth in this, his
new theory.

• It applies however to our coverage as we are going to restrict our-
selves to elementary topics only.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

4 1. Some Elementary Informal Set Theory

� Cantor made several technical mistakes in the process of developing
set theory. The next section is about the easiest to explain and most
fundamental of his mistakes. �

Notes on Discrete MATH (EECS1028)© G. Tourlakis

5

� How come he made mistakes? �

Actually “mistake” is too kind a term. We are talking here about
contradictions —real “BLUNDERS”.

And you need just ONE to make ANY theory USELESS (because
it becomes “blind”).

Notes on Discrete MATH (EECS1028)© G. Tourlakis

6 1. Some Elementary Informal Set Theory

How can a theory be so ill-formed?

Well, the set theory of Cantor’s —unlike Euclid’s Geometry 2000
years earlier— was not based on axioms and rigid rules of reasoning.

� That’s how.

Guess what: Euclidean Geometry leads to no contradictions. �

Notes on Discrete MATH (EECS1028)© G. Tourlakis

7

� � DIGRESSION. “But doing mathematics by axioms AND rules of
logic was not enacted seriously until after the efforts of David Hilbert
in 1930s”, you say.

Well, yes, and “bees cannot possibly fly”. Yet, Euclid did so (logi-
cally) fly —correctly— ca. 300BC (maybe he knew Doctor Who?)

Notes on Discrete MATH (EECS1028)© G. Tourlakis

8 1. Some Elementary Informal Set Theory

The problem with Cantor’s set theory is in the conjunction of TWO
omissions

1) He never delved into the question what IS a set?
2) He did not use any logical reasoning while Euclid did.

Issue 1) is not so serious or even an issue at all IF the “nature”
of the mathematical objects you are describing is determined by their
axioms:

FOR EXAMPLE: You don’t have to define straight line if you give
instead an axiom that says “from two distinct points passes exactly one
line”! That was the approach of Euclid’s.

Modern axiomatic set theory puts all its bets in issue 2 with enough
axioms that the nature of sets we want to talk about jumps out of. � �

Notes on Discrete MATH (EECS1028)© G. Tourlakis

1.1. Russell’s “Paradox” 9

1.1. Russell’s “Paradox”

Bertrand Russell addressed the matter of the nature of sets explicitly,
which only needs logic at the level that any mathematician without
training in logic uses.

He famously salvaged set theory by saying “let us accept that the
sets we are interested in are formed by stages; they do not just
happen”.

� It is astounding that one of the contradictions of Cantor’s set theory
is so simple that you can teach it to a first year class on discrete math.

And remember that you need only ONE contradiction to destroy a
theory. �

Notes on Discrete MATH (EECS1028)© G. Tourlakis

10 1. Some Elementary Informal Set Theory

Cantor’s set theory is the theory of collections (i.e., sets) of objects,
as we mentioned above, terms that were neither defined nor was it said
how they were built.†

This theory studies operations on sets, properties of sets, and aims to
use set theory as the foundation of all mathematics . Naturally, math-
ematicians “do” set theory of mathematical object collections —not
collections of birds and other beasts.

†This is not a problem in itself. Euclid too did not say what points and lines were; but his axioms did characterise
their nature and interrelationships: For example, he started from these (among a few others) a priori truths (axioms):
a unique line passes through two distinct points; also, on any plane, a unique line l can be drawn parallel to another
line k on the plane if we want l to pass through a given point A that is not on k.

The point is:

� You cannot leave out both what the nature of your objects is and how they behave/interrelate and get away with it!
Euclid omitted the former but provided the latter, so all worked out. �

Notes on Discrete MATH (EECS1028)© G. Tourlakis

1.1. Russell’s “Paradox” 11

We have learnt some elementary aspects of set theory at high school.
We will learn more in this course.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

12 1. Some Elementary Informal Set Theory

Set Theory (Like Algebra) has

1. Variables. Like any theory, informal or not, informal set theory
—a safe variety of which we will develop here— uses variables just
as algebra does. There is only one type of variable that varies
over set and over atomic objects too, the latter being objects that
have no set structure. For example integers. We use the names
A,B,C, . . . and a, b, c, . . . for such variables, sometimes with primes
(e.g., A′′) or subscripts (e.g., x23), or both (e.g., x′′′22, Y

′
42).

Notes on Discrete MATH (EECS1028)© G. Tourlakis

1.1. Russell’s “Paradox” 13

2. Notation. Sets given by listing. For example, {1, 2} is a set that
contains precisely the objects 1 and 2, while

{
atom︷︸︸︷
1 ,

set︷ ︸︸ ︷
{1, 2}}

is a set that contains precisely the objects 1 and {1, 2}. The braces
{ and } are used to show the collection/set by outright listing.

So you can display small sets by listing, as in,

{1, {2, 3, 4}, 5, {{6}}, 7, {8, {9}}}

We can do better than that, in the area of notation, although a
warning is fair: The “other notation” (see below) gave a lot of grief
to Cantor.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

14 1. Some Elementary Informal Set Theory

3. (The “Other”) Notation. Sets given by “defining property”.
But what if we cannot (or will not) explicitly list all the members
of a set?

Then we may define what objects x get in the set/collection by
having them to pass an entrance requirement, P (x):

An object x gets in the set iff (if and only if) P (x)
is true of said object.

“iff” means the same thing as “is equivalent to” or “means the
same thing as”.

“x is in {x : P (x)}” is equivalent to saying “P (x) is true”.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

1.1. Russell’s “Paradox” 15

We denote the collection/set† defined by the entrance condition
P (x) by

{x : P (x)} (1)

but also as
{x |P (x)} (1′)

reading it “the set of all x such that (this “such that” is the “:” or
“|”) P (x) is true [or holds]”

{x : x = x} {x : x /∈ x}

†We have not yet reached Russell’s result, so keeping an open mind and humouring Cantor we still allow him (us
following) to call said collection a “set”.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

16 1. Some Elementary Informal Set Theory

4. “x ∈ A” is the assertion that “object x is in the set A”. Of course,
this assertion may be true or false or “it depends”, just like the
assertions of algebra 2 = 2, 3 = 2 and x = y are so (respectively).

5. x /∈ A is the negation of the assertion x ∈ A.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

1.1. Russell’s “Paradox” 17

6. Properties

• Sets are named by letters of the Latin alphabet (cf. Variables,
above).

Naming is pervasive in mathematics as in, e.g., “let x = 5” in
algebra.

So we can write “let A = {1, 2}” and let “c = {1, {1, 5, 6}}”
to give the names A and c to the two example sets above, os-
tensibly because we are going to discuss these sets, and refer
to them often, and it is cumbersome to keep writing things like
{1, {1, 5, 6}}.

Names are not permanent;† they are local to a discussion (ar-
gument).

†OK, there are exceptions: ∅ is the permanent name for the empty set —the set with no elements at all— and
for that set only; N is the permanent name of the set of all natural numbers.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

18 1. Some Elementary Informal Set Theory

• Equality of sets (repetition and permutation do not matter!)

Two sets A and B are equal iff they have the same mem-
bers. Thus order and multiplicity do not matter! E.g., {1} =
{1, 1, 1}, {1, 2, 1} = {2, 1, 1, 1, 1, 2}.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

1.1. Russell’s “Paradox” 19

• Here is the fundamental equivalence pertaining to definition of
sets by “defining property”:

So, if we name the set in (1) above (p.15), S, that is, if we say
“let S = {x : P (x)}”, then “x ∈ S iff P (x) is true”

� By the way, we almost never say “is true” unless we want to
shout out this fact.

We would simply say instead:

x ∈ S iff P (x) (†)

Equipped with the knowledge of the previous bullet, we see
that the symbol {x : P (x)} defines a unique set/collection:
Well, say A and B are so defined, that is, A = {x : P (x)} and
B = {x : P (x)}. Thus

x ∈ A
A={x:P (x)}

iff P (x)
B={x:P (x)}

iff x ∈ B

thus
x ∈ A iff x ∈ B

and thus A = B. �

Notes on Discrete MATH (EECS1028)© G. Tourlakis

20 1. Some Elementary Informal Set Theory

Let us pursue, as Russell did, the point made in the last bullet above.
Take P (x) to be specifically the mathematical assertion x /∈ x. He then
gave a name to

R = {x : x /∈ x}
say, R. But then, by the last bullet above, in particular, the equivalence
(†),

x ∈ R iff x /∈ x (2)

If we now believe,b as Cantor did, that every P (x) defines a set,
then R is a set.

bInformal mathematics often relies on “I know so” or “I believe” or “it is ‘obviously’ true”. Some people
call “proofs” like this —i.e., “proofs” without justification(s)— “proofs by intimidation”. Nowadays, with the
ubiquitousness of the qualifier “fake”, one could also call them “fake proofs”.

� What is wrong with that? �

Well, if R is a set then this object has the proper type to be as-
signed (or be given as “value”) into the variable of type “math object”,
namely, x, throughout the equivalence (2) above. But this yields the
contradiction

R ∈ R iff R /∈ R (3)

This contradiction is called the Russell’s Paradox.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

1.1. Russell’s “Paradox” 21

� The following is the “traditional” way to give an exposition of Russell’s
argument in the literature. That is, having defined

R = {x : x /∈ x}

and thinking it to be a set, one asks:

• Is R ∈ R? An a priori legitimate question since R is a set of
MATH objects and R is such an object.

Well, if yes, then it satisfies the entrance condition R /∈ R. A
contradiction!

• OK, assume then the opposite of what we assumed in the above
bullet, namely, R /∈ R. But then R satisfies the entrance condition!
So R gets in! We have R ∈ R. A contradiction!

So both “R /∈ R” and “R ∈ R” are false (and hence both are true!∗)
A mind boggling very very very bad situation! �

∗If R ∈ R is false then R /∈ R is true. But we concluded R /∈ R iff R ∈ R.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

22 1. Some Elementary Informal Set Theory

This and similar paradoxes motivated mathematicians to develop
formal symbolic logic and look to axiomatic set theory† as a means to
avoiding paradoxes like the above.

Other mathematicians who did not care to use mathematical logic
and axiomatic theories found a way —following Russell— to do set
theory informally, yet safely.

They asked and answered “how are sets formed?”‡

Read on!

†There are many flavours or axiomatisations of set theory, the most frequently used being the “ZF” set theory,
due to Zermelo and Fraenkel.

‡Actually, axiomatic set theory —in particular, its axioms are— is built upon the answers this group came up
with. This story is told at an advanced level in [Tou03b].

Notes on Discrete MATH (EECS1028)© G. Tourlakis

Chapter 2

Safe Set Theory

Sep. 9, 2024

� So, some collections of sets and/or atoms are NOT —technically—
sets, as the Russell Paradox taught us! How do we tell them apart? �

From now on we will deal with collections that may or may not be
sets, with a promise of learning how to create sets if we want to!

The modern literature uses the terminology “class” for any such
potentially NON SET collection of sets and/or atoms (and uses
the term “collection” non technically and sparsely).

Notes on Discrete MATH (EECS1028)© G. Tourlakis

24 2. Safe Set Theory

The above is captured by the following picture:

All Classes

All Sets

All Proper Classes
(nonSets)

So some classes are proper (NON sets) and some are not (i.e., ARE
sets).

So every set is a class but NOT the other way around!

Notes on Discrete MATH (EECS1028)© G. Tourlakis

25

2.0.1 Definition. (Classes and sets)
From now on we call all collections classes.

Definitions by defining property like “Let A = {x : P (x)}”, where
x is a set/atom-type variable, always define a class, but as we saw,
sometimes —e.g., as we saw when “P (x)” is specifically “x /∈ x”—
that class is not a set (Section 1.1).

Classes that are not sets are called proper classes.

The “property” x /∈ x is not “cursed”! Infinitely many properties
define PROPER classes. As we will shortly see, the property
“x = x” defines a proper class too.

We will normally use what is known as “blackboard bold” notation
and capital latin letters to denote classes by names such as A,B,X. If
we determine that some class A is a set, we would rather write it as
A, but we make an exception for the following sets:

The set of natural numbers, N (also denoted by ω), integers Z,
rationals Q, reals R and complex numbers C. □

Notes on Discrete MATH (EECS1028)© G. Tourlakis

26 2. Safe Set Theory

2.0.2 Example. By the Definition just given, ifR is the Russel (proper)
class, then the configuration

{R}
is not allowed —it is meaningless.

Because ALL classes are collections of atoms and sets only. We
never said that it is OK, and will NEVER allow, proper classes as
MEMBERS of classes!

Of course Cantor would not care (or know, before Russell published
his result) and allow {R} and even this

{{{R}}, R}

because in his set theory ALL collections were “sets” or “classes” or
“aggregates” or . . . (just give me a Dictionary!) □

Notes on Discrete MATH (EECS1028)© G. Tourlakis

27

� In forming the class {x : P (x)} for any property P (x) we say that we

apply comprehension.

It was the Frege/Cantor “belief” (explicitly or implicitly) that com-
prehension was safe —i.e., they believed that {x : P (x)} always was a
set. We saw that Russell proved that it was not. �

Notes on Discrete MATH (EECS1028)© G. Tourlakis

28 2. Safe Set Theory

2.1. The “real sets” —Introduction to Stages

So, how can we tell, or indeed guarantee, that a certain class is a set?

Russell proposed this “recovery” from his Paradox:

�

Make sure that sets are built by stages, where at stage 0 all atoms
are available.

�

Stage 1
{1}
N

{all atoms}
. . . We may then collect atoms to form all sorts of “first level” sets. We
may proceed to collect any mix of atoms and first-level sets to build
new collections —second-level sets— and so on.

Much of what set theory does is attempting to remove any ambiguity
from this “and so on”. See below, Principles 0–2.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

2.1. The “real sets” —Introduction to Stages 29

Thus, at the beginning we have all the level-0, or type-0, objects
available to us. For example, atoms such as 1, 2, 13,

√
2 are available.

At the next level we can includes any number of such atoms (from
none at all, to all) to build a set, that is, a new mathematical object.

Allowing the usual notation, i.e., listing of what is included within
braces, we may cite a few examples of level-1 sets:

L1-1. {1}.

L1-2. N.

L1-3. {1,−1}.

L1-4. {1,
√
2}.

L1-5. {
√
2, 1}.

L1-6. N,Z,Q,R,C.

We already can identify a level-2 object, using what (we already
know) is available:

L2-1. {{
√
2, 1}, 42}.

� Note how the level of nesting of { }-brackets matches the level or stage
of the formation of these objects! �

Notes on Discrete MATH (EECS1028)© G. Tourlakis

30 2. Safe Set Theory

2.1.1 Definition. (Class and set equality —again) This definition
applies to any classes, hence, in particular, to any sets as well.

Two classes A and B are equal —written A = B— means

x ∈ A iff x ∈ B (1)

That is, an object is in A IF it is also in B. And, an object is in
B IF it is also in A.

A is a subclass of B —written A ⊆ B— means that every element
of the first (left) class occurs also in the second, or

If x ∈ A, then x ∈ B (2)

If A is a set, then we say it is a subset of B.

If we have A ⊆ B but A ̸= B, then we write A ⫋ B (some of the
literature uses A ⊊ B or even A ⊂ B instead) and say that A is a
proper subclass of B.

� Caution. In the terminology “proper subclass” the “proper” refers to
the fact that A is not all of B. It does NOT say that A is not a set!
It may be a set and then we say that it is a “proper subset” of B □ �

Notes on Discrete MATH (EECS1028)© G. Tourlakis

2.1. The “real sets” —Introduction to Stages 31

� If n is an integer-valued variable, then what do you understand by the
statement “2n is even”?

The normal understanding is that “no matter what the value of n
is, 2n is even”, or “for all values of n, 2n is even”.

When we get into our logic topic in the course we will see that we
can write “for all values of n, 2n is even” with less English as “(∀n)(2n
is even)”. So “(∀n)” says “for all (values of) n”.

Mathematicians often prefer to have statements like “2n is even”
with the “for all” only implied.† You can write a whole math book
without writing ∀ even once, and without overdoing the English.

Thus in (1) and (2) above the “for all x” is implied.
For example, this is the intend in the formulas x ∈ A→ x ∈ B and

x ∈ A ≡ x ∈ B.

But in “Let x ∈ A” we speak of an unspecified FIXED value of x.

�

†An exception occurs in Induction that we will study later, where you fix an n (but keep it as a variable of an
unspecified fixed value; not as 5 or 42) and assume the “induction hypothesis” P (n). But do not worry about this
now!

Notes on Discrete MATH (EECS1028)© G. Tourlakis

32 2. Safe Set Theory

2.1.2 Remark. Since “iff” or “≡” between two statements S1 and S2

means that we have both directions —boxed statement in 2.1.1,

If S1, then S2

and
If S2, then S1

we have that “A = B” is the same as (equivalent to) “A ⊆ B and
B ⊆ A” (2.1.1).

This is because (1) in 2.1.1 means x ∈ A → x ∈ B AND x ∈ B →
x ∈ A. □

Notes on Discrete MATH (EECS1028)© G. Tourlakis

2.1. The “real sets” —Introduction to Stages 33

2.1.3 Example. In the context of the “A = {x : P (x)}” notation we
should remark that notation-by-listing can be simulated by notation-
by-defining-property: For example, {a} = {x : x = a} —here “P (x)”
is x = a.

Also {A,B} = {x : x = A or x = B}. Let us verify the latter: Say
x ∈ lhs.† Then x = A or x = B. But then the entrance requirement
of the rhs‡ is met, so x ∈ rhs.

Conversely, say x ∈ rhs. Then the entrance requirement is met so
we have (at least) one of x = A or x = B (“true” implied).

Trivially, in the first case x ∈ lhs and ditto for the second case. □

†Left Hand Side.
‡Right Hand Side.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

34 2. Safe Set Theory

Sep. 11, 2024

We now postulate the principles of formation of sets!

Principle 0.

Sets are formed by STAGES.

At stage 0 we have the presence of ALL atoms. They are given
outright, they are not built.

At any stage Σ we are allowed to build a set, collecting together
other mathematical objects (sets or atoms) provided (iff) ALL
these (mathematical) objects that we put into our set were ALL
available at stages BEFORE Σ.

Conversely, if x is in a SET y, then there is NO way for this but
that x was built or available BEFORE the stage where we built y.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

2.1. The “real sets” —Introduction to Stages 35

Principle 1. EVERY set is built at SOME stage. Thus, a set
does not just happen!

Principle 2. If Σ is a stage of set construction, then there IS a
stage Φ after it.

� We can write this as “Σ < Φ”. �

Notes on Discrete MATH (EECS1028)© G. Tourlakis

36 2. Safe Set Theory

� Principle 2 makes clear that we have infinitely many stages of set for-
mation in our toolbox.

“Clear”? How clear? Exercise!

Can you argue that informally? (Exercise! Hint. Combine Prop-
erty 2 statement with a “what if”: What if there are only finitely many
stages? and go for a contradiction from the what if. Use the “obvious”
properties of < between stages that we postulate below.)

Incidentally the property of a stage being “before” another is exactly
like “<” on the integers:

1. For any two integers n,m the statement “n = m or n < m or
m < n” is true.

2. We cannot have n < n, for any n (this is the “irreflexivity” of “<”).

3. If we have n < m and m < r, then we also have n < r (this is the
“transitivity” of “<”).

For stages,

Using “<” as short for “lhs comes before rhs”, then

1′. For any two stages Σ and Σ′ the statement “Σ = Σ′ or Σ < Σ′ or
Σ′ < Σ” is true.

2′. We cannot have that Σ is before (or after) Σ, for any Σ.

3′. If we have Σ < Σ′ and Σ′ < Σ′′, then Σ < Σ′′.

�

Notes on Discrete MATH (EECS1028)© G. Tourlakis

2.1. The “real sets” —Introduction to Stages 37

2.1.4 Remark. If some set is definable (“buildable”) at some stage Σ,
then it is also definable at any later stage as well, as Principle 0 makes
clear.

The informal set-formation-by-stages Principle will guide us to
build, safely, all the sets we may need in order to do mathematics.

□

Notes on Discrete MATH (EECS1028)© G. Tourlakis

38 2. Safe Set Theory

2.2. What caused Russell’s paradox

How would the set-building-by-stages doctrine avoid Russell’s para-
dox?

� Recall that à la Cantor we get a paradox (contradiction, actually) be-
cause we insisted to believe that ALL expressions {x : P (x)} denote
sets, that is, following Cantor we “believed” (we just pretended!) —for
a short moment— that Russell’s “R” was a set. �

Principles 0–2 allow us to know a priori that R is a proper class.
BEFORE any contradiction occurs!

How so?

OK, FIRST let us ask and explore: is x ∈ x true or false? Is there
any mathematical object x —say, A— for which it is true?

A ∈ A? (1)

1. Well, for atom A, (1) is false since atoms have no set structure,
that is, they do NOT contain ANY objects: An atom A cannot
contain anything, in particular it cannot contain A.

2. What if A is a set and A ∈ A? Then in order to build A, the set
on the rhs, we have to wait until after its member, A —the set
on the lhs— is built (Principle 0). So, we need (the left) A to be
built BEFORE (the right) A in (1).

Notes on Discrete MATH (EECS1028)© G. Tourlakis

2.2. What caused Russell’s paradox 39

Absurd!

So (1) is false. A being arbitrary, we have just demonstrated that

x ∈ x is false (for all x that are sets or atoms).

thus x /∈ x is true (for all x) —just like x = x is— therefore R of
Section 1.1 is equal to U —they both have as “entrance condition” a
property that is always true: We could write R = U = {x : t}.

By U we denote the universe of all sets and atoms.

R = U = {x : x = x}

So?

SECOND,

So here is why we know that U —that is, R— is not a set. Well,
if it is, then

• U ∈ U since the rhs contains EVERYTHING, in particular, con-
tains

all sets and we assumed the lhs to be a set, so it is included in
rhs as a member!

• but we just saw that the above is false if U is a set!

So U, aka R, is a proper class. Thus, the fact that R is not a set is
neither a surprise, nor paradoxical. It is just a proper class as we just
have recognised WITHOUT REPEATING Russell’s ARGUMENT.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

40 2. Safe Set Theory

BTW,
A class A is proper iff we have NO stage left to build it (Principles

0 and 1).
Intuitively then if we ran out of stages building A it means that

there are far too many elements in A —that is, this class is “enor-

mous”, as indeed U =
{
x : x = x

}
is.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

2.2. What caused Russell’s paradox 41

� Often the informal (and sloppy) literature on sets will blame “size” for
a class failing to be a set. That is dangerous. Lack of set status must
be connected with lack of a stage at which to build said class as a set.

Incidentally not all “LARGE” classes contain “everything”. We will
see later that if we remove ALL atoms from U, then what remains is
a proper class too.

So is S = {{x} : x ∈ U}: The class of all 1-element sets. It is much
smaller than U: No 2-element sets, no 3-element sets, no infinite set
objects in S either! Yet . . . �

Notes on Discrete MATH (EECS1028)© G. Tourlakis

42 2. Safe Set Theory

2.3. Some useful sets

2.3.1 Example. (Pair) By Principles 0, 1, if A and B are sets or
atoms, then let A be available at stage Σ and B at stage Σ′.

There are just two cases (just two? Why?)

By Principle 2 take a new Σ′′ > Σ′ in each case below.

Case 1. Σ < Σ′. Then also Σ < Σ′′ by transitivity. So both A and B
are built or available BEFORE Σ′′ and we can build (Princ.
0!) {A,B} as a SET at stage Σ′′.

Case 2. Σ = Σ′. As before, by Principle 2, we take Σ′′ > Σ′.

But then also Σ < Σ′′ (Why?)

So both A and B are built or available BEFORE stage Σ′′ and
we can build (Princ. 0!) {A,B} as a SET at stage Σ′′. □

Pause. We call {A,B} the “(unordered) Pair”

Why “unordered”? See 2.1.1.◀

Notes on Discrete MATH (EECS1028)© G. Tourlakis

2.3. Some useful sets 43

We have just proved a theorem above:

2.3.2 Theorem. If A,B are sets or atoms, then {A,B} is a set.

2.3.3 Exercise. Without referring to stages in your proof, prove that
if A is a set or atom, then {A} is a set. □

Notes on Discrete MATH (EECS1028)© G. Tourlakis

44 2. Safe Set Theory

Sep. 13, 2024

2.3.4� Remark. A very short digression into Boolean Logic —
for now. It will be convenient to use truth tables to handle many
simple situations that we will encounter where “logical connectives”
such as “not”, “and”, “or”, “implies” and “is equivalent” enter into
our arguments.

We will put on record here how to compute things such as the
true/false value —called “truth-value”— of “S1 and S2”, “S1 or S2”,
etc., where S1 and S2 stand for two arbitrary statements of mathemat-
ics.

In the process we will introduce the mathematical symbols for “and”,
“implies”, etc.

The symbol translation table from English to symbol, and back, is:

NOT ¬
AND ∧
OR ∨

IMPLIES (IF. . . ,THEN) →
IS EQUIVALENT ≡

Notes on Discrete MATH (EECS1028)© G. Tourlakis

2.3. Some useful sets 45

The truth table below has a simple reading. For all possible truth
values —true/false, in short t/f— of the “simpler” statements S1 and
S2 we indicate the computed truth value of the compound (or “more
complex)” statement that we obtain when we apply one or the other
Boolean connective —I also call this “glue” in my logic course :)—
of the previous table to S1 and S2.

Table 2.1: Truth Tables

S1 S2 ¬S1 S1 ∧ S2 S1 ∨ S2 S1 → S2 S1 ≡ S2 S2 → S1

f f t f f t t t
f t t f t t f f
t f f f t f f t
t t f t t t t t

Notes on Discrete MATH (EECS1028)© G. Tourlakis

46 2. Safe Set Theory

Comment. All the computations of truth values satisfy our intu-
ition, with the possible —but not necessary— exception for “→”:

Indeed, ¬ flips the truth value as it should, ∧ is eminently consis-
tent with common sense, ∨ is the “inclusive or” —“this is true or
the other is true OR both”— of the mathematician, and ≡ is just
equality on the set {f , t}, as it should be: we have S1 ≡ S2 true
EXACTLY IF both Si are t or both are f.

The “problem” with→ is that there is no NECESSARILY causality
from left to right.

The “obvious” entry seems to be for t→ f . The outcome should be
false for a “bad implication”† and so it is.

But look at it this way:

• Implication is supposed to preserve truth —from the tail of → to
its head— in proofs.

But it does do just that! Just look at → truth column!

• This version of → goes way back to Aristotle. It is the version
used by the vast majority of practising mathematicians and is nick-
named “material implication” or “classical implication”.

†A bad implication has a true premise but a false conclusion. A correct implication ought to preserve truth!

Notes on Discrete MATH (EECS1028)© G. Tourlakis

2.3. Some useful sets 47

Sep. 16, 2024

• The “Intuitionists” (founder of Intuitionistic Logic was Kronecker†)
reject the classical implication. In S → S ′ they want the meaning
to be “from a proof of S a proof of S ′ must be constructed”. They
also reject the so-called “excluded middle theorem”.

S ∨ ¬S (1)

For example, while we can prove (classically) “there are irrational
numbers a, b such that ab is rational”, the Intuitionists reject our proof!

2.3.5 Theorem. There are irrational a and b such that ab is rational.

Proof. Take a =
√
2 and b =

√
2. There are two cases:

1. Case where THIS ab is rational. Done.

2. Case where THIS ab is irrational.

Well, change our choices: Take a =
√
2
√
2
and b =

√
2. By the case

we are in a is irrational and, of course, so is b. Consider

ab =
(√

2

√
2
)√2

=
√
2
(
√
2
√
2)
=
√
2
2
= 2, RATIONAL again!

Done. □

What Intuitionists cannot/will not do? Our cases! For them
(1) —used in our two cases— above is NOT a theorem. NOT
acceptable.

†Books on Intuitionistic Logic exist. One that has a long chapter on the subject is [Sch77] but it is not “accessible”
to 1st year undergraduates.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

48 2. Safe Set Theory

Practical considerations. Thus

1. if you want to demonstrate that S1∨S2 is true, for any component
statements S1, S2, then show that at least one of the S1 and S2 is
true.

2. If you want to demonstrate that S1 ∧ S2 is true, then show that
both of the S1 and S2 are true.

Note, incidentally, the if we know that S1 ∧ S2 is true, then the
truth table guarantees that each of S1 and S2 must be true.

3.

If now you want to show the implication S1 → S2 is true, then
the ONLY real work is required towards showing that
if we assume S1 is true, then S2 is true too.

If S1 is known to be false, then no work is required to prove
the implication because of the first two lines of the truth table!!

�

4. If you want to show S1 ≡ S2, then —since the last three columns

show that this is computed with the same result as
(
S1 → S2

)
∧(

S2 → S1

)
— it follows that you just have to compute and “show”

that each of the two implications S1 → S2 and S2 → S1 is true. �

Notes on Discrete MATH (EECS1028)© G. Tourlakis

2.3. Some useful sets 49

Priorities and Bracketing. Priority order is

¬,∧,∨,→,≡

How do I compute 2 + 3× 4?

Analogously, A∨B ∧C says A∨ (B ∧C), ¬A∨B says (¬A)∨B,
A ≡ B ≡ C says A ≡ (B ≡ C), A→ B → C says A→ (B → C),
A ∨B ∨ C says A ∨ (B ∨ C) (right associativity).

An important variant of → and ≡

Pay attention to this point since almost everybody gets it
wrong! In the literature and in the interest of creating a usable
shorthand many practitioners of mathematical writing use sloppy
notation

S1 → S2 → S3 (1)

attempting to convey the meaning

(S1 → S2) ∧ (S2 → S3) (2)

Alas, (2) is not the same as (1)! But what about writing a < b <

c for a < b ∧ b < c? That is wrong too!

Back to →-chains like (1) vs. chains like (2):

Take S1 to be t (true), S2 to be f and S3 to be t. Then (1) is
true because in a chain using the same Boolean connective we put
brackets from right to left : (1) says S1 → (S2 → S3) and evaluates
to t, while (2) evaluates clearly to false (f) since S1 → S2 = f and

Notes on Discrete MATH (EECS1028)© G. Tourlakis

50 2. Safe Set Theory

S2 → S3 = t.

So we need a special symbol to denote (2) “economically”. We
need a conjunctional implies ! Most people use “=⇒” for that:

S1 =⇒ S2 =⇒ S3 (3)

that means, by definition, (2) above.

Similarly,
S1 ≡ S2 ≡ S3 (4)

isNOT conjunctional. It is not two equivalences —two statements—
connected by an implied “∧”, rather it says

S1 ≡ (S2 ≡ S3)

ONE formula, ONE statement.

Now if S1 = f , S2 = f and S3 = t, then (4) evaluates as t but the
conjunctional version

(S1 ≡ S2) ∧ (S2 ≡ S3) (5)

evaluates as f since the second side of ∧ is f .

So how do we denote (5) correctly without repeating the consecu-
tive S2’s and omitting the implied “∧”? This way:

S1 ⇐⇒ S2 ⇐⇒ S3 (4)

By definition, “⇐⇒” —just like “iff”— is conjunctional: It applies
to two statements —Si and Si+1— only and implies an ∧ before
the adjoining next similar equivalence. □ �

Notes on Discrete MATH (EECS1028)© G. Tourlakis

2.3. Some useful sets 51

2.3.6 Theorem. (The subclass theorem) Let A ⊆ B (B a set).
Then A is a set.

Proof. Well, B being a set it is built at some state Σ (Principle 1).

By Principle 0, ALL members of B are available or built before
stage Σ.

But by A ⊆ B, ALL the members of A TOO are among those of B.

So all members of A are built/available BEFORE stage Σ.

Hey! By Principle 0 we can build A at stage Σ as a set. □

In particular, we have just seen that if A ⊆ B, then A can be
built at the SAME STAGE AS B.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

52 2. Safe Set Theory

Some corollaries are very useful:

2.3.7 Corollary. (Important!) If B is built at stage Σ then EACH
of its subclasses can be built at stage Σ as well.

2.3.8 Corollary. (Modified comprehension I) If for all x we have

P (x)→ x ∈ A (1)

for some SET A, then it is SAFE to build

B = {x : P (x)} (†)

as a SET. No funny business with the condition “P (x)”.

Proof. I will show that B ⊆ A, that is,

x ∈ B→ x ∈ A (2)

Let’s do the above in two implication steps using the conjunctional
implication “⇒”:

x ∈ B by (†)⇒ P (x)
by (1)⇒ x ∈ A (3)

(3) proves (2). □

2.3.9 Corollary. (Modified comprehension II) If A is a set, then
so is B = {x : x ∈ A ∧ P (x)} for any property P (x).

Proof. The “

Q(x)︷ ︸︸ ︷
x ∈ A ∧ P (x)” is our “entrance condition Q(x)” here, and

if Q(x) is true then so is x ∈ A —that is, Q(x)→ x ∈ A is true

Done by 2.3.8. □

Notes on Discrete MATH (EECS1028)© G. Tourlakis

2.3. Some useful sets 53

2.3.10� Remark. (The empty set) The class E = {x : x ̸= x} has
no members at all; it is empty. Why? Because

x ∈ E ≡ x ̸= x

but the condition x ̸= x is always false, therefore so is the statement

x ∈ E (1)

We do not collect anything into E. Is the class E a set?

Well, take A = {1}. This is a set as the atom 1 is given at stage 0,
and thus we can construct the set A at stage 1.

Note that, by (1) and 3 in 2.3.4 we have that the implication below

f︷ ︸︸ ︷
x ∈ E →︸︷︷︸

t

x ∈ {1}

is true (for all x). That is, E ⊆ {1}.

By 2.3.6, E is a set.

But is it unique so we can justify the use of the definite article “the”?

Yes. The specification of an empty set is a class with no members.
So if D is another empty set, then we will also have x ∈ D always
false. But then

f︷ ︸︸ ︷
x ∈ E ≡︸︷︷︸

t

f︷ ︸︸ ︷
x ∈ D

and we have E = D by 2.1.1.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

54 2. Safe Set Theory

The unique empty set is denoted by the symbol ∅ in the literature.

Never-ever use “{}” for the empty set. This incorrect notation is
used —as everything else sloppy and wrong— in fake math news! □ �

Notes on Discrete MATH (EECS1028)© G. Tourlakis

2.4. Operations on classes and sets 55

2.4. Operations on classes and sets

Sep. 18, 2024

The reader probably has seen before (perhaps in calculus) the oper-
ations on sets denoted by ∩,∪,− and others. We will look into them
in this section.

2.4.1 Definition. (Union of two classes) We define for any classes
A and B

A ∪ BDef
=

{
x : x ∈ A ∨ x ∈ B

}
We call the operator ∪ union and the result A∪B the union of A and B.

It is meaningless to have ∪ operate on atoms. □

2.4.2 Theorem. For any sets A and B, A ∪B is a set.

Proof. By assumption —“sets”, we assumed!— say, A is built at stage
Σ while B is built at stage Σ′.

As in the proof in Example 2.3.1, Principle 2 guarantees a stage Σ′′

such that
Σ < Σ′′ (1)

and
Σ′ < Σ′′ (2)

Now let us pick any item x ∈ A ∪B:

Notes on Discrete MATH (EECS1028)© G. Tourlakis

56 2. Safe Set Theory

I have two (not necessarily mutually exclusive) cases∗ (by 2.4.1):

• x ∈ A. Then x was available or built BEFORE Σ′′ by (1).†

• x ∈ B. Then x was available or built BEFORE Σ′′ by (2).‡

Thus ALL x in A∪B are available or built BEFORE Σ′′, so I can form
a set that cantains precisely them, at stage Σ′′. □

∗The “or both” case reduces to case “x ∈ A”, trivially (x is in both, then it is in A).
†Because x ∈ A is available BEFORE Σ. Now use (1) and transitivity of <.
‡Because x ∈ B is available BEFORE Σ′. Now use (2) and transitivity of <.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

2.4. Operations on classes and sets 57

2.4.3 Definition. (Intersection of two classes) We define for any
classes A and B

A ∩ BDef
=

{
x : x ∈ A ∧ x ∈ B

}
(1)

We call the operator ∩ intersection and the result A∩B the intersection
of A and B.

� If A ∩ B = ∅ —which happens precisely when the two classes have no
common elements— we call the classes disjoint. �

Taking liberties with notation (of definition by defining property) we
may write instead of (1) either

A ∩ BDef
=

{
x ∈ A : x ∈ B

}
(1′)

or
A ∩ BDef

=
{
x ∈ B : x ∈ A

}
(1′′)

As with the union ∪, it is meaningless to have ∩ operate on atoms.†

□

We have the easy theorem below:

†The definition expects ∩ to operate on classes. As we know, atoms (by definition) have no set/class structure
thus no class and no set is an atom.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

58 2. Safe Set Theory

2.4.4 Theorem. If B is a set, as its notation suggests, then A∩B is
a set.

Proof. I will prove A ∩ B ⊆ B which will rest the case by 2.3.6. So, I
want

x ∈ A ∩B → x ∈ B

To this end, let then x ∈ A ∩B (cf. 3 in 2.3.4).

This says that x ∈ A∧x ∈ B is true. Well, therefore x ∈ B is true. □

2.4.5 Corollary. For sets A and B, A ∩B is a set.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

2.4. Operations on classes and sets 59

2.4.6 Definition. (Difference of two classes) We define for any classes
A and B

A− BDef
=

{
x : x ∈ A ∧ x /∈ B

}
(1)

We call the operator “−” difference and the result A−B the difference
of A and B, in that order.

It is meaningless to have “−” operate on atoms. □

� Notation. As was the case for ∩ (Definition 2.4.3) for “−” too we
have a shorter alternative notation to (1) above:

A− BDef
=

{
x ∈ A : x /∈ B

}
�

2.4.7 Theorem. For any set A and class B, A− B is a set.

Proof. The reader is asked to verify that A− B ⊆ A. We are done by
2.3.6. □

Notes on Discrete MATH (EECS1028)© G. Tourlakis

60 2. Safe Set Theory

2.4.8 Exercise. Prove that {Z} is a set, where Z is the set of integers
{. . . ,−1, 0, 1, . . .}. □

2.4.9 Exercise. Demonstrate —using Definition 2.4.3— that for any
A and B we have A ∩ B = B ∩ A.

Hint. You can do this by doing

x ∈ A ∩ B→ x ∈ B ∩ A (for all x)

This is normally done by fixing an x and going “Let x ∈ A ∩ B. Then
BLA BLA BLA, therefore x ∈ B ∩ A”, and then repeating the argu-
ment backwards: “Let x ∈ B ∩ A. ETC.”

OR you could note the definition for A ∩ B, that is, =
{
x : x ∈

A ∧ x ∈ B
}

AND the definition for B ∩ A and prove by truth tables

that the defining properties of the two are EQUIVALENT (easy!!!)

□

2.4.10 Exercise. Demonstrate —using Definition 2.4.1— that for any
A and B we have A ∪ B = B ∪ A. □

2.4.11 Exercise. By picking two particular very small sets A and B
show that A−B = B − A is not true for all sets A and B.

Is it true of all classes? □

Notes on Discrete MATH (EECS1028)© G. Tourlakis

2.5. The powerset 61

2.5. The powerset

2.5.1 Definition. For any set A the symbol P(A) —pronounced the
powerset of A— is defined to be the class

P(A)
Def
=

{
x : x ⊆ A

}
Thus we collect all the subsets x of A to form P(A).

The literature most frequently uses the symbol 2A in place for P(A).

□

� (1) The term “powerset” is slightly premature, but it is apt. Under
the conditions of the definition —that is, that A a set— 2A is a set as
we prove immediately below.

(2) We said “all the subsets x of A” in the definition. This is correct.
As we know from 2.3.6, if X ⊆ Y and Y is a set, then so is X. �

Notes on Discrete MATH (EECS1028)© G. Tourlakis

62 2. Safe Set Theory

2.5.2 Theorem. For any set A, its powerset P(A) is a set.

Proof. Let A be built at stage Σ.

By 2.3.7, if x ⊆ A then x can be build at stage Σ. Well, let us by
Princ. 2, pick a stage Σ′ after Σ: That is, Σ < Σ′.

Hence each x ⊆ A can be built before Σ′. Then we can collect all
these x in a SET!

That set is {x : x ⊆ A} = 2A. □

Notes on Discrete MATH (EECS1028)© G. Tourlakis

2.5. The powerset 63

2.5.3 Example. Let A = {1, 2, 3}. Then

P(A) =
{
∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {3, 2}, {1, 2, 3}

}
Thus the powerset of A has 8 elements.

We will later see that if A has n elements, for any n ≥ 0, then 2A has
2n elements. This observation is at the root of the notation “2A”. □

2.5.4� Remark. For any set A it is trivial (verify!) that we have ∅ ⊆ A

and A ⊆ A. Thus, for any A, {∅, A} ⊆ 2A. □ �

Notes on Discrete MATH (EECS1028)© G. Tourlakis

64 2. Safe Set Theory

Sep. 20, 2024

Let us generalise unions and intersections next. First a definition:

2.5.5 Definition. (Families of sets) A class F is called a family of
sets iff it contains NO atoms. The letter F is here used generically —F
for “family”— and a family may be given any name, usually capital
(blackboard bold if we do not know that it is a set). □

2.5.6 Example. Thus, ∅ is a family of sets; the empty family.
So are {{2}, {2, {3}}} and V, the latter given by

VDef
=

{
x : x is a set

}
BTW, as V contains all sets (but no atoms!) it is a proper class!

Why? Well, if it is a set, then it is one of the x-values that we
are collecting, thus V ∈ V. But we saw that this statement is false
for sets!

Notes on Discrete MATH (EECS1028)© G. Tourlakis

2.5. The powerset 65

Here are some classes that are NOT families: {1}, {2, {{2}}} and
U, the latter being the universe of all objects —sets and atoms— and
equals Russell’s “R” as we saw in Section 2.2.

These all are disqualified as they contain atoms. □

Notes on Discrete MATH (EECS1028)© G. Tourlakis

66 2. Safe Set Theory

2.5.7 Definition. (Intersection and union of families) Let F be
a family of sets. Then

(i) the symbol
⋂
F denotes the class that contains all the objects x

that are FOUND in EACH † A ∈ F.
In symbols the definition reads:⋂

FDef
=

{
x : for all A,A ∈ F→ x ∈ A

}
(1)

(ii) the symbol
⋃
F denotes the class that contains all the objects that

are found distributed among the various A ∈ F. That is, imagine
that the members of each A ∈ F are “emptied” into a single —
originally empty— container {. . .}. The class we get this way is
what we denote by

⋃
F.

In symbols the definition reads (and I think it is clearer):⋃
FDef

=
{
x : for some A,A ∈ F ∧ x ∈ A

}
(2)

� So include x iff x ∈

any

↓
A ∈ F

So ALL x ∈ A ∈ F ARE collected! �

□

†Each, all, every are synonymous. Depending on context one might feel that one or the other offers more
emphasis.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

2.5. The powerset 67

2.5.8 Example. Let F = {{1}, {1, {2}}}. Then emptying all the con-
tents of the members of F into some (originally) empty container we
get

{1, 1, {2}} (3)

This is
⋃
F.

Would we get the same answer from the mathematical definition
(2)? Of course: Examine the members of each SET of the FAMILY.
Include them in the RESULT (union).

1 is in some member of F, indeed in both of the members {1} and
{1, {2}}, and in order to emphasise this I wrote two copies of 1 —I
examined both {1} and {1, {1, {2}}. Then {2} is the member that
only {1, {2}} of F contributes.

We do not see any other members in the two set-members —{1}
and {1, {2}}— of F. So, all done!

What is
⋂

F? Well, 1 is the only one member common between the
two sets —{1} and {1, {2}}— that are in F. So,

⋂
F = {1}. □

Notes on Discrete MATH (EECS1028)© G. Tourlakis

68 2. Safe Set Theory

2.5.9 Exercise.
The below four operations were defined independently of each other.

Let us compare them:

1. Prove that
⋃{

A,B
}
= A ∪B.

2. Prove that
⋂{

A,B
}
= A ∩B.

Hint. In each of part 1. and 2. show that lhs ⊆ rhs and rhs ⊆ lhs. For
that analyse membership, i.e., “assume x ∈ lhs and prove x ∈ rhs”,
and conversely (cf. 2.1.1 and 2.1.2.) □

Notes on Discrete MATH (EECS1028)© G. Tourlakis

2.5. The powerset 69

2.5.10 Theorem. If the class F ̸= ∅ is a family of sets, then
⋂

F is a
set.

Proof. By assumption there is some set in F. Fix one such and call it
D.

Note that x ∈
⋂
F→ x ∈ each A ∈ F →, in particular, x ∈ D.

So, ⋂
F ⊆ D

We are done by 2.3.6. □

Notes on Discrete MATH (EECS1028)© G. Tourlakis

70 2. Safe Set Theory

2.5.11 Theorem. If the set F is a family of sets, then
⋃

F is a set.

Proof. Let F be built at stage Σ (Princ. 1). Now,

x ∈
⋃

F ≡ x
before Σ

∈

some
↓
A

before Σ
∈

at Σ
↓
F

Thus x is available or built before stage Σ at which F was built.

x being arbitrary, all members of
⋃

F are available/built before Σ,
so we can build

⋃
F as a set at stage Σ. □

Notes on Discrete MATH (EECS1028)© G. Tourlakis

2.5. The powerset 71

2.5.12� Remark. What if F = ∅? Does it affect Theorem 2.5.10? Yes,
badly!

In Definition 2.5.7 we read⋂
FDef

=
{
x : for all A,

f︷ ︸︸ ︷
A ∈ F→ x ∈ A︸ ︷︷ ︸

t

}
(∗∗)

However, as the hypothesis (i.e., lhs) of the implication in (∗∗) is
false, the implication itself is true. Thus the entrance condition
“for all A,A ∈ F → x ∈ A” is TRUE for all x and thus allows ALL
objects x to get into

⋂
F,

This means
⋂
F = U, the universe of all objects which we saw (cf.

Section 2.2) is a proper class —i.e., not a set. □ �

2.5.13 Exercise. What is
⋃

F if F = ∅? Set or proper class? Can
you “compute” which class it is exactly? □

Notes on Discrete MATH (EECS1028)© G. Tourlakis

72 2. Safe Set Theory

2.5.14� Remark. (More notation)

Suppose the family of sets Q is a set of sets Ai, for i = 1, 2, . . . , n
where n ≥ 3.

Q = {A1, A2, . . . , An}

Then we have a few alternative notations for
⋂

Q:

(a)

A1 ∩ A2 ∩ . . . ∩ An

or, more elegantly,

(b)
n⋂

i=1

Ai

or also

(c) ⋂n

i=1
Ai

Similarly for
⋃

Q:

(i)

A1 ∪ A2 ∪ . . . ∪ An

or, more elegantly,

(ii)
n⋃

i=1

Ai

or also

(iii) ⋃n

i=1
Ai

Notes on Discrete MATH (EECS1028)© G. Tourlakis

2.5. The powerset 73

If the family has so many elements that all the natural numbers are
needed to index the sets in the set family Q we will write

∞⋂
i=0

Ai

or ⋂∞

i=0
Ai

or ⋂
i≥0

Ai

or ⋂
i≥0

Ai

for
⋂

Q and
∞⋃
i=0

Ai

or ⋃∞

i=0
Ai

or ⋃
i≥0

Ai

or ⋃
i≥0

Ai

for
⋃

Q □ �

2.5.15 Example. Thus, for example, A ∪ B ∪ C ∪D can be seen —
just changing the notation— as A1 ∪A2 ∪A3 ∪A4, therefore it means,⋃
{A1, A2, A3, A4}, or

⋃
{A,B,C,D}.

Same comment for ∩. □

Notes on Discrete MATH (EECS1028)© G. Tourlakis

74 2. Safe Set Theory

Pause. How come for the case for n = 2 we proved † A ∪ B =⋃
{A,B} (2.5.9) but here we say (n ≥ 3) that something like the con-

tent of the previous remark and example are just notation (definitions)?

Well, we had independent definitions (and associated theorems re
set status for each, 2.4.2 and 2.5.11) for A ∪ B and

⋃
{A,B} so it

makes sense to compare the two independent definitions after the fact
and see if we can prove that they say the same thing.

For n ≥ 3 we opted to NOT give a definition for A1∪ . . .∪An that
is independent of

⋃
{A1 ∪ . . . ∪ An}, rather we gave the definition

of the former in terms of the latter.

No independent definitions, no theorem to compare the two!◀

†Well, you proved! Same thing :-)

Notes on Discrete MATH (EECS1028)© G. Tourlakis

Chapter 3

The Ordered Pair and Cartesian
Products

To introduce the concepts of cartesian product —so that, in principle,
plane analytic geometry can be developed within set theory— we need
an object “(A,B)” that is like the set pair (2.3.1) in that it contains
two objects, A and B (A = B is a possibility), but in (A,B) order and
length (here it is 2) matter!

That is,

We want (A,B) = (A′, B′) implies A = A′ and B = B′. Moreover,
(A,A) is not {A}! It is still an ordered pair (length = 2) but
so happens that the first and second component —as we call the
members of the ordered pair— are equal in this example.

� So, are we going to accept a new type of object in set theory? Not at all!

We will build (A,B) so that it is a set! �

Notes on Discrete MATH (EECS1028)© G. Tourlakis

76 3. The Ordered Pair and Cartesian Products

Sep. 23, 2024

3.0.1 Definition. (Ordered pair) By definition (Kuratowski), (A,B)
is the abbreviation (short name) given below:

(A,B)
Def
=

{
A, {A,B}

}
(1)

We call “(A,B)” an ordered pair, and A its first component, while
B is its second component. □

3.0.2� Remark.

1. Note that A ̸= {A,B} because we would otherwise get

the right A is IN the left A

which is false for sets or atoms A. Thus (A,B) does contain
exactly two members, or has length 2; they are:

A and {A,B}.

Pause. We have not said in 3.0.1 that A and B are sets or atoms.
So what right do we have in the paragraph above to so declare?◀

2. What about the desired property that

(A,B) = (X, Y)→ A = X ∧B = Y (2)

Well, assume the lhs of “→” in (2) and prove the rhs, “A =
X ∧B = Y ”.

From our truth table we know that we do the latter by proving
each of A = X and B = Y true (separately).

Notes on Discrete MATH (EECS1028)© G. Tourlakis

77

The lhs of (2) that we assumed true translates to{
A, {A,B}

}
=

{
X, {X, Y }

}
(3)

By the remark #1 above there are two distinct members in each
of the two sets that we equate in (3).

So since (3) is true (by assumption) we have (by definition of set
equality) one of:

(a) A = {X, Y } and {A,B} = X, that is, 1st listed element in
lhs of “=” equals the 2nd listed in rhs; and 2nd listed
element in lhs of “=” equals the 1st listed in rhs.

OR

(b) A = X and {A,B} = {X, Y }.

Now case (a) above cannot hold, for it leads toA = {
replaced into X︷ ︸︸ ︷
{A,B}︸ ︷︷ ︸
was X

, Y }.

This in turn leads to
{A,B} ∈ A

and thus the set {A,B} is built before ONE of its members, A,
which contradicts Principle 0.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

78 3. The Ordered Pair and Cartesian Products

Let’s then work only with case (b).

We have
{A,B} = {A, Y } (4)

Well, all the members on the lhs must also be on the rhs. I note that
A is. I have two subcases.

• What if B is also equal to A? Then (4) becomes {B} = {A, Y }
and thus Y ∈ {B} (why?). Hence Y = B.

We showed so far A = X (listed in case (b)) and B = Y (proved
just now, in this subcase); great!

• In the 2nd and final subcase (Why “final”?) B is not equal to A.

But B must be in the rhs of (4), so the only way —since A ̸= B—
is B = Y . All Done! □ �

Worth recording as a theorem what we proved above:

3.0.3 Theorem. If (A,B) = (X, Y), then A = X and B = Y .

But is (A,B) a set? (atom it is not, of course!) Yes!

3.0.4 Theorem. (A,B) is a set.

Proof. Now (A,B) =
{
A, {A,B}

}
. By 2.3.1, {A,B} is set. Applying

2.3.1 once more,
{
A, {A,B}

}
is a set. □

Notes on Discrete MATH (EECS1028)© G. Tourlakis

79

3.0.5 Example. So, (1, 2) = {1, {1, 2}}, (1, 1) = {1, {1}}, and ({a}, {b}) =
{{a}, {{a}, {b}}}. □

3.0.6� Remark. We can extend the ordered pair to ordered triple, or-
dered quadruple, and beyond!

We take this approach in these notes:

(A,B,C)
Def
=

(
(A,B), C

)
(1)

(A,B,C,D)
Def
=

(
(A,B,C), D

)
(2)

(A,B,C,D,E)
Def
=

(
(A,B,C,D), E

)
(3)

ETC. So suppose we defined what an n-tuple is, for some fixed unspec-
ified n, and denote it by (A1, A2, . . . , An) for convenience.

Then we define (n+ 1)-tuple, in general, by

(A1, A2, . . . , An, An+1)
Def
=

(
(A1, A2, . . . , An), An+1

)
(∗)

This is an “inductive” or “recursive” definition, defining a concept
(n+ 1-tuple) in terms of a smaller instance of itself, namely, in terms
of the concept for an n-tuple, and in terms of the case n = 2 that we
dealt with by direct definition (not in terms of the concept itself!) in
3.0.1.

(∗) is a general (for each length n that is) formation rule that allows
us to build a tuple longer by ONE, as is compared to a tuple we
have already built.

Suffice it to say this “case of n + 1 in terms of case of n” provides
just shorthand notation to take the mystery out of the red capitalised
“etc.” above. We condense/codify infinitely many definitions (1), (2),
(3), . . . into just two:

• 3.0.1

Notes on Discrete MATH (EECS1028)© G. Tourlakis

80 3. The Ordered Pair and Cartesian Products

and

• (∗)
The reader has probably seen such recursive definitions before (likely
in calculus and/or high school).

The most frequent example that occurs is to define, for any natural
number n and any real number a > 0, what an means. One goes like
this:

a0 = 1
an+1= a · an

The above condenses infinitely many definitions such as

a0= 1
a1= a · a0= a

a2= a · a1= a · a
a3= a · a2= a · a · a
a4= a · a3= a · a · a · a
...

into just two!
We will study inductive definitions and induction later in the course!

Before we exit this remark note that (A,B,C) = (A′, B′, C ′) implies
A = A′, B = B′, C = C ′ because the hypothesis says (3.0.6 (1))

((A,B), C) = ((A′, B′), C ′)

and thus (3.0.3) implies

C = C ′ and (A,B) = (A′, B′)

The second equality implies (3.0.3 again) A = A′ and B = B′.

That is, (A,B,C) is an ordered triple (3-tuple).

Notes on Discrete MATH (EECS1028)© G. Tourlakis

81

We can also prove that (A1, A2, . . . , An, An+1) is an ordered n+ 1-
tuple, i.e.,

(A1, A2, . . . , An+1) = (A′1, A
′
2, . . . , A

′
n+1)→ A1 = A′1∧. . .∧An+1 = A′n+1

IF we have followed the “etc.” all the way to the case of (A1, A2, . . . , An).

We will do the “etc.”-argument elegantly once we learn induction!

□ �

Notes on Discrete MATH (EECS1028)© G. Tourlakis

82 3. The Ordered Pair and Cartesian Products

3.0.7 Definition. (Finite sequences) An n-tuple for n ≥ 1 is called
a finite sequence of length n, where we extend the concept to a one
element sequence —by definition— to be

(A)
Def
= A

□

� The above definition is compatible with the concept of ordered pair,
since a pair

(A,B)

can be seen as a pair
((A), B)

due to A = (A).
Thus the recursive definition works from n = 1 onwards. �

Notes on Discrete MATH (EECS1028)© G. Tourlakis

3.1. The Cartesian product 83

3.1. The Cartesian product

We next define classes of ordered pairs.

3.1.1 Definition. (Cartesian product of classes) Let A and B be
classes. Then we define

A× BDef
=

{
(x, y) : x ∈ A ∧ y ∈ B

}
The definition requires both sides of × to be classes. It makes no sense
if one or both are atoms.

□

Notes on Discrete MATH (EECS1028)© G. Tourlakis

84 3. The Ordered Pair and Cartesian Products

3.1.2 Theorem. If A and B are sets, then so is A×B.

Proof. By 3.1.1 and 3.0.1

A×B=
{{

x, {x, y}
}
: x ∈ A ∧ y ∈ B

}
(1)

Plan: I want to “find” a set “X” so that the inclusion A×B ⊆ X
is true. Then I can apply the subclass theorem (2.3.6).

Thus I am starting my search with “let {x, {x, y}} ∈ A×B” and
I am analysing this statement attempting to find an X such that
{x, {x, y}} ∈ X, for all x, y with (x, y) ∈ A×B.

So, for each
{
x, {x, y}

}
∈ A×B we have x ∈ A and {x,

in B

↓
y } ⊆ A ∪B,

or

x ∈ A and {x, y} ∈ 2A∪B.

Thus
{
x, {x, y}

}
⊆ A ∪ 2A∪B and hence (changing notation)

(x, y) ∈ 2A∪2
A∪B

(2)

I found a SET —“X = 2A∪2
A∪B

”— that works, meaning

A×B ⊆ X

We have established —by the arbitrariness of x, y and by (2)— that

A×B ⊆ 2A∪2
A∪B

thus A×B is a set by 2.3.6, 2.4.2 and 2.5.2. □

Notes on Discrete MATH (EECS1028)© G. Tourlakis

3.1. The Cartesian product 85

Sep. 25, 2024

3.1.3 Definition. Mindful of the Remark 3.0.6 where we defined
(
A,B,C

)
as short for

(
(A,B), C

)
,
(
A,B,C,D

)
as short for

(
(A,B,C), D

)
,

etc.; thus

In general (A1, A2, . . . , An, An+1)
Def
=

(
(A1, A2, . . . , An), An+1

)
(∗)

Correspondingly, we define here Y1 × . . .× Yn for any n ≥ 3 by

Y1 × . . .× Yn
Def
=

{
(A1, A2, . . . An) : Ai ∈ Yi, for i = 1, . . . , n

}

and then observe:

Y1 × Y2 × . . .× Yn × Yn+1
Def
=

{
(A1, A2, . . . , An, An+1) : Ai ∈ Yi

}
By (∗)
=

{(
(A1, . . . , An), An+1

)
: Ai ∈ Yi

}
=

{(
(A1, . . . , An), An+1

)
: (A1, . . . , An) ∈

(Y1 × Y2 × · · · × Yn) ∧ An+1 ∈ Yn+1

}
= (Y1 × · · ·Yn)× Yn+1

We may write
n

×
i=1

Ai for A1 × A2 × . . .× An

If A1 = . . . = An = B we may write Bn for A1×A2× . . .×An. □

Notes on Discrete MATH (EECS1028)© G. Tourlakis

86 3. The Ordered Pair and Cartesian Products

3.1.4 Remark. Thus, what we learnt in 3.1.3 is, in other words,

n

×
i=1

Ai
Def
=

{
(x1, . . . , xn) : xi ∈ Ai, for i = 1, 2, . . . , n

}
and

Bn Def
=

{
(x1, . . . , xn) : xi ∈ B

}
□

3.1.5 Theorem. If Ai, for i = 1, 2, . . . , n is a set, then so is
n

×
i=1

Ai.

Proof. A×B is a set by 3.1.2. By 3.1.3, and in this order, we verify
that so is A×B×C∗ and A×B×C×D and . . . and A1×A2× . . .×An.

□

∗Because A×B × C = (A×B)× C.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

Chapter 4

Relations and functions

The topic of relations and functions is central in all mathematics and
computing.

In mathematics, whether it is calculus, algebra or anything else, one
deals with relations (notably equivalence relations, order) and all sorts
of functions, while, in computing, one computes relations and func-
tions, that is, writing programs that given an input to a relation they
compute the response (true or false) or given an input to a function
they compute the response which is some object (number, graph, tree,
matrix, other) or nothing, in case there is no response for said input
(for example, there is no response to input “(x, y)” if what we are

computing is
x

y
or even

⌊
x

y

⌋
when y = 0).

Notes on Discrete MATH (EECS1028)© G. Tourlakis

88 4. Relations and functions

We are taking an “extensional” point of view in this course —as is
customary in set theory, algebra, calculus and discrete math— of rela-
tions and functions, that is, we view them as classes of (input,
output) ordered pairs.

It is also possible to take an intentional point of view, especially in
computer science and some specific areas of mathematics, viewing rela-
tions and functions as methods to compute outputs from given inputs.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

4.1. Relations 89

4.1. Relations

4.1.1 Definition. (Binary relation) A binary relation is a class R†

of ordered pairs.

The statements (x, y) ∈ R, xRy and R(x, y) are equivalent; that is,
they mean the same thing.

xRy is the preferred “infix” notation —imitating notation such as A ⊂
B, x < y, x = y and has notational advantages. □

4.1.2� Remark. R contains just pairs (x, y), that is, just sets {x, {x, y}},
that is, it is a family of sets.

Since (x1, x2, . . . , xn) =
(
(x1, x2, . . . , xn−1), xn

)
, it follows that bi-

nary relations (classes of ordered pairs) is ALL we need to study.

BTW, a class of ordered n-tuples, (x1, x2, . . . , xn), is called an n-ary
relation. As I said above we do not need to pay special attention to
them. □ �

†I write “R” or “R” for a relation, generically, but P, Q, S are available to use as well. I will avoid specific names
such as <, ⊆ in a general discussion. These two are apt to bring in in examples.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

90 4. Relations and functions

4.1.3 Example. Examples of relations:

(i) ∅ Since this set contains nothing I can imagine that it is a set of
zero number of pairs.

(ii) {(1, 1)}

(iii) {(1, 1), (1, 2)}

(iv) N2, that is {(x, y) : x ∈ N∧ y ∈ N}. This is a set by the fact that
N is (Why?) and thus so is N× N by 3.1.2.

(v) < on N, that is {(x, y) : x < y ∧ x ∈ N ∧ y ∈ N}. This is a set
since <⊆ N2.

(vi) ∈, that is,
{(x, y) : x ∈ y ∧ x ∈ U ∧ y ∈ V} (∗)

This is a proper class (non set). Why? Well,

(a) If ∈ is a set then so is its SUBclass

{(x, {x}) : x ∈ U} =
{{

x, {x, {x}}
}
: x ∈ U

}
(∗∗)

(b) By the Union Theorem 2.5.11⋃{{
x,{x, {x}}

}
: x ∈ U

}
={

x, x′′, x′′′, . . . , {x, {x}}, {x′, {x′}}, {x′′, {x′′}} . . .
}

is a set. This “set” has U as a subclass (due to the “loose”
x, x′, x′′, . . .) contradicting the subclass theorem.

□

Notes on Discrete MATH (EECS1028)© G. Tourlakis

4.1. Relations 91

So, a binary relation R is a table of pairs:

Table 4.1:

input: x output: y

a b
a′ b′

...
...

u v
...

...

1. Thus one way to view R is as a device that for inputs x, valued
a, a′, . . . , u, . . . one gets the outputs y, valued b, b′, . . . , v, . . . respec-
tively. It is all right that a given input may yield multiple outputs
(e.g., case (iii) in the previous example).

2. Another point of view is to see both x and y as inputs of R and
the outputs then are t (i.e., “is in the table”) or false (i.e., “is not
in the table”).

Such is the way we often view the relations < and = on the natural
numbers.

For example, (a, b) is in the table above (that is, aRb is true) hence
the relation outputs t.

Most of the time we will take the point of view in 1 above. This point
of view compels us to define domain and range of a relation R, that is,
the class of all inputs that cause an output and the class of all caused
outputs respectively.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

92 4. Relations and functions

4.1.4 Definition. (Domain and range) For any relation R we de-
fine domain, in symbols “dom” by

dom(R)Def
= {x : (∃y)xRy}

where we have introduced the notation “(∃y)” as short for “there exists
some y such that”, or “for some y”.

Range, in symbols “ran”, is defined also in the obvious way:

ran(R)Def
= {x : (∃y)yRx} □

Thus the domain of R is the class containing precisely all the entries
of the left column of Table 4.1 on p.91 while the range contains
precisely all the entries of the right column.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

4.1. Relations 93

We settle the following, before other things:

4.1.5 Theorem. For a set relation R, both dom(R) and ran(R) are
sets.

Proof. For domain we collect ALL the x such that xRy, for some y,
that is, all the x such that

{x, {x, y}} ∈ R (1)

for some y.
So, R is a set family of sets{

{x, {x, y}}, {x′, {x′, y′}}, {x′′, {x′′, y′′}}, . . .
}

Thus, taking the family union, I have{
x, {x, y}, x′, {x′, y′}, x′′, {x′′, y′′}, . . .

}
=

⋃
R

and dom(R) is the collection of all the “loose” x, x′, x′′, . . . above
(4.1.4).

Therefore
dom(R) ⊆

⋃
R (†)

Now, R is a set-family of sets, thus
⋃

R is a set. But then by (†) and
the subclass theorem, dom(R) is a set. This settles the domain case.

Let A be the set of ALL atoms (anywhere).

Pause. Why is the class of all atoms a set?◀

Now define
S

Def
=

(⋃
R
)
−A

So, S is a set family —we just removed all atom members of
⋃

R—
and it contains all the {x, y} parts of all {x, {x, y}} ∈ R. Thus,

S =
{
{x, y}, {x′, y′}, {x′′, y′′}, . . . ; plus those x, x′, x′′, . . . that are sets

}
Notes on Discrete MATH (EECS1028)© G. Tourlakis

94 4. Relations and functions

Then
⋃
S contains all the y (and other things). That is, ran(R) ⊆

⋃
S,

and this settles the range case. □

4.1.6 Exercise. Armed with the theorem 4.1.5 above revisit the re-
lation ∈ and easily prove that it is a proper class (not a set relation).

□

Notes on Discrete MATH (EECS1028)© G. Tourlakis

4.1. Relations 95

4.1.1. Fields

Sep. 27, 2024

4.1.7 Definition. In practice we often have an a priori decision about
what are in principle “legal” inputs for a relation R, and where its
outputs go.

� For example, calculus is about real numbers. All relations in calculus
have the real numbers as left and right fields (supplies of inputs and
locations where outputs are deposited). �

Thus we have two classes, A and B for the class of legal inputs and
possible outputs respectively. Clearly we have R ⊆ A× B.

We call A and B left field and right field respectively, and instead of
R ⊆ A× B we often write

R : A→ B

and also
A R−→B

pronounced “R is a relation from A to B”.

Thus, “Let A R−→B”, in proper English, says “Let R be a relation
with left field A and right field B”.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

96 4. Relations and functions

The term field —without left/right qualifiers— for R : A→ B refers
to A ∪ B.

If A = B then we have
R : A→ A

but rather than pronouncing this as “R is a relation from A to A” we
prefer † to say “R is on A”. □

†Both ways of saying it are correct.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

4.1. Relations 97

4.1.8 Example. The a priori legal inputs in Number Theory and in
Computability are all the natural numbers from N.

In calculus inputs are real (from R) and so are outputs (in R). But it
is not the case that all inputs cause outputs! There is no (real) output
for x/y, or for ⌊x/y⌋, for input (x, y) with y = 0. □

� You will pardon —I hope— the use of R for a generic relation but also
for the set of all reals. �

Notes on Discrete MATH (EECS1028)© G. Tourlakis

98 4. Relations and functions

4.1.9� Remark. Trivially, for any R : A → B, we have dom(R) ⊆ A
and ran(R) ⊆ B. To see this think of 4.1 and its columns representing
dom(R) and ran(R).

4.1.10 Exercise. Give a quick proof of each of the above inclusions.

□

Also, for any relation P with no a priori specified left/right fields,
P is a relation from dom(P)→ ran(P).

Naturally, we say that dom(P)∪ ran(P) is the field of P in this case.

□ �

4.1.2. Totalness and Ontoness

4.1.11� Example. As an example, consider the divisibility relation on
all integers (their set denoted by Z) denoted by “|”:

x|y means x divides y with 0 remainder

thus, for x = 0 and all y, the division is illegal, therefore

The input x = 0 to the relation “ |” produces no output, in
other words, “for input x = 0 the relation is undefined.”

We walk away with two things from this example:

1. It does make sense for some relations to a priori choose left and
right fields, here

| : Z→ Z
You would not have divisibility on real numbers !

Notes on Discrete MATH (EECS1028)© G. Tourlakis

4.1. Relations 99

2. dom(|) is the set of all inputs that produce some output. Thus,
it is NOT the case for all relations that their domain is the same
as the left field chosen! Note the case in this example! And forget
the term “codomain” that you may find in fake publications on
discrete MATH out there! □ �

Notes on Discrete MATH (EECS1028)© G. Tourlakis

100 4. Relations and functions

4.1.12� Example. Next consider the relation < with left/right fields
restricted to N. Then dom(<) = N, but ran(<) ⫋ N. Indeed, 0 ∈
N− ran(<). □ �

Let us extract some terminology from the above examples:

4.1.13 Definition. Given

R : A→ B

If dom(R) = A, then we call R total or totally defined. If dom(R) ⫋ A,
then we say that R is nontotal.

If ran(R) = B, then we call R onto. If ran(R) ⫋ B, then we say that
R is not onto. □

So, the relation | above is nontotal, and < is not onto.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

4.1. Relations 101

4.1.14 Example. Let A = {1, 2}.

• The relation {(1, 1)} on A is neither total nor onto.

• The relation {(1, 1), (1, 2)} on A is onto but not total.

• The relation {(1, 1), (2, 1)} on A is total but not onto.

• The relation {(1, 1), (2, 2)} on A is total and onto.

• The relation {(1, 2), (2, 1)} on A is total and onto. □

Notes on Discrete MATH (EECS1028)© G. Tourlakis

102 4. Relations and functions

4.1.3. Diagonal or Identity and other Special Types of Relations

4.1.15 Definition. The relation ∆A on the set A is given by

∆A
Def
= {(x, x) : x ∈ A}

We call it the diagonal (“∆” for “diagonal”) or identity relation on A.

Consistent with the second terminology, we may also use the symbol
1A for this relation. □

4.1.16 Definition. A relation R (not a priori restricted to have pre-
determined left or right fields) is

1. Transitive: Iff xRy ∧ yRz implies xRz.

2. Symmetric: Iff xRy implies yRx.

3. Antisymmetric: Iff xRy ∧ yRx implies x = y.

4. Irreflexive: Iff xRy implies x ̸= y. Also said this way: For NO x

can we have xRx.

5. Reflexive: Now assume R is on a set A. Then we call it reflexive
iff ∆A ⊆ R.

□

Notes on Discrete MATH (EECS1028)© G. Tourlakis

4.1. Relations 103

4.1.17 Example.

(i) Transitive examples: ∅ (vacuously), {(1, 1)}, {(1, 2), (2, 3), (1, 3)},
<, ≤, =, N2.

(ii) Symmetric examples: ∅ (vacuously), {(1, 1)}, {(1, 2), (2, 1)}, =,
N2.

(iii) Antisymmetric examples: ∅ (vacuously), {(1, 1)}, =, ≤, ⊆.

(iv) Irreflexive examples: ∅ (vacuously), {(1, 2)}, ⫋, the relations “<”
and “ ̸=” on N.

(v) Reflexive examples: 1A onA, {(1, 1)} on {1}, {(1, 2), (2, 1), (1, 1), (2, 2)}
on {1, 2}, = on N, ≤ on N. □

Notes on Discrete MATH (EECS1028)© G. Tourlakis

104 4. Relations and functions

Sep. 30, 2024

4.2. Relational Composition

We can compose relations:

4.2.1 Definition. (Relational composition) Let R and S be (pos-
sibly NON set) relations.

Then, their composition, in that order, denoted by R◦S is defined
for all x and y by:

xR ◦ Sy
Def
≡ (∃z)

(
xRz ∧ zSy

)
It is customary (lazy and incorrect, though) to abuse notation and
write “xRzSy” for “xRz ∧ zSy” just as one writes x < y < z for
x < y ∧ y < z. □

Notes on Discrete MATH (EECS1028)© G. Tourlakis

4.2. Relational Composition 105

4.2.2� Example. (Important) Here is whence the emphasis “in that
order” above. Say, R = {(1, 2)} and S = {(2, 1)}. Thus, R ◦ S =
{(1, 1)} while S ◦R = {(2, 2)}. Hence, R ◦ S ̸= S ◦R in general. □ �

Notes on Discrete MATH (EECS1028)© G. Tourlakis

106 4. Relations and functions

4.2.3 Theorem. (Associativity of composition) For any relations
R,S and T, we have

(R ◦ S) ◦ T = R ◦ (S ◦ T)

We state and prove this central result for any class relations.

Proof. We have two directions:
→: Fix x and y and let x(R ◦ S) ◦ Ty.
Then, for some z, we have x(R ◦ S)zTy and hence for some w, the

above becomes
xRwSzTy (1)

But wSzTy means wS ◦ Ty

hence we rewrite (1) as
xRw(S ◦ T)y

Finally, the above says xR ◦ (S ◦ T)y.
←: Just as the → case; read if you wish.
Fix x and y and let xR ◦ (S ◦ T)y.
Then, for some z, we have xRz(S ◦ T)y and hence for some u, the

above becomes
xRzSuTy (2)

But xRzSu means xR ◦ Su, hence we rewrite (2) as

x(R ◦ S)uTy

Finally, the above says x(R ◦ S) ◦ Ty. □

Notes on Discrete MATH (EECS1028)© G. Tourlakis

4.2. Relational Composition 107

The following is almost unnecessary, but offered for emphasis:

4.2.4 Corollary. If R, S and T are (set) relations, all on some set
A,† then “R ◦ S ◦ T” has a meaning independent of how brackets are
inserted.

� The corollary allows us to just omit brackets in a chain of compositions,
even longer than the above. It also leads to the definition of relational
exponentiation, below: �

4.2.5 Definition. (Powers of a binary relation) Let R be a (set)
relation. We define Rn, for n > 0, as

R ◦R ◦ · · · ◦R︸ ︷︷ ︸
n R

(1)

Note that the resulting relation in (1) is independent of how brackets
are inserted (4.2.4). It depends only on R and n.

If moreover we have defined R to be on a set A, then we also define
the 0-th power: R0 stands for ∆A or 1A. □

†Recall that “R is on a set A” means R ⊆ A2, which is the same as R : A → A.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

108 4. Relations and functions

4.2.6 Theorem. The composition of two (set) relations R and S in
that order is also a set.

Proof. Trivially,
R ◦ S ⊆ dom(R)× ran(S) (1)

Note: IF (x, y) ∈ R ◦ S, THEN

x∈ dom(R) 4.1.4︷︸︸︷
x R z S

y∈ ran(S) 4.1.4︷︸︸︷
y

Hence (x, y) ∈ dom(R)× ran(S), thus we have (1).

Moreover, we proved in 4.1.5 that dom(R) and ran(S) are sets. Thus
so is dom(R)× ran(S) (3.1.2). □

Notes on Discrete MATH (EECS1028)© G. Tourlakis

4.2. Relational Composition 109

4.2.7� Remark. Say aRn b.

So,

a

n R︷ ︸︸ ︷
R ◦R ◦ · · · ◦R︸ ︷︷ ︸

n−1 ◦
b

Each ◦ is due to an “ai” stepping stone. So we have ai for i =
1, . . . , n− 1 stepping stones and thus

Thus aRnb means that for some a1, a2, . . . , an−1 we have

a

∈

dom(R)

Ra1Ra2Ra3Ra4 . . . an−1R b

∈

ran(R)

(1)

So, Rn ⊆ dom(R)× ran(R).

□ �

Notes on Discrete MATH (EECS1028)© G. Tourlakis

110 4. Relations and functions

4.2.8 Exercise. Let R be a relation on A. Then for all n ≥ 0, Rn is
a set.

Hint. See (1) above.

□

Notes on Discrete MATH (EECS1028)© G. Tourlakis

4.2. Relational Composition 111

4.2.9 Example. Let R = {(1, 2), (2, 3)}. What is R2?
Well, when can we have xR2y? Precisely if/when we can find x, y, z

that satisfy xRzRy. By direct inspection, the values x = 1, y = 3 and
z = 2 are the only ones that satisfy xRzRy.

Thus 1R23, or (1, 3) ∈ R2. We conclude R2 = {(1, 3)} by the “only
ones” above. □

4.2.10 Exercise. Show that if for a relation R we know that R2 ⊆ R,
then R is transitive and conversely. □

Notes on Discrete MATH (EECS1028)© G. Tourlakis

112 4. Relations and functions

4.3. Transitive closure

4.3.1 Definition. (Transitive closure of R) A○ transitive closure of
a relation R —if it exists— is a○ ⊆-smallest transitive T that contains
R as a subset.

More precisely,

1. T is transitive, and R ⊆ T .

2. If S is also transitive and also R ⊆ S, then T ⊆ S. This makes
the term “⊆-smallest” precise. □

Note that we hedged twice in the definition, because at this point
we do not know yet:

• If every relation has a transitive closure; hence the “if it exists”.

• We do not know if it is unique either, hence the circled indefinite
articles “A” and “a”.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

4.3. Transitive closure 113

4.3.2� Remark. Uniqueness can be settled immediately from the defi-
nition above: Suppose T and T ′ fulfil Definition 4.3.1, that is, suppose
both are transitive closures of some R. Thus,

1. R ⊆ T

and

2. R ⊆ T ′

since both are closures.
But now think of T as a closure and T ′ as the “S” of 4.3.1 (it in-

cludes R all right!)

Hence T ⊆ T ′.

Now reverse the role-playing and think of T ′ as a closure, while T

plays the role of “S”. We get T ′ ⊆ T . Hence, T = T ′. □ �

4.3.3 Definition. The unique transitive closure, if it exists, is
denoted by R+. □

Notes on Discrete MATH (EECS1028)© G. Tourlakis

114 4. Relations and functions

4.3.4 Exercise. If R is transitive, then R+ exists. In fact, R+ = R.

□

The above exercise is hardly exciting, but learning that R+ exists
for every R and also learning how to “compute” R+ is exciting. We
do this next.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

4.3. Transitive closure 115

Oct. 2, 2024

4.3.5 Lemma. Given a (set) relation R. Then
⋃∞

n=1R
n is a transitive

(set) relation.

Proof. We have two things to do.

1.
⋃∞

n=1R
n is a set.

2.
⋃∞

n=1R
n is a transitive relation.

Proof of 1. Since we are using the notation from 2.5.14, we must first
show that the family

F =
{
R,R2, . . . , Ri, . . .

}
is a set. We already know that each Ri, i ≥ 1, is a
set.

Indeed, by 4.2.7,

Ri ⊆ dom(R)× ran(R)

for i ≥ 1, OR
Ri ∈ 2dom(R)×ran(R)

for i ≥ 1.

Therefore
F ⊆ 2dom(R)×ran(R)

and hence F is a set family (2.3.6) of sets and we can use
the notation from 2.5.14 to write

∞⋃
i=1

Ri =
⋃

F

which is a set, as we know (2.5.11).

Notes on Discrete MATH (EECS1028)© G. Tourlakis

116 4. Relations and functions

Proof of 2. Now,
⋃∞

i=1R
i is also, of course, a binary relation being a

set of ordered pairs.

Next, we prove it is transitive.

Let

x
∞⋃
i=1

Ri y
∞⋃
i=1

Ri z

Thus for some n and m we have (see footnote below)

xRn y †Rm z

this says the same thing as

x

n︷ ︸︸ ︷
R ◦R ◦ · · ·R y

m︷ ︸︸ ︷
R ◦R ◦ · · ·R z

or

x

n︷ ︸︸ ︷
R ◦R ◦ · · ·R ◦

m︷ ︸︸ ︷
R ◦R ◦ · · ·R z

or

x

n+m︷ ︸︸ ︷
R ◦R ◦ · · ·R z

Hence, since (x, z) ∈ Rn+m from above, we have

(x, z) ∈
⋃{

. . . , Rn+m, . . .
}
, that is, (2.5.14), x

∞⋃
i=1

Ri z

□

†x
⋃∞

i=1 R
i y means (x, y) ∈

⋃∞
i=1 R

i, therefore (x, y) ∈ Rn for some n by definition of
⋃∞

n=1.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

4.3. Transitive closure 117

Since R ⊆
⋃∞

i=1R
i due to R = R1, all that remains to show that⋃∞

i=1R
i is a transitive closure of R is to show the Lemma below.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

118 4. Relations and functions

4.3.6 Lemma. If R ⊆ S and S is transitive, then
⋃∞

i=1R
i ⊆ S.

Proof. I will just show instead that for all n ≥ 1, Rn ⊆ S.

(1) OK, R ⊆ S is our assumption, thus R1 ⊆ S is true.

(2) For R2 ⊆ S let xR2y, thus (for some z), xRzRy hence xSzSy.

But S is transitive, so xSy. Done.

(3) For R3 ⊆ S let xR3y, thus (for some z), xR2zRy hence

By (2)︷︸︸︷
xSz Sy.

But S is transitive, so the last expression gives xSy. Done.

(n+ 1) You see the pattern: Pretend we proved up to some fixed un-
specified n:

Rn ⊆ S (‡)
Thus, for the n+ 1 case, for the same n we just fixed,

xRn+1y ⇔ xRn ◦Ry ⇔ xRnzRy (some z)
by (‡)⇒ xSzSy ⇒ xSy†

□

4.3.7 Exercise. “I will just show instead that for all n ≥ 1, Rn ⊆ S.”
I said above.

Prove that having Rn ⊆ S for all n guarantees
⋃

n≥1R
n ⊆ S. □

†S is transitive.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

4.3. Transitive closure 119

We have proved:

4.3.8 Theorem. (The transitive closure exists) For any relation
R, its transitive closure R+ exists and is unique. We have that R+ =⋃∞

i=1R
i.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

120 4. Relations and functions

4.4. Equivalence relations

Oct. 4, 2024

Equivalence relations must be ON some set A, since we require
reflexivity (definition below). They play a significant role in many
branches of mathematics and even in computer science.

For example, the minimisation process of finite automata (a topic
that we will not cover) relies on the concept of equivalence relations,
and fast integer multiplication algorithms using the Fast Fourier Trans-
form do too.

4.4.1 Definition. A relation R on A is an equivalence relation, pro-
vided it is all of

1. Reflexive

2. Symmetric

3. Transitive □

� An equivalence relation on A has the effect, intuitively, of “grouping”
elements that we view as interchangeable in their roles, or “equivalent”,
into so-called (see Definition 4.4.4 below) “equivalence classes” —kind
of mathematical clubs! �

Notes on Discrete MATH (EECS1028)© G. Tourlakis

4.4. Equivalence relations 121

4.4.2 Example. The following are equivalence relations

• {(1, 1)} on A = {1}.

• = (or 1A or ∆A) on A.

• LetA = {1, 2, 3}. ThenR = {(1, 2), (1, 3), (2, 3), (2, 1), (3, 1), (3, 2), (1, 1),
(2, 2), (3, 3)} is an equivalence relation on A.

• N2 is an equivalence relation on N. □

Notes on Discrete MATH (EECS1028)© G. Tourlakis

122 4. Relations and functions

Here is a longish, more sophisticated example, that is central in num-
ber theory. We will have another instalment of it after a few definitions
and results.

4.4.3� Example. (Congruences) Fix an m ≥ 2. We define the rela-
tion ≡mon Z by

x ≡m y iff m | (x− y)

Recall that “|” is the “divides with zero remainder” relation.

a|b, therefore, says that b is a multiple of a or a is a factor of b:
(∃k)b = a× k.

A notation that is very widespread in the literature is to split the
symbol “≡m” into two and write

x ≡ y (mod m) instead of x ≡m y

“x ≡ y (mod m)” and x ≡m y are read “x is congruent to y modulo
m (or just ‘mod m’)”. Thus “≡m” is the “congruence (mod m)” short
symbol, while “≡ . . . (mod m)” is the long two-piece symbol. We will
be using the short symbol .

We next verify the required properties for ≡m to be an equivalence
relation.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

4.4. Equivalence relations 123

1. Reflexivity: Indeed, m | (x− x), or m | 0, hence x ≡m x.

2. Symmetry: Clearly, if m | (x − y), then m | (y − x). I translate: If
x ≡m y, then y ≡m x.

3. Transitivity: Let m | (x−y) and m | (y−z). The first says that, for
some k, x−y = km. Similarly the second says, for some n, y−z =
nm. Thus, adding these two equations I get x − z = (k + n)m,
that is, m | (x − z). I translate: If x ≡m y and y ≡m z, then also
x ≡m z. □ �

Notes on Discrete MATH (EECS1028)© G. Tourlakis

124 4. Relations and functions

4.4.4 Definition. (Equivalence classes) Given an equivalence rela-
tion R on A. The equivalence class of an element x ∈ A is {y ∈ A :
xRy}. We use the symbol [x]R, or just [x] if R is understood, for the
equivalence class.

� Since A is a set and [x] ⊆ A, each equivalence “class” is a set by 2.3.6. �

The symbol A/R denotes the quotient class of A with respect to R,
that is,

A/R
Def
= {[x]R : x ∈ A}

□

Notes on Discrete MATH (EECS1028)© G. Tourlakis

4.4. Equivalence relations 125

4.4.5 Remark. Suppose an equivalence relation R on A is given.

By reflexivity, xRx, for any x. Thus x ∈ [x]R, hence all equivalence
classes are nonempty.

� Be careful to distinguish the brackets {. . .} from these [. . .].

It is NOT a priori obvious that x ∈ [x]R until you look at the definition
4.4.4! [x]R ̸= {x} in general! �

□

If A is a set and R is an equivalence relation on A, is the quotient
class A/R —the standard symbol for this— a set?

Notes on Discrete MATH (EECS1028)© G. Tourlakis

126 4. Relations and functions

4.4.6 Theorem. A/R is a set for any set A and equivalence relation
R on A.

Proof. A/R just contains all the [x]R ⊆ A —recall, [x]R
Def
= {z ∈ A :

xRz}.
So,

[x]R ∈ A/R =⇒ [x]R ⊆ A =⇒ [x]R ∈ 2A

□
Thus A/R ⊆ 2A and we are done by 2.3.6.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

4.4. Equivalence relations 127

4.4.7 Lemma. Let P be an equivalence relation on A. Then [x] = [y]
iff xPy —where we have omitted the subscript P from the [. . .]-notation.

Proof. (→) part. Assume [x] = [y].

By reflexivity of P , y ∈ [y] (4.4.5).

The assumption then yields y ∈ [x] and therefore xPy by 4.4.4.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

128 4. Relations and functions

(←) part. Assume xPy.

Let z ∈ [x]. Then xPz.

By assumption I also have yPx (by symmetry), thus, transitivity
yields yPz. This says z ∈ [y], proving

[x] ⊆ [y] (1)

By symmetry of P , the “blue” assumption yields yPx and the three-
line argument above also yields [y] ⊆ [x]. This and (1) yield [x] = [y].

□

Notes on Discrete MATH (EECS1028)© G. Tourlakis

4.4. Equivalence relations 129

Oct. 7, 2024

4.4.8 Lemma. Let R be an equivalence relation on A. Then

(i) [x] ̸= ∅, for all x ∈ A.

(ii) [x] ∩ [y] ̸= ∅ implies [x] = [y], for all x, y in A.

(iii)
⋃

x∈A[x] = A.

� Note: ⋃
x∈A

[x]
Def
=

⋃{
[x] : x ∈ A

}
=

⋃
A/R

�

Proof.

(i) 4.4.5.

(ii) Let z ∈ [x] ∩ [y]. Then xRz and yRz, therefore xRz and zRy

(the latter by symmetry); hence xRy (transitivity).

Thus, [x] = [y] by Lemma 4.4.7.

(iii) The ⊆-part is obvious from [x] ⊆ A.

The ⊇-part follows from {x} ⊆ [x].

Notes on Discrete MATH (EECS1028)© G. Tourlakis

130 4. Relations and functions

A =
⋃
x∈A

{x} ⊆
⋃
x∈A

[x]

□

The properties (i)–(iii) are characteristic of the notion of a partition
of a set.

4.4.9 Definition. (Partitions) Let F be a family of subsets of A. It
is a partition on A iff all of the following hold:

(i) For all X ∈ F we have that X ̸= ∅.

(ii) If {X, Y } ⊆ F and X ∩ Y ̸= ∅, then X = Y .

(iii)
⋃
F = A. □

� So, A/R is a partition on A. �

There is a natural affinity between equivalence relations and parti-
tions on a set A. In fact,

Notes on Discrete MATH (EECS1028)© G. Tourlakis

4.4. Equivalence relations 131

4.4.10 Theorem. Given a partition F on a set A. This leads to the
definition of an equivalence relation P whose equivalence classes are
precisely the sets —often called “blocks” or “ tiles”— of the partition,
which is F = A/P .

Proof. First we define P :

xPy
Def

iff (∃X ∈ F){x, y} ⊆ X (1)

Observe that

(i) P is reflexive: Take any x ∈ A. By 4.4.9(iii), there is an X ∈ F

such that x ∈ X. But {x, x} ⊆ X. Thus xPx.

(ii) P is, trivially, symmetric since there is no order in {x, y}.

(iii) P is transitive: Indeed, let xPyPz. Then {x, y} ⊆ X and {y, z} ⊆
Y for some X, Y in F .

Thus, y ∈ X ∩ Y hence X = Y by 4.4.9(ii). Hence {x, z} ⊆ X,
therefore xPz.

So P is an equivalence relation. Let us compare its equivalence
classes with the various X ∈ F .

Now [x]P (dropping the subscript P in the remaining proof) is

{y : xPy} (2)

Let us compare [x] with the unique X ∈ F that ALSO contains x
—why unique? By 4.4.9(ii). Thus,

y ∈ [x]
(2)⇐⇒ xPy

Def (1)⇐⇒
t︷ ︸︸ ︷

x ∈ X ∧y ∈ X
x∈X is t⇐⇒ y ∈ X

Thus [x] = X. □

Notes on Discrete MATH (EECS1028)© G. Tourlakis

132 4. Relations and functions

4.4.11 Example. (Another look at congruences; Read Me!)
Euclid’s theorem for the division of integers states:

If a ∈ Z and 2 ≤ m ∈ Z, then there are unique q and r such that

a = mq + r and 0 ≤ r < m (1)

There are many proofs, but here is one: Fix a and m ≥ 2. The set

T = {x : 0 ≤ x = a−mz, for some z}

is not empty. For example,

• if a > 0, then take z = 0 to obtain x = a > 0 in T .

• If a = 0, then take z = 0 to obtain x = 0 ∈ T .

• Finally, if a < 0, then take z = −|a| † to obtain x = −|a|+m|a| =
|a|(m− 1) > 0 in T (since m ≥ 2 we have m− 1 ≥ 1).

Let then r be the smallest x ≥ 0 in T .

†Absolute value.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

4.4. Equivalence relations 133

The corresponding “z” to the smallest x = r let us call q. So we
have

a = mq + r, where 0 ≤ r (2)

Can r ≥ m? If so, then write r = k +m, where k = r −m ≥ 0 and
thus k < r. I got

a = m(q + 1) + k

As k < r, I have contradicted the minimality of r in (2) in the box
above.

This proves that r < m.

We have proved existence of at least one pair q and r that works
for (1) on p.132.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

134 4. Relations and functions

How about uniqueness?

Well, the worst thing that can happen is to have two representa-
tions 1). Here is another one:

a = mq′ + r′ and 0 ≤ r′ < m (2)

As both r and r′ are < m, their “distance” (absolute difference) is
also < m.†

Now, from (1) and (2) we get

m|q − q′| = |r − r′| (3)

This cannot be unless q = q′ (in which case r = r′, therefore uniqueness
is proved).

Wait: Why it “cannot be” if q ̸= q′?

Because then |q − q′| ≥ 1 thus the lhs of “=” in (3) is ≥ m but the
rhs is < m.

†From 0 ≤ r′ < m I get −m < r′ ≤ 0. Using (1) (p.132), I get −m < r − r′ < m. That is, |r − r′| < m.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

4.4. Equivalence relations 135

We now take a deep breath!

Notes on Discrete MATH (EECS1028)© G. Tourlakis

136 4. Relations and functions

Now, back to congruences! The above was just a preamble!

Fix an m > 1 and consider the congruences x ≡m y. What are the
equivalence classes?

Better question is what representative members are convenient to
use for each such class? Given that a ≡m r by (1) (p.132), and using
Lemma 4.4.7 we have [a]m = [r]m.

� r is a far better representative than a for the class [a]m as it is “nor-
malised”. �

Thus, we have just m equivalence classes [0], [1], . . . , [m− 1].

Wait! Are they distinct? Yes! Since [i] = [j] is the same as i ≡m j
(4.4.7) and, since 0 < |i − j| < m, m cannot divide i − j with 0
remainder, we cannot have [i] = [j] if i ̸= j. □

Notes on Discrete MATH (EECS1028)© G. Tourlakis

4.4. Equivalence relations 137

4.4.12 Example. (A practical example) Say, I chosem = 5. Where
does a = −110987 belong?

I.e., in which class out of [0]5, [1]5, [2]5, [3]5, [4]5?

Well, let’s do primary-school-learnt long division of |a| = −a > 0
divided by 5 and find quotient q and remainder r. We find, in this
case, q = 22197 and r = 2. These satisfy

|a| = −a = 22197× 5 + 2

Thus,

a = −22197× 5− 2 (1)

(1) can be rephrased as

a ≡5 −2 (2)

But easily we check that −2 ≡5 3 (since 3− (−2) = 5). Thus,

a ∈ [−2]5 = [3]5 □

Notes on Discrete MATH (EECS1028)© G. Tourlakis

138 4. Relations and functions

4.4.13 Exercise. Can you now easily write the same a above as

a = Q× 5 +R, with 0 ≤ R < 5?

Show all your work. □

Notes on Discrete MATH (EECS1028)© G. Tourlakis

4.5. Partial orders 139

4.5. Partial orders

Oct. 9, 2024

This section introduces one of the most important kind of binary re-
lations in set theory and mathematics in general: The partial order
relations.

4.5.1. Preliminaries

4.5.1 Definition. (Converse or Inverse relation of P) For any re-
lation P, the symbol P−1 is called the converse or inverse relation of P
and is defined by

P−1={(x, y) : yPx} (1)

xP−1y iff yPx is an equivalence that says exactly what (1) does. □

4.5.2 Theorem. dom(P) = ran(P−1) and dom(P−1) = ran(P).

Proof. The two columns of the tables P and P−1 are SWAPPED. Done.

Algebraically (formulaically) it is as easy:

dom(P) = {y : (∃x)yPx} = {y : (∃x)xP−1y} = ran(P−1)

dom(P−1) = {y : (∃x)yP−1x} = {y : (∃x)xPy} = ran(P) □

Notes on Discrete MATH (EECS1028)© G. Tourlakis

140 4. Relations and functions

4.5.3 Example. If I take P to be “<” on N, then >=<−1 —i.e., >
IS the inverse of <— since

x > y iff y < x □

Notes on Discrete MATH (EECS1028)© G. Tourlakis

4.5. Partial orders 141

More notation!

4.5.4 Definition. (Important: “(a)P” notation) For any relation
P we write “(a)P” to indicate the class —possibly proper— of all out-
puts of P for input a. That is,

(a)PDef
= {y : aP y}

If (a)P = ∅, then we say “P is undefined at a” —that is, a /∈ dom(P).

The last “underlined” formula is read as “P is undefined at a”.

If (a)P ̸= ∅, then P is “defined” at a —a does produce outputs!—
that is, a ∈ dom(P).

The blue underlined statement is read as “P is defined at a”. □

Notes on Discrete MATH (EECS1028)© G. Tourlakis

142 4. Relations and functions

4.5.5 Remark. (Predecessors along a Relation)

(1) Interestingly, if R is an equivalence relation on a set A, then, using
the above notation, [x]R = (x)R.

(2) In analogy with the set {y : y < x} over the natural numbers —
that we call the set of <-predecessors of x— we have, in general,
the class of P-predecessors of x:

{y : yPx} (†)

Why “predecessors”? Well, for the natural number case above
we note that y < x is often read “y is before x”.

(3) Note that
{y : yPa} = {y : aP−1y} = (a)P−1

Thus, in particular, {y : y < a} = (a)> □

Notes on Discrete MATH (EECS1028)© G. Tourlakis

4.5. Partial orders 143

4.5.6 Exercise. Give an example of a specific relation P and one spe-
cific input object (set or atom) a such that (a)P is a proper class. □

Notes on Discrete MATH (EECS1028)© G. Tourlakis

144 4. Relations and functions

4.5.2. Definitions and Some Results

4.5.7 Definition. (Partial Order) A relation P is called a partial
order or just an order, iff it is all of

(1) irreflexive (i.e., xPy → x ̸= y, for all x, y), or

(1′) Alternatively, irreflexive (i.e., xPx is false, for all x), and

(2) transitive.

It is emphasised that in the interest of generality —for much of this
subsection (until we say otherwise)— P need not be a set.

Some people call this a strict order as it imitates the “<” on, say,
the natural numbers. □

Notes on Discrete MATH (EECS1028)© G. Tourlakis

4.5. Partial orders 145

4.5.8� Remark. (1) We will usually use the symbol “<”

even in the abstract setting

to denote any unspecified order P, and it will be pronounced “less
than”.

(2) If the order < is a subclass of A × A —i.e., it is <: A → A or
<⊆ A× A— then we say that < is an order on A.

(3) Clearly, for any order < and any class B, < ∩ (B× B) is an order
on B.

We call < ∩ (B×B) the relational restriction of < on B and denote
it by < |B. That is, “keep ONLY the pairs whose input AND
output components are in B”

□ �

4.5.9 Exercise. How clearly? (re (3) above.) Give a simple, short
proof.

Hint. x
(
< ∩ (B× B)

)
y iff x < y and {x, y} ⊆ B. □

Notes on Discrete MATH (EECS1028)© G. Tourlakis

146 4. Relations and functions

4.5.10 Example. The standard concrete “less than”, <, on N is an
order, but ≤ is not (it is NOT irreflexive!).

The “greater than” relation, >, on N is also an order, but ≥ is not.

In general, it is trivial to verify that “P is an order iff P−1” is an
order. Exercise! □

4.5.11 Example. ∅ is an order.

Moreover for any A, ∅ ⊆ A× A,

hence ∅ is also an order on A for ANY arbitrary A. □

Notes on Discrete MATH (EECS1028)© G. Tourlakis

4.5. Partial orders 147

4.5.12 Example. The relation ∈ is irreflexive by the well known A /∈
A, for all A.

It is not transitive though.

For example, 1 ∈ {1} ∈ {{1}} but 1 /∈ {{1}}.

So ∈ is not an order. □

Notes on Discrete MATH (EECS1028)© G. Tourlakis

148 4. Relations and functions

4.5.13 Example. Let M =

{
∅, {∅},

{
∅, {∅}

}
,
{
∅, {∅},

{
∅, {∅}

}}}
.

The relation
ε =∈ |M

is transitive (and irreflexive), hence it is an order (on M). Verify!

□

Notes on Discrete MATH (EECS1028)© G. Tourlakis

4.5. Partial orders 149

Oct. 11, 2024

4.5.14 Example. ⊂ (same as ⊊) is an order. On the other hand,
⊆—failing irreflexivity— is not. □

4.5.15� Example. (Why “Partial” Order?) Consider the order ⊂
again.

In this case,

For the sets {1} and {2} we note that we have none of the three
cases: {1} = {2} or {1} ⊂ {2} or {2} ⊂ {1}. The two sets here
are NOT comparable with respect to ⊂.

The order being unable to compare the two is called “partial”.

On the other hand, the “natural” < on N is such that one of x = y,
x < y, y < x always holds for any x, y in N.

That is, all (unordered) pairs x, y of N are comparable under <.

While all orders are “partial”, some are total (< above) and others
are nontotal (⊂ above).

Notes on Discrete MATH (EECS1028)© G. Tourlakis

150 4. Relations and functions

“Partial” is not the negation of “total”. “Partial says ‘maybe
nontotal’ ”

□ �

Notes on Discrete MATH (EECS1028)© G. Tourlakis

4.5. Partial orders 151

4.5.16 Definition. Let < be an arbitrary (abstract) partial order on
a class A. Let A = dom(<) ∪ ran(<). We define

≤ Def
= ∆A∪ <

OR, define

x≤ y
Def

iff

∆A

↓
x= y ∨x < y

We pronounce ≤ “less than or equal”.

∆A∪ > is denoted by ≥ and is pronounced “greater than or equal”.

Let us call “≤” a reflexive order or also a non strict order.

□

� The definition of ≤ depends on the FIELD A due to the presence of
∆A.

There is no need for such dependency on any “reference”
class (Field) in the case of <. �

Notes on Discrete MATH (EECS1028)© G. Tourlakis

152 4. Relations and functions

Recall that “<” —as in lemma below— will be used often,
without warning, as an “abstract” (= unspecified) order
other than the familiar one on N or Z or Q or R.

4.5.17 Lemma. For any abstract —that is, not specific— <: A→ A,
the associated relation ≤ on A defined in 4.5.16 is reflexive, antisym-
metric and transitive.

Proof.
(1) Reflexivity is trivial. ∆A “throws in” all pairs (x, x) for all x ∈ A.

(2) For antisymmetry, let x ≤ y︸ ︷︷ ︸
x=y∨x<y

and y ≤ x︸ ︷︷ ︸
x=y∨y<x

.

I will prove x = y by contradiction.

Suppose x ̸= y instead. Then the hypothesis (the “let”-sentence
above) becomes x < y and y < x, hence (by transitivity of “<”) x < x.
This contradicts irreflexivity of <

We proved x = y.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

4.5. Partial orders 153

(3) As for transitivity Let x ≤ y and y ≤ z.

We want to prove that x ≤ z follows from hypothesis (3).

(a) If x = z we are done, since then x ≤ z is true:

t︷ ︸︸ ︷
x = z︸ ︷︷ ︸

t

∨x < z.

(b) The remaining case is x ̸= z

The Subcases below analyse hypothesis (3) —the “Let”-
sentence above.

• Subcase x = y. Then y ≤ z (see (3)) becomes x ≤ z. Done.

• Subcase y = z. Then x ≤ y (see (3)) becomes x ≤ z. Done.

• Subcase x ̸= y AND y ̸= z Remains (the subcase x = y = z

is impossible given that x ̸= z).

So we have (by (3)) x < y and y < z

By transitivity of < we get x < z, hence x ≤ z, since the latter
says x < z︸ ︷︷ ︸

t

∨x = z. Done one last time! □

Notes on Discrete MATH (EECS1028)© G. Tourlakis

154 4. Relations and functions

4.5.18 Lemma. Let P on A be reflexive, antisymmetric and transitive.
Then P−∆A is a (strict) order on A.

Proof. Since
P−∆A ⊆ P (1)

it is clear that P−∆A is on A.

It is also clear that it is irreflexive since we REMOVED ALL (x, x)
pairs, which are in ∆A.

▶We only need verify that it is transitive.

So let
(x, y) and (y, z) be in P−∆A (2)

We want (x, z) ∈ P−∆A

By (1) and (2)
(x, y) and (y, z) are in P (3)

hence
(x, z) ∈ P (4)

by the given transitivity of P.

But I want (x, z) ∈ P−∆A (†)
Can (x, z) ∈∆A, i.e., can x = z?

No, because antisymmetry of P (given) and (3) would then imply
x = y, i.e., (x, y) ∈∆A contrary to (2).

So, (x, z) ∈ P−∆A by (4), and we got (†). □

Notes on Discrete MATH (EECS1028)© G. Tourlakis

4.5. Partial orders 155

4.5.19� Remark. Lemmas 4.5.17 and 4.5.18 show that the two ap-
proaches —“<” and “≤”— are interchangeable. However the “mod-
ern” approach of Definition 4.5.7 avoids the nuisance of having to tie
the notion of order to some particular “field” A (4.1.7).

For us, in class and in our notes, “≤” is the derived, secondary notion
defined in 4.5.16. □ �

Notes on Discrete MATH (EECS1028)© G. Tourlakis

156 4. Relations and functions

Oct. 23, 2024

4.5.20 Definition. (PO Class) If < is an order on a class A, we call
the informal pair (A, <) a partially ordered class, or PO class.

If < is an order on a set A, we call the pair (A,<) a partially ordered
set or PO set. Often, if the order < is understood as being on A or A,
one says that “A is a PO class” or “A is a PO set” respectively. □

� � Mathematically speaking, (A, <) is not an ordered pair when A is a
proper class because in {A, {A, <}} we do not allow class members .
We may think instead (non mathematically) of “(A, <)” as informal
notation that simply “associates” A and < together into a “toolbox”
(. . . , . . .). � �

Notes on Discrete MATH (EECS1028)© G. Tourlakis

4.5. Partial orders 157

4.5.21 Definition. (Linear Order) A relation < on A is a total or
linear order on A iff it is all of

(1) An order, and, moreover,
(2) For any x, y in A one of x = y, x < y, y < x is true —this

is the so-called “trichotomy” property for <.

Trichotomy says: For any x, y we have x = y ∨ x < y ∨ x > y is true

If A is a class, then the informal pair (A, <) is a linearly ordered
class —in short, a LO class.

If A is a set, then the pair (A, <) is a linearly ordered set —in short,
a LO set.

One often calls just A a LO class or LO set (as the case warrants)
when < is understood from the context. □

4.5.22 Example. The standard <: N → N is a total order, hence
(N, <) is a LO set.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

158 4. Relations and functions

4.5.23 Definition. (Minimal and minimum elements) Let < be
ANY (irreflexive) order and A be any class.

We are NEITHER requiring NOR assuming that < is ON A.

An element b ∈ A is a <-minimal element IN A, or a <-minimal
element OF A, or minimal in A with respect to <, iff

¬(∃x ∈ A)x < b

or
A ∩ {x : x < b} = ∅

In words, there is nothing before b in A.
b has NO “predecessors” (see Remark 4.5.5, item (2)) in A.

m ∈ A is a <-minimum element IN A iff (∀x ∈ A)m ≤ x.b

bOf course, “m ≤ x” says (means) m < x ∨m = x.

� Thus, miniMUM is defined in terms of the ASSOCIATED
NON STRICT order ≤ of < �

If < is understood, then the qualification “<-” is omitted. □

Notes on Discrete MATH (EECS1028)© G. Tourlakis

4.5. Partial orders 159

4.5.24 Exercise. In particular, if b (∈ A) is not in the field

dom(<) ∪ ran(<)

(cf. 4.1.7) of <, then b is <-minimal in A.
Hint. Compute {x : x < b}. □

Notes on Discrete MATH (EECS1028)© G. Tourlakis

160 4. Relations and functions

4.5.25� Remark. (Important) Note how the notation learnt from
4.5.4 can simplify the expression

¬(∃x ∈ A)x < a (1)

Since x < a iff a > x, (1) says that no x is in both A and in the
predecessor class {x : x < a} = {x : a > x} = (a) >. †

That is, a is <-minimal in A iff

A ∩ (a)>= ∅ (2)

□ �

† {x : x < a}︸ ︷︷ ︸
class of predecessors of a

= {x : a > x} = (a) > (see also 4.5.5).

Notes on Discrete MATH (EECS1028)© G. Tourlakis

4.5. Partial orders 161

4.5.26� Example. (Important) 0 is minimal, also minimum, in N
with respect to the natural ordering.

In P(N), ∅ is both ⊂-minimal and ⊂-minimum.

On the other hand, all of {0}, {1}, {2} are ⊂-minimal in P(N)−{∅}

but none are ⊂-minimum in that set. For example, {1} ̸⊆ {2, 3}.

All singletons of N− {∅} are miniMAL. None is miniMUM.

So, the concepts “minimal” and “minimum” are DISTINCT!

Observe from this last example that minimal elements in a class are
NOT unique. □ �

Notes on Discrete MATH (EECS1028)© G. Tourlakis

162 4. Relations and functions

4.5.27 Remark. (Hasse diagrams) Read me! There is a neat pic-
torial way to depict orders on finite sets known as “Hasse diagrams”.
To do so one creates a so-called “graph” of the finite PO set (A,<)
where A = {a1, a2, . . . , an}.

How? The graph consists of n nodes —which are drawn as points—
each labeled by one ai. The graph also contains 0 or more arrows that
connect nodes. These arrows are called edges.

When we depict an arbitrary R on a finite set like A we draw one
arrow (edge) from ai to aj iff the two relate: aiRaj.

In Hasse diagrams for PO sets (A,<) we are more selective:

We say that b covers a iff a < b, but there is no c such that a < c
AND c < b.

In a Hasse diagram we will

1. draw an edge from ai to aj iff aj covers ai.

2. by convention we will draw b higher than a on the page if b covers
a.

3. given the convention above, using “arrow-heads” is superflu-
ous: our edges are plain line segments.

So, let us have A = {1, 2, 3} and <= {(1, 2), (1, 3), (2, 3)}.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

4.5. Partial orders 163

1

2

3

The above has a minimum (1) and a maximum (3) and is clearly a
linear order.

A slightly more complex one is this (A,<), where A = {1, 2, 3, 4}
and <= {(1, 2), (4, 2), (2, 3), (1, 3), (4, 3)}.

1

2

3

4

This one has a maximum (3), two minimal elements (1 and 4) but no
minimum, and is not a linear order: 1 and 4 are not comparable. □

Notes on Discrete MATH (EECS1028)© G. Tourlakis

164 4. Relations and functions

Oct. 23, 2024

4.5.28 Lemma. Given an order < and a class A.
(1) If m is a minimum in A, then it is also minimal.

(2) If m is a minimum in A, then it is unique.

Proof. (1) Let m be minimum in A. Then

m ≤ x, that is, we have m = x ∨m < x (i)

for all x ∈ A.

Now, prove that there is NO x ∈ A such that x < m.

OK, let us go by contradiction:

• So ASSUME instead, for some a ∈ A, it is

a < m (ii)

that is, suppose m is NOT minimal.

• I also have m ≤ a by (i), because both m and a are in A and m is
minimum; that is,

f by (ii)︷ ︸︸ ︷
m = a∨m < a (iii)

• So, (iii) nets m < a.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

4.5. Partial orders 165

So (ii) and (iii) and transitivity yield a < a; contradiction (< is
irreflexive). Done.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

166 4. Relations and functions

(2) Let m and n both be minima (plural of minimum) in A. Then
m ≤ n (with m posing as minimum) and n ≤ m (now n is so
posing), hence m = n by antisymmetry (Lemma 4.5.17). □

Notes on Discrete MATH (EECS1028)© G. Tourlakis

4.5. Partial orders 167

4.5.29 Lemma. If < is a linear order on A, then every minimal ele-
ment is also minimum.

Proof. Easy Exercise!

Hint. If a ∈ A is minimal, then, for all x ∈ A, the statement “x < a”
is false. Since for all x the statement

f︷ ︸︸ ︷
x < a∨a < x ∨ x = a

is true (because< is total), we have for all x the statement a < x∨x = a
is true. ETC. □

So, by 4.5.28 and 4.5.29,

4.5.30 Corollary. In a linear order the concepts miniMUM and min-
iMAL coincide.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

168 4. Relations and functions

Oct. 25, 2024

The following type of relation has fundamental importance for set
theory, and mathematics in general.

4.5.31 Definition.

1. A general (irreflexive) order < satisfies the miniMAL condition, in
short it has MC, iff EVERY nonempty A “out there”† DOES have
<-minimal elements.

2. If a total order <: B→ B has MC, then it is called a well-ordering‡

on (or of) the class B.

3. If (B, <) is a LO class (or LO set) where “<” has MC, then it is a
well-ordered class (or well-ordered set), or WO class (or WO set).

□

†This “out there” implies that A is not in any way tied or connected to < (as a field or whatever).
‡The term “well-ordering” is ungrammatical, but it is the terminology established in the literature!

Notes on Discrete MATH (EECS1028)© G. Tourlakis

4.5. Partial orders 169

4.5.32� Remark.
In symbols, Definition 4.5.31, Item 1, says that < has MC iff the

following is true:

∅ ≠ A→ (∃a ∈ A)
¬(∃x∈A)x<a︷ ︸︸ ︷

A ∩ (a) > = ∅︸ ︷︷ ︸
a is <-minimal in A

(1)

The following REPHRASING of (1) is very important for future
reference:

If A is given via a defining property F (x), as A=Def{x : F (x)}, then
(1) translates —in terms of F (x)— into

A ̸=∅︷ ︸︸ ︷
(∃a)F (a)→

(∃a∈A)︷ ︸︸ ︷
(∃a)

(
F (a)∧¬ (∃y)

(
F (y)︸ ︷︷ ︸

(∃y∈A)

∧ a > y
))

(2′)

OR
(∃a)F (a)→ (∃a)

(
F (a) ∧ ¬(∃y)

(
y < a ∧ F (y)

))
(2)

Notes on Discrete MATH (EECS1028)© G. Tourlakis

170 4. Relations and functions

Notes on Discrete MATH (EECS1028)© G. Tourlakis

Chapter 5

Functions

We consider here a special case of relations that we know as “func-
tions”.

Many of you know already that a function is a relation with some
special properties.

Let’s make all this official:

Notes on Discrete MATH (EECS1028)© G. Tourlakis

172 5. Functions

5.1. Preliminaries

5.1.1 Definition. A function R is a single-valued relation.

That is,
whenever we have both xRy and xRz

then
we will also have y = z □

NOTATION. It is traditional to use, generically, lower case letters
from among f, g, h, k when dealing with functions that are sets and
F,G,H,K for functions that are proper classes —with primes and/or
subscripts if we run out of letters.

The above definition of “function” does not care about left or right
fields.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

5.1. Preliminaries 173

5.1.2� Remark. Another way of putting it, using the notation from
4.5.4, is:

A relation R is a function iff, for each a, (a)R is either empty or a
singleton (i.e., contains exactly one element).

□ �

Notes on Discrete MATH (EECS1028)© G. Tourlakis

174 5. Functions

5.1.3 Example. (Important) The empty set is a relation of course,
the empty set of pairs. It is also a function since

f︷ ︸︸ ︷
(x, y) ∈ ∅ ∧ (x, z) ∈ ∅ → y = z

vacuously, by virtue of the left hand side of → being false. □

5.1.4 Example. (Important) The diagonal 1A : A → A is a func-
tion. Indeed,

For any x ∈ A we have (x)∆A = {x}

□

Notes on Discrete MATH (EECS1028)© G. Tourlakis

5.1. Preliminaries 175

5.1.5 Definition. (Function-specific notations and concepts)
Let F be a function.

1. First off, the concepts AND notation for

• domain

• range,

and —in case of a function F : A→ B
• left field

• right field

• field

• total

and

• onto

are inherited from those for relations without change.

2.

Even the notations “aRb”, “(a, b) ∈ R” and “(a)R” transfer
over to functions and are OFTEN useful and ARE employed!

Notes on Discrete MATH (EECS1028)© G. Tourlakis

176 5. Functions

3. And yet, we have an annoying difference in notation:

For a relation F —or viewing a function F as a relation— the

class
{y : aFy} (1)

is denoted by (a)F (first defined in 4.5.4).

If F is a function, then the class in (1) is either empty or has
ONE element ONLY (see 5.1.2); say, y.

In Relational Notation that is:

(a)F =

{
{y} if F defined at a

∅ if F undefined at a
(2)

The literature in generalb denotes (2) in this “function-specific”
NOTATION

F(a)= y
〈
note order reversal from (a)F and braces-removal!

〉
F(a)↑ ⟨F undefined at a⟩

bNot all the literature: The significant book [Kur63] writes “af” for (set) functions AND relations, omitting
even the brackets around a.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

5.1. Preliminaries 177

NOTATION: Thus for a function F, we have all the notations
below available to us!

aFy iff (a)F = {y} iff F(a) = y

and
¬(∃y)aFy iff (a)F = ∅ iff F(a) ↑

□

Notes on Discrete MATH (EECS1028)© G. Tourlakis

178 5. Functions

5.1.6� Example. (Read Me!) In particular F(a) = ∅ means

(a)F = {∅}

that is, (a, ∅) ∈ F or aF∅—not what one might hastily think it means!

Definitely, F(a) ↓ here, with output the object “∅”, it is NOT F(a) ↑
□ �

Notes on Discrete MATH (EECS1028)© G. Tourlakis

5.1. Preliminaries 179

Oct. 28, 2024

5.1.7 Definition. (Images) The class of all outputs of a function F,
when all the inputs come from any particular class X, is called
the image of X under F and is denoted by F[X].

Thus, mathematically,

F[X]Def
= {

all outputs for x∈X︷︸︸︷
F(x) : x ∈ X} (1)

Note that careless notation like F(A) —where A is a set— will not
do for F[A].

The ()-notation means the input IS THE object A —NOT
members of A.

If I want the inputs to be FROM INSIDE A, then I MUST
use []-notation; I did!

Notes on Discrete MATH (EECS1028)© G. Tourlakis

180 5. Functions

The inverse image of a class Y under a function F is useful as well,
that is, the class of all inputs that cause F-outputs exclusively in Y.

It is denoted by F−1[Y] and is defined as

F−1[Y]Def
= {x : F(x) ∈ Y} (2)

� There may well exist y ∈ Y such that NO x exists such that F(x) = y.

For example if F = {(0, 1)} and Y = {3}, then F−1[Y] = ∅. No
input causes output 3. �

□

Notes on Discrete MATH (EECS1028)© G. Tourlakis

5.1. Preliminaries 181

This is a good time to introduce “Principle 3”† of set formation.

5.1.8� Remark. (LABELLING) “Suppose that the class (of
sets and/or atoms) Y is indexed/labelled by some (or all)
members of a set L. Then Y too is a set”.

I am using “INDEXED” as synonymous to “LABELLED”
by (some) members of a set L so that, to every X ∈ Y, we
have attached as “LABEL(S)” OR “INDICES” (often in form of
subscripts or superscripts) some member(s) of L.

REQUIREMENT on LABELS: We may label any member
of Y with many labels from L, but we may NEVER use the same
label twice for labelling, and may NOT leave any member of Y
unlabelled.

Example. If Y = {A,B,C}, then {A1, B13,19,0, C42} is a valid la-
belling with labels from N.‡

Think of the above that you have a function

f : {1, 13, 42, 19, 0} → {A,B,C}

where f(1) = A, f(13) = f(19) = f(0) = B, f(42) = C.

{A1,13, B13, C19} is not correctly labelled (same label used twice), the
labelling of {A1,42, B13, C} is also invalid (C was not labelled).

Thus: A correct labelling of a class MUST be a function that is
onto said class.

†This is the last Principle; I promise!
‡B has three labels attached to it.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

182 5. Functions

So LABELLING from L is effected by a function —see figure
above— that is ONTO the labelled class Y.

The function “maps” one or more labels from L to each member
of Y.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

5.1. Preliminaries 183

Note that Y, intuitively speaking, has no “MORE” members than

the label set L since for EACH ONE member A ∈ Y, we SPEND
ONE or MORE labels from the label set L, and none of these labels
REPEATS. See preceding figure.

Thus our intuition can accept that Y is not “bigger” than the label
set, L.

This intuitive acceptance is made “Official” via

PRINCIPLE 3: A class Y is proved to be a set as long as it has

a labelling with labels from a set L.

Some people call Principle 3 the “size limitation doctrine”.

Researchers on the foundations of set theory felt that paradoxes oc-
curred in connection with “enormous classes”.

Why? Because, intuitively, when building “enormous classes” we
run out of stages needed to build them as SETS.

So “small” is good and Principle 3 helps us discover NEW “small”
classes (therefore sets) by comparing them with known to us
“small” label-classes. □ �

Notes on Discrete MATH (EECS1028)© G. Tourlakis

184 5. Functions

5.1.9 Theorem. If G is a function, and L is a set, then G[L] is a set.

Proof. Let
Y = G[L] (†)

See figure on p.182.

The G maps —labels— one or more members of L to members of
Y.

In so doing,

1. It covers all of Y since the latter is all the G(x) for x ∈ L.

2. No x ∈ L labels two different members of Y because G is a
function.

So G provides a labelling of Y.

□

Notes on Discrete MATH (EECS1028)© G. Tourlakis

5.1. Preliminaries 185

5.1.10 Corollary. If G is a function and dom(G) is a set, then G is
a set.

Proof. Exercise! □

Notes on Discrete MATH (EECS1028)© G. Tourlakis

186 5. Functions

Pause. So far we have been giving definitions regarding functions
of one variable. Or have we?◀

Not really: We have already said that the multiple-input case is sub-
sumed by our notation. If F : A→ B and A is a class of n-tuples, then
F is a function of “n-variables”.

The binary relation, that such an F is, contains pairs like
(
(x⃗n), xn+1

)
.

However, we usually abuse the notation F
(
(x⃗n)

)
—or

(
(x⃗n)

)
F—

and write instead F(x⃗n) —or (x⃗n)F— omitting the brackets of the n-
tuple (x⃗n).

Notes on Discrete MATH (EECS1028)© G. Tourlakis

5.1. Preliminaries 187

5.1.11� Remark. (READ ME!) Regarding, say, the definition of F[X]
(5.1.7):

What if F(a) ↑? How do you “collect” an undefined “value” into a class?

Well, you don’t.

Both (1) and (2) in 5.1.7 have a rendering that is independent of the
notation “F(a)” or even “(a)F”.

F[X] = {y : (∃x ∈ X)xFy} (1′)

F−1[Y] = {x : (∃y ∈ Y)xFy} (2′)

□ �

Notes on Discrete MATH (EECS1028)© G. Tourlakis

188 5. Functions

5.1.12 Example. (Important) Thus, f [{a}] = {f(x) : x ∈ {a}} =
{f(x) : x = a} = {f(a)}.

Let now g =
{
(1, 2),

(
{1, 2}, 2

)
, (2, 7)

}
, clearly a function. Thus,

g({1, 2}) = 2, but g[{1, 2}] = {2, 7}. Also, g(5) ↑ and thus g[{5}] = ∅.

On the other hand, g−1[{2, 7}] = {1, {1, 2}, 2} and g−1[{2}] = {1, {1, 2}},
while g−1[{8}] = ∅ since no input causes output 8. □

Notes on Discrete MATH (EECS1028)© G. Tourlakis

5.1. Preliminaries 189

5.1.13� Remark. (Kleene Equality) When f(a) ↓, then f(a) = f(a)
as is naturally expected.

What about when f(a) ↑?

This begs a more general question that we settle as follows (follow-
ing Kleene, [Kle43]):

When is f(a) = g(b) where f, g are two functions?

� Intuitive answer: f(a) = g(b) IFF the two function “calls” left and
right of “=” produce the SAME RESPONSE. �

In symbols:

f(a) = g(b)
Def ([Kle43])

≡ f(a) ↑ ∧ g(b) ↑ ∨(∃y)
(
f(a) = y ∧ g(b) = y

)
□ �

Notes on Discrete MATH (EECS1028)© G. Tourlakis

190 5. Functions

Oct. 30, 2024

5.1.14 Example. Let g = {(1, 2), ({1, 2}, 2), (2, 7)}.

Then, g(1) = g({1, 2}) and g(1) ̸= g(2).

g(3) = g(4) since both sides are undefined. □

Notes on Discrete MATH (EECS1028)© G. Tourlakis

5.1. Preliminaries 191

5.1.15 Definition. A function f is 1-1 iff (i.e., the concept “1-1” is
short for) for all x, y and z, f(x) = f(y) = z implies x = y.

This means the SAME, in relational notation, AS:

f is 1-1 iff xfz ∧ yfz → x = y (1)

In words, the above says: distinct inputs must cause dis-
tinct outputs.

Same definition for a possibly non-set function F. □

� Wait! Why does our definition say distinct inputs “map” to (= “pro-
duce”) distinct results?

Well take the contrapositive of (1):

For two statements S and S ′, the contrapositive of the implica-
tion S → S ′ is ¬S ′ → ¬S.

suppose t︷ ︸︸ ︷
x ̸= y → ¬

(must be f︷ ︸︸ ︷
xfz ∧ yfz

)
That is, if the inputs are different and one (the x) produces z, then

the other (the y) cannot also produce z. �

Notes on Discrete MATH (EECS1028)© G. Tourlakis

192 5. Functions

5.1.16� Remark. You might ask, “What’s wrong with defining f is 1-1
by simply requiring f(x) = f(y)→ x = y? I saw this in dubious texts.”

1-1-ness is RELEVANT to ANY function, total or not. However,
dubious texts believe all functions are total. For example the function
f = {(1, 2), (2, 9), (3, 8)} is 1-1 according to intuitive expectations that
are respected by the correct definition:

Distinct inputs 1, 2, 3 produce distinct actual outputs 2, 9, 8.

If we used the dubious (and wrong) definition (plenty of “fake” dis-
crete “MATH” books out there!) this f would not be 1-1 since, for
example, we have f(4) ↑= f(5) ↑, yet 4 ̸= 5.

Our definition supports what we immediately see: f IS 1-1. □

Notes on Discrete MATH (EECS1028)© G. Tourlakis

5.1. Preliminaries 193

5.1.17 Example. (Important) {(1, 1)} and {(1, 1), (2, 7)} are 1-1:
Also,

∅ is 1-1 vacuously.

{(1, 0), (2, 0)} is not 1-1. □

5.1.18 Exercise. (Important) Prove that if f is a 1-1 function, then
the relationalconverse f−1 is a function (that is, a single-valued rela-
tion). □

Notes on Discrete MATH (EECS1028)© G. Tourlakis

194 5. Functions

5.1.19 Definition. (1-1 Correspondence) A function f : A → B
is called a 1-1 correspondence iff it is all three: 1-1, total, and onto.

Often we say that “A and B are in 1-1 correspondence” writing

A
f∼B

often omitting mention of the function that is the 1-1 correspondence.

□

Notes on Discrete MATH (EECS1028)© G. Tourlakis

5.1. Preliminaries 195

5.1.20 Exercise. Show that ∼ is a symmetric and transitive relation
on sets. □

Notes on Discrete MATH (EECS1028)© G. Tourlakis

196 5. Functions

5.1.21� Remark. (Composition Again!) The concept of composi-
tion is NOT NEW. Functions ARE relations, so we know what com-
position is!

Thus, f ◦ g for two functions still means

x f ◦ g y iff, for some z, x f z g y (1)

▶ But also Note!

f ◦ g is also a function. Indeed, if we have

xf ◦ g y and xf ◦ g y′

then
for some z, xfzg y (2)

and
for some w, xfwg y′ (3)

Since f is a function, (2) and (3) give z = w. In turn, this (since g is
a function too!) gives y = y′. □ �

Notes on Discrete MATH (EECS1028)© G. Tourlakis

5.1. Preliminaries 197

The notation (as in 4.5.4) “(a)f” for relations is “uncommon”† when
applied to functions —but it IS correct— where “f(a)” may be more
convenient and more “usual”.

However, the “function” notation “f(a)” is awkward in connection
with composition.

If we write (f ◦ g)(a) this might be misread as if g grabs the input!
But it is f that “acts first”.

We want the action g
(
f(a)

)
.

†See however [Kur63].

Notes on Discrete MATH (EECS1028)© G. Tourlakis

198 5. Functions

We need a new notation (below) for functional composition.

5.1.22 Definition. (Salvaging Notation “f(a)”)
The present definition is about NOTATION only.

Let f and g be two functions. The Notation f ◦ g, their relational
composition, is the one in 4.2.1.

However, for composition of functions, we ALSO have the alternative
functional notation for composition:

“gf” stands for “f ◦g”; note the order reversal AND the absence
of “◦”, the composition symbol.

In particular we write (gf)(a) for (a)(f ◦ g) —cf. 5.1.5— placing
the input close to the function that uses it.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

5.1. Preliminaries 199

Thus let f and g be functions, hence as we saw (5.1.21), f ◦ g is a
function as well.

Therefore(
gf

)
(a) = b iff (a)(f ◦ g) = {b} (Box on p.198 via the lens of p.177)

iff a(f ◦ g)b
iff (a)f = {c} ∧ (c)g = {b}, for some c

iff f(a) = c ∧ g(c) = b, for some c

iff g
(
f(a)

)
= b

The two reds in the formula display above uphold the intuition that
f gets its input first and passes its output as input to g. □

Notes on Discrete MATH (EECS1028)© G. Tourlakis

200 5. Functions

5.1.23 Theorem. Functional composition is associative, that is,

(gf)h = g(fh)

Proof. Exercise!
Hint. Note that by, 5.1.22, (gf)h = h ◦ (f ◦ g). Take it from here.

□

5.1.24 Example. (Important! We know this from 5.1.4)
The identity relation on a set A is a function since (a)1A is the sin-

gleton —meaning “one-element” set— {a}.

In functional notation, 1A(a) = a □

Notes on Discrete MATH (EECS1028)© G. Tourlakis

5.1. Preliminaries 201

The following interesting result connects the notions of ontoness and
1-1ness with the “algebra” of composition.

5.1.25 Theorem. Let f : A→ B and g : B → A be functions. If

gf = 1A (1)

then g is onto while f is total and 1-1.

5.1.26 Definition. Relating to (1) in the theorem above we say that
g is a left inverse of f and f is a right inverse of g.

Using the indefinite article “a” because these are not in general
unique! Read Examples 5.1.27 and 5.1.28!

□

Notes on Discrete MATH (EECS1028)© G. Tourlakis

202 5. Functions

Proof. (of 5.1.25)

About g: Our goal, ontoness, means that, for each x ∈ A, I can
“solve the equation g(y) = x for y”.

Indeed I can:

For all x ∈ A, g
(
f(x)

)
5.1.22
= (gf)(x)

by (1)
= 1A(x) = x (2)

So to solve, take y = f(x).

About f :

Totalness: Start from gf = 1A —OR, same thing —“x = g(f(x)), for each
x ∈ A, is true” by (2).

This is the same as “x f ◦ g x is true” —for all x ∈ A. Therefore,
for each such x, there must be a z such that x f z (and z g x).

Thus f is total on A.

1-1 ness: For the 1-1ness, we prove f(a) = f(b) = c implies a = b.

Assume then f(a) = f(b) = c and apply g to both sides of the
first “=”, meaning call g with input c.

Under any name the call to c returns the same object. We get
g(f(a)) = g(f(b)), that is,

(gf)(a) = (gf)(b)

But this says a = b, by gf = 1A, and we are done. □

Notes on Discrete MATH (EECS1028)© G. Tourlakis

5.1. Preliminaries 203

5.1.27� Example. (READ ME!) The above is as much as can be
proved. For example, say A = {1, 2} and B = {3, 4, 5, 6}.

Let f : A→ B be {(1, 4), (2, 3)} and

g : B → A be {(4, 1), (3, 2), (6, 1)}, or in friendlier notation

f(1)= 4
f(2)= 3

and
g(3)= 2
g(4)= 1
g(5)↑
g(6)= 1

Clearly, gf = 1A holds, but note:
(1) f is not onto B.
(2) g is neither 1-1 nor total. □ �

Notes on Discrete MATH (EECS1028)© G. Tourlakis

204 5. Functions

5.1.28� Example. (READ ME!) With A = {1, 2}, B = {3, 4, 5, 6}
and f : A → B and g : B → A as in the previous example, consider
also the functions f̃ and g̃ given by

f̃(1)= 6
f̃(2)= 3

and
g̃(3)= 2
g̃(4)= 1
g̃(5)= 2
g̃(6)= 1

Clearly, g̃f = 1A and gf̃ = 1A hold, but note:

(1) f ̸= f̃ .

(2) g ̸= g̃.

Thus, neither left nor right inverses need to be unique. The article
“a” in the definition of said inverses was well-chosen. □ �

Notes on Discrete MATH (EECS1028)© G. Tourlakis

5.1. Preliminaries 205

The following two partial converses of 5.1.25 are useful.
Nov. 1, 2024

5.1.29 Theorem. Let f : A → B be total and 1-1. Then there is an
onto function g : B → A such that gf = 1A.

Proof. Consider the converse relation (4.5.1) of f —that is, the relation
f−1— but call it g instead. I show that this “g” works . So:

x g y
Def

iff y f x (Says x f−1 y iff y f x) (1)

By Exercise 5.1.18 (do this! OK, I did it in Wednesday’s Class.),
g : B → A is a function. (Ontoness is TBD).

Now: Given that f is total.
So,

afz holds for any a and appropriate output z. (2)

By Definition of g, zga is therefore true. Thus, (2) yields

af ◦ ga

hence —a being arbitrary— gf = f ◦ g = 1A and g is onto. □

Notes on Discrete MATH (EECS1028)© G. Tourlakis

206 5. Functions

Define F−1[Y] by

F−1[Y]Def
=

{
x : F(x) ∈ Y

}
=

{
x : (∃y ∈ Y)xFy

}
(1)

5.1.30 Theorem. Let f : A → B be onto. Then there is a total and
1-1 g : B → A such that fg = 1B.

Proof. By assumption (ontoness), ∅ ≠ f−1[{b}] ⊆ A, for all b ∈ B.

To define g(b) choose ONE c in the cone base —we want g to
be single-valued!

c ∈ f−1[{b}] by (1) (†)

▶ Do so for each b ∈ B. ◀

Since f(c) = b by (†) but also by the drawing, we get f(g(b)) = b
for all b ∈ B, that is, fg = 1B.

Hence g is 1-1 and total by 5.1.25. □

Notes on Discrete MATH (EECS1028)© G. Tourlakis

5.1. Preliminaries 207

5.1.31� � Remark. (Axiom of Choice) The proof of 5.1.30 states

choose one c ∈ f−1[{b}]

and that must be done for all b ∈ B that may be infinitely many.

� Choosing once is OK: “We know f−1[{b}] ̸= ∅. So, let c ∈ f−1[{b}] ̸=
∅”.

We can fit inside a proof any finite number of copies of the
statement in quotes for various b. �

But how do you choose “the” c for infinitely many b? If we were
dealing with natural numbers I can see that (How?).

But not with the reals and not with arbitrary unspecified sets!

How do you DESCRIBE in a finite mathematical way the process
of choosing ONE element out of each of (potentially) infinitely many
nonempty sets?

Why finite? Because a proof MUST be written in a finite space of
symbols and words!

How —for example (due to Russell)— do you describe the process of
choosing ONE sock from each of infinitely many pairs?

True, you might sit there for an infinite amount of time, and pick
ONE sock at random from each pair. But can you sit that long? Even
if you can, you will end up (when you write all this up using infinite
amount of space in your proof. This is NOT allowed!

Notes on Discrete MATH (EECS1028)© G. Tourlakis

208 5. Functions

In set theory one takes as an axiom that a SET of (results of) c-
choices exists! They call it the “Axiom of Choice”. It says that if we
have an infinite set family of nonempty sets a set of represen-
tatives from each set in the family exists. □ � �

� � The Axiom of Choice says that:

if F is a set family of nonempty sets, then a function C exists such
for each A ∈ F we have C(A) ∈ A.

Thus the “mathematical way” to define g in the previous proof —
rather than the blabla starting at sign (†)— is simply,

g(b)
Def
= C

(
f−1[{b}]

)
, for all b ∈ B

The big red brackets MUST be round! Right? � �

Notes on Discrete MATH (EECS1028)© G. Tourlakis

5.2. Finite and Infinite Sets 209

5.2. Finite and Infinite Sets

Broadly speaking (that is, with very little detail contained in what I
will say next) we have sets that are finite —intuitively meaning that
we can “count” all their elements in a “finite† amount” of “time” (but
see the �-remark 5.2.3 below)— and those that are not, the infinite
sets!

What is a mathematical way to say all this?

†I know, I know! We cannot define “finite” by assuming I already know what “finite” means. And
there is a problem with “time” too!

Notes on Discrete MATH (EECS1028)© G. Tourlakis

210 5. Functions

Any counting process of the elements of a finite set A will have us say
out loud —every time we pick, or point at, an element of A— “0th”,
“1st”, “2nd”, etc.,

Once we reach and pick the last element of the set, we finally pro-
nounce “nth”, for some appropriate n that we reached in our counting
(Again, see 5.2.3.)

Notes on Discrete MATH (EECS1028)© G. Tourlakis

5.2. Finite and Infinite Sets 211

Thus, mathematically, we are pairing each member of the set —or
label each member of the set— with a member from {0, . . . , n}.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

212 5. Functions

Thus the following makes sense:

5.2.1 Definition. (Finite and infinite sets) A set A is finite iff it
is either empty, OR —for some n ∈ N— is in 1-1 correspondence
with {x ∈ N : x ≤ n}.

This “normalised” (or “canonical”) “small” set of natural numbers
we usually denote by {0, 1, 2, . . . , n}.

If a set is not finite, then it is —by definition— infinite. □

Notes on Discrete MATH (EECS1028)© G. Tourlakis

5.2. Finite and Infinite Sets 213

5.2.2 Example. For any n, {0, . . . , n} is finite since, trivially,

{0, . . . , n} ∼ {0, . . . , n}

using the identity (∆) function on the set {0, . . . , n}. □

Notes on Discrete MATH (EECS1028)© G. Tourlakis

214 5. Functions

5.2.3� Remark. One must be careful when one attempts to explain
finiteness via counting by a human.

For example, Achilles† could count infinitely many objects by con-
stantly accelerating his counting process as follows:

He procrastinated for a full second, and then counted the first ele-
ment. Then, he counted the second object exactly after 1/2 a second
from the first. Then he got to the third element 1/22 seconds after the
previous, . . . , he counted the n th item at exactly 1/2n−1 seconds after
the previous, and so on forever.

Hmm! It was not “forever”, was it? After a total of 2 seconds he
was done!

You see (as you can easily verify from your calculus knowledge (lim-
its)),‡

1 +
1

2
+

1

22
+ . . .+

1

2n−1
+ . . . =

1

1− 1/2
= 2 seconds

So “clock-time” is not a good determinant of finiteness! □ �

†OK, he was a demigod; but only “demi”.
‡1 + 1

2
+ 1

22
+ . . .+ 1

2n−1 =
1−1/2n

1−1/2
. Now let n go to infinity at the limit.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

5.2. Finite and Infinite Sets 215

Nov. 4, 2024

5.2.4 Theorem. (This is Key!) If X ⫋ {0, . . . , n}, then there is NO
onto function f : X → {0, . . . , n}.

� I am saying, NO such f , whether total or not, exists; actually, totalness
is immaterial. �

Proof. First off, the claim is true if X = ∅, since then any such f

equals ∅ —no inputs, therefore no outputs!

The range of f is empty so f cannot be onto any nonempty set.

� But how about the case of X ̸= ∅? �

Let us proceed by way of contradiction, and assume that
the theorem is wrong.

That is, assume instead that it IS possible to have
some such onto functions, for some n and from well-chosen
∅ ≠ X ⫋ {0, . . . , n}.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

216 5. Functions

So let n0 be the smallest n that contradicts the theorem, and let X0

be a corresponding set “X” that supports the contradiction, that
is,

∅ ≠ X0 ⫋ {0, . . . , n0} AND f : X0 → {0, . . . , n0} IS onto (1)

Firstly, we saw that X0 ̸= ∅, since X0 = ∅ does NOT FAIL the
theorem.

Secondly, n0 > 0, since otherwise —i.e., IF n0 = 0— then X0 = ∅
(Why?) and, as already remarked, the latter does NOT FAIL the
theorem.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

5.2. Finite and Infinite Sets 217

Let us set H = f−1[{n0}], that is, all inputs that cause out-
put n0.

∅ ≠ H ⊆ X0; the ̸= by ontoness. H is the cone basis in the figures
below.

Case 1. f(n0) ↓ .

Sub-Case 1. n0 ∈ H. Then removing the cone-base —i.e.,
all a from all pairs (a, n0) of f — we get a new
ONTO function

f ′ : X0 −H → {0, 1, . . . , n0 − 1}

as we only removed inputs that cause out-
put n0 —and this contradicts the theorem.

BUT also contradicts minimality of n0 since
n0 − 1 works too! (“works” to provide an onto
map and thus refute the theorem).

H = f−1[{n0}]

0

1

Notes on Discrete MATH (EECS1028)© G. Tourlakis

218 5. Functions

Sub-Case 2. We have the picture below, that is,

f(n0) = m ̸= n0

for some m.

0

1

We simply transform the picture to the one
below, “correcting” f to have f(a) = m and
f(n0) = n0, that is defining a new “f” that we
will call f ′ by

f ′ =
(
f−{(n0,m), (a, n0)}

)
∪{(n0, n0), (a,m)}

0

1

We are back to Sub-Case 1 with the function
f ′.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

5.2. Finite and Infinite Sets 219

Case 2. f(n0) ↑. Thus, in particular, n0 /∈ H. Take as “new X0”

new X0︷ ︸︸ ︷
X0 −H − {n0} ⫋ {0, 1, . . . , n0 − 1}

where the “−{n0}” ensures that n0 does not stay in
X0 −H − {n0} despite the fact that n0 /∈ H.

We have again, contradiction to minimality of n0 since the
new (onto {0, . . . , n0 − 1}) function is

f restricted on new left field X0 −H − {n0}

□

Notes on Discrete MATH (EECS1028)© G. Tourlakis

220 5. Functions

5.2.5 Corollary. (Pigeon-Hole Principle) Ifm < n, then {0, . . . ,m} ̸∼
{0, . . . , n}.

Proof. If the conclusion fails then we have an onto f : {0, . . . ,m} →
{0, . . . , n}, contradicting 5.2.4. □

� Important!

5.2.6 Theorem. If A is finite due to A ∼ {0, 1, 2, . . . n} then there is
no justification of finiteness via another canonical set {0, 1, 2, . . .m}
with n ̸= m.

Proof. If {0, 1, 2, . . . n} ∼ A ∼ {0, 1, 2, . . .m}, then {0, 1, 2, . . . n} ∼
{0, 1, 2, . . .m} by 5.1.20, hence n = m, otherwise we contradict 5.2.5.

□

5.2.7 Definition. Let A ∼ {0, . . . , n}. Since n is uniquely determined
by A we say that A has n+ 1 elements and write |A| = n+ 1. □

�

Notes on Discrete MATH (EECS1028)© G. Tourlakis

5.2. Finite and Infinite Sets 221

5.2.8 Corollary. There is no onto function from {0, . . . , n} to N.

� “For all n ∈ N, there is no . . . ” is, of course, implied. �

Proof. Fix an n. By way of contradiction, let g : {0, . . . , n} → N be
onto.

Let X be the set of all inputs that g maps onto {0, . . . , n+ 1}. (†)

X
Def
= g−1[{0, 1, . . . , n+ 1}] ⊆

left field of g︷ ︸︸ ︷
{0, 1, . . . , n} ⫋ {0, 1, . . . , n, n+ 1} (‡)

As (‡) entails X ⫋ {0, . . . , n + 1}, using (†) we have contradicted
Theorem 5.2.4

□

Notes on Discrete MATH (EECS1028)© G. Tourlakis

222 5. Functions

5.2.9 Corollary. N is infinite.

Proof. By 5.2.1 the opposite case requires that there is an n and a
function f : {0, 1, 2, . . . , n} → N that is a 1-1 correspondence. Impos-
sible, since any such an f will fail to be onto N. □

� Our mathematical definitions have led to what we hoped they would:

For example, that N is infinite as we intuitively understand, notwith-
standing Achilles’s accelerated counting! �

Notes on Discrete MATH (EECS1028)© G. Tourlakis

5.2. Finite and Infinite Sets 223

Nov. 6, 2024

N is a “canonical” infinite set that we can use to index or label the
members of many infinite sets.

Sets that can be indexed using natural number indices

{a0, a1, . . .}

are called countable.

� Wait! I said “sets”. Is that legitimate? �

In the interest of technical flexibility, we do not insist that all mem-
bers of N be used as indices.

We might enumerate with gaps:

b5, b9, b13, b42, . . .

Thus, informally, a set A is countable if it is empty or (in the opposite
case) if there is a way to index, hence enumerate, all its members in an
array, utilising indices from —but not necessarily utilising all— N.
See also 5.1.8 regarding indexing/labelling.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

224 5. Functions

It is allowed to repeatedly list any element of A, so that finite sets
are countable.

For example, the set {42}:
One way to enumerate is to go out of your way and use ALL labels

from N.
42, 42, 42,

42 forever︷︸︸︷. . .

The other way is to use just ONE input/label using f to apply it:

f(x) =

{
42 if x = 42

↑ othw

We may think that the 1st enumeration above is done by assign-
ing to “42” all of the members of N as indices, in other words, the
enumeration is effected, for example, by the total constant function
f : N→ {42} given by f(n) = 42 for all n ∈ N.

The 2nd enumeration assigns 42 to 42 but nothing else (could also
have assigned ONE of 0, or 11 or 1101 to and nothing else). This
f (different from the previous) is undefined on all natural numbers
except 42.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

5.2. Finite and Infinite Sets 225

Now, mathematically,

5.2.10 Definition. (Countable Sets) We call a set A countable if
there is an onto function f : N→ A.

We do NOT require f to be total.

But, ∅, the empty function from N to ∅, is onto ∅, the empty set.

Thus the definition makes ∅ countable.

If f(n) ↓, then we say that f(n) is the nth element of A in the enu-
meration f .

We often write fn instead of f(n) and then call n a “subscript” or
“index”. □

Thus a set is countable iff it is the range of some function that has
N as its left field.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

226 5. Functions

Some set theorists also define sets that can be enumerated using all
the elements of N as indices without repetitions.

5.2.11 Definition. (Enumerable or denumerable sets) A set A
is enumerable iff A ∼ N iff N ∼ A. □

5.2.12� Example. Every enumerable set is countable, but the converse
fails. For example, {1} is countable but not enumerable due to 5.2.8.

{2n : n ∈ N} is enumerable, with f(n) = 2n effecting the 1-1 corre-
spondence f : N→ {2n : n ∈ N}.

So are N itself and {2n+ 1 : n ∈ N}. □ �

Notes on Discrete MATH (EECS1028)© G. Tourlakis

5.2. Finite and Infinite Sets 227

5.2.13 Theorem. If A is an infinite subset of N, then A ∼ N. That
is, A is enumerable.

Proof. We will build a 1-1 and total enumeration of A, presented in a
finite manner as a (pseudo) program below, which enumerates all the
members of A in strict ascending order and arranges them in an array

a(0), a(1), a(2), . . . a(k − 1), . . . (1)

n ← 0
a(0) ← minA Initialisation; A ̸= ∅
while A− {a(k) : k ≤ n} ≠ ∅
a(n+ 1) ← min

(
A− {a(k) : k ≤ n}

)
n ← n+ 1
end while

� Note that the sequence {a(0), a(1), . . . , a(m)} is strictly increas-
ing for any m. Indeed (instruction below the word “while”),

a(n+ 1) = min
(
A− {a(0), a(1), . . . , a(n)}

)
hence,

a(0) < a(1), a(0) < a(1) < a(2), . . . ,

say we verified ordering up to a(n)︷ ︸︸ ︷
a(0) < a(1) < · · · < a(n)︸ ︷︷ ︸

all these, selected earlier, are <a(n+1)

< a(n+ 1)

�

Will this loop ever exit?

Suppose yes. Then, say, this happens the first time we gotA−{a(k) :
k ≤ n} = ∅ for some n, that is, A = {a(0), a(1), . . . , a(n)}.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

228 5. Functions

The function a taking {0, 1, . . . , n} onto A (why “onto”?) is total on
{0, 1, . . . , n} and strictly increasing, so is 1-1. Thus A ∼ {0, 1, . . . , n}
and A is finite. A contradiction.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

5.2. Finite and Infinite Sets 229

Thus, we never exit the loop! We do obtain for each n an
entry to put in “a(n)”

� This says that the function n 7→ a(n) is defined for every n: In
other words, it is total! �

Now, distinct inputs cause distinct outputs in the function n 7→ a(n)
since the function satisfies a(i) < a(i+ 1) for all i.

Thus the function is 1-1.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

230 5. Functions

The function n 7→ a(n) is also onto A, so all in all we got N ∼ A via a.

Wait! Why is n 7→ a(n) onto?

If you don’t think so, let m ∈ A be one entry we missed and did not
insert in the array a.

Let n be the smallest such that

m < a(n) (†)

Such an n exists since

. . . , a(i) < a(i+ 1), . . .

is a strictly increasing sequence of natural numbers that goes on forever
—the entries a(i) get larger and larger (by at least a step of plus-1 from
the previous entry) with no end.

At the step at which I select a(n) both it —I did not select it yet—
and m —I never selected it— are in the residual A.

But we selected a(n) at this step and yetm is smaller. Contradiction!

So no “forgotten” m (as in (†)) exists. The set of entries of the array
a does equal A, or, n 7→ a(n) is onto A. □

Notes on Discrete MATH (EECS1028)© G. Tourlakis

5.2. Finite and Infinite Sets 231

5.2.14 Theorem. Every infinite countable set A is enumerable.

Proof. Let f : N→ A be onto, where A is infinite.

� Reminder: f need not be total. �

Let g : A→ N such that fg = 1A (5.1.30).

Thus, g is total and 1-1 and moreover is onto B = ran(g).

� Because: Every function is onto its range! �

We have the following configuration:

A

g

→
∼ B ⊆ N f→A (1)

1. Now B is infinite, else we would have A ∼ B ∼ {0, . . . , n} (some
n) and thus A ∼ {0, . . . , n} (see Exercise 5.1.20) making A finite!

2. It follows by 5.2.13 that B ∼ N hence A ∼ N via A ∼ B ∼ N and
5.1.20 once more. □

Notes on Discrete MATH (EECS1028)© G. Tourlakis

232 5. Functions

� So, if we can enumerate an infinite set at all, then we can enumerate
it without repetitions. �

Notes on Discrete MATH (EECS1028)© G. Tourlakis

5.2. Finite and Infinite Sets 233

Nov. 8, 2024

5.2.15 Example. (Important) We can linearise an infinite square
matrix that has elements in each location (i, j) by devising a traversal
that will go through each (i, j) entry once, and will not miss any entry !

In the literature one often sees the method diagrammatically, see
below, where arrows clearly indicate the sequence of traversing, with
the understanding that we use the arrows by picking the first unused
chain of arrows from left to right.

(0, 0) (0, 1) (0, 2) (0, 3) . . .

↗ ↗ ↗
(1, 0) (1, 1) (1, 2)

↗ ↗
(2, 0) (2, 1)

↗
(3, 0)
...

So the linearisation induces a 1-1 correspondence between N and the
linearised sequence of matrix entries, that is, it shows that N×N ∼ N.

□

Notes on Discrete MATH (EECS1028)© G. Tourlakis

234 5. Functions

In short,

5.2.16 Theorem. The set N × N is countable. In fact, it is enumer-
able.

Is there a “mathematical” way to do this? Well, the above IS math-
ematical, don’t get me wrong, but is given in outline. It is kind of like
an argument in geometry, where we rely on drawings (figures).

Notes on Discrete MATH (EECS1028)© G. Tourlakis

5.2. Finite and Infinite Sets 235

READ ME! Here are the “algebraic” details:

Proof. (of 5.2.16 with an “algebraic” argument). Let us call i+ j + 1
the “weight” of a pair (i, j). The weight is the number of elements in
the group:

(i+ j, 0), (i+ j − 1, 1), (i+ j − 2, 2), . . . , (i, j), . . . , (0, i+ j)

Thus the diagrammatic enumeration proceeds by enumerating groups
by increasing weight

1, 2, 3, 4, 5, . . .

and in each group of weight k we enumerate in ascending order of the
second component.

Thus the (i, j) th entry occupies position j in its group —the first
position in the group being the 0 th, e.g., in the group of (3, 0) the
first position is the 0 th— and this position globally is the number
of elements in all groups before group i + j + 1, plus j. Thus the
first available position for the first entry —(i + j, 0)— of group (i, j)
members is just after this many occupied positions:

1 + 2 + 3 + . . . (i+ j) =
(i+ j)(i+ j + 1)

2

That is,

global position of (i, j) is this:
(i+ j)(i+ j + 1)

2
+ j

The function f which for all i, j is given by

f(i, j) =
(i+ j)(i+ j + 1)

2
+ j

is the algebraic form of the above enumeration. □

Notes on Discrete MATH (EECS1028)© G. Tourlakis

236 5. Functions

� There is an easier way to show that N× N ∼ N without diagrams:

By the unique factorisation of numbers into products of primes (Eu-
clid) the function

g : N × N → N given for all m,n by g(m,n) = 2m3n is 1-1, since
Euclid proved that 2m3n = 2m

′
3n

′
implies m = m′ and n = n′.

It is not onto as it never outputs, say, 5, but ran(g) is an infinite
subset of N (Exercise!).

Thus, trivially,

N× N via g∼ ran(g) ∼ N
the 2nd “∼” by 5.2.13. END READ ME! �

Another Exercise: If A ⊆ B and A infinite, then B is infinite.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

5.2. Finite and Infinite Sets 237

5.2.17 Exercise. If A and B are enumerable, so is A×B.
Hint. So, N ∼ A and N ∼ B. Can you show now that N×N ∼ A×B?

□

With little additional effort one can generalise to the case of
n

×
i=1

Ai.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

238 5. Functions

5.2.18 Remark.

1. Let us collect a few more remarks on countable sets here. Suppose
now that we start with a countable set A. Is every subset of A
countable?

Yes, because the composition of onto functions is onto. Exercise!

5.2.19 Exercise. What does composition of onto functions have
to do with this? Well, prove that if B ⊆ A then there is a natural
onto function g : A→ B. Which one? Now study the Hint.

Hint. Think “natural”! Get a natural total and 1-1 function h :
B → A to obtain (via 5.1.30) an onto g : A → B. Then use the
onto f : N → A (A is countable) to get the onto gf : N → B to
settle Exercise 1. above. □

2. As a special case, if A is countable, then so is A ∩ B for any
B, since A ∩B ⊆ A.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

5.2. Finite and Infinite Sets 239

3. How about A∪B? If both A and B are countable, then so is A∪B.
Indeed, and without inventing a new technique, let

a0, a1, . . .

be an enumeration of A and

b0, b1, . . .

for B. Now form an infinite matrix with the A-enumeration as
the 1st row, while each remaining row is the same as the B-
enumeration. Now linearise this matrix!

Of course, we may alternatively adapt the unfolding technique to
an infinite matrix of just two rows. How?

. . . OR, just use the “common sense” enumeration back and forth
between the “ai’s” and the “bi’s”:

a0, b0, a1, b1, a2, b2, a3, b3, . . .

Notes on Discrete MATH (EECS1028)© G. Tourlakis

240 5. Functions

4. 5.2.20 Exercise. Let A be enumerable and an enumeration of A

a0, a1, a2, . . . (1)

is given.

So, this is an enumeration without repetitions.

Use techniques we employed in this section to propose a new enu-
meration in which every ai is listed infinitely many times (this is
useful in some applications of logic). □

5.2.21 Example. Any subset ∅ ≠ X of {0, 1, . . . , n} —any n ≥ 0—
is finite.

Say X is infinite instead. Since X ⊆ {0, 1, . . . , n} ⊆ N, we have
(5.2.13) X ∼ N, that is, X is enumerable.

Thus
N ∼ X

onto

←
⊆
{0, . . . , n}

Where is “onto” coming from? From 1-1 and total

1X : X → {0, . . . , n}

which yields (5.1.30) an onto g : {0, . . . , n} → X. □

Notes on Discrete MATH (EECS1028)© G. Tourlakis

5.3. Diagonalisation and uncountable sets 241

5.3. Diagonalisation and uncountable sets

5.3.1 Example. Suppose we have a 3× 3 matrix

1 1 0
1 0 1
0 1 1

and we are asked:

Find a sequence of three numbers, using only 0 or 1, that does not
fit as a row of the above matrix —i.e., is different from all rows.

Sure, you reply: Take 1 1 1. Or, take 0 0 0.

Both are correct.

But what if the matrix were big, say, 10350000 × 10350000, or even in-
finite?

Is there a finitely describable technique that can produce an “unfit”
row for any square matrix, even an infinite one?

□

Notes on Discrete MATH (EECS1028)© G. Tourlakis

242 5. Functions

Nov. 11, 2024

Yes, it is Cantor’s diagonal method or technique.

5.3.2 Definition. (Diagonalisation: How-to) Cantor noticed that
any row that fits in a square matrix M as the, say, i-th row, intersects
the main diagonal at entry M(i, i).

Why?

Row i : M(i, 0),M(i, 1),M(i, 2), . . . ,

i-th member of row︷ ︸︸ ︷
M(i, i) ,M(i, i+ 1), . . .

Thus if we take the main diagonal —a sequence that has the same
length as any row— and make a copy of it changing every one of the

original entries M(x, x) to a different one

M(x, x)

then this changed copy (of the main diagonal) will not fit anywhere
in M as a row!

Notes on Discrete MATH (EECS1028)© G. Tourlakis

5.3. Diagonalisation and uncountable sets 243

Note that the Main (Original) Diagonal is the sequence of entries
below:

pos. 0
↓

M(0, 0),

pos. 1
↓

M(1, 1),

pos. 2
↓

M(2, 2), . . . ,

pos. i
↓

M(i, i), . . .

The modified diagonal is (where we named “D” the array below):

D =

pos. 0
↓

M(0, 0),

pos. 1
↓

M(1, 1),

pos. 2
↓

M(2, 2), . . . ,

pos. i
↓

M(i, i), . . .

where, for all positions i, M(i, i) ̸= M(i, i).

Thus if D were to fit as row x, then the x-th element of D —M(x, x)—
would overlap the (original) x-th element of the matrix M —M(x, x).

But these two are different!

So, the modified diagonal D does NOT FIT as the x-th row! □

� This HOW TO would give the alternative answer 0 1 0 to our orig-
inal question in 5.3.1. �

Notes on Discrete MATH (EECS1028)© G. Tourlakis

244 5. Functions

5.3.3 Example. We have an infinite matrix M of 0-1 entries. Can we
construct a row-long array of 0-1 entries that does not match any
row in the matrix?

Yes, to get the counterpart of D above just define for all x:

M(x, x) = 1−M(x, x)

In words, take the main diagonal and flip every entry (0 to 1; 1 to 0).

Now refer to 5.3.2. □

Notes on Discrete MATH (EECS1028)© G. Tourlakis

5.3. Diagonalisation and uncountable sets 245

5.3.4� Example. (Cantor) Let S denote the set of all infinite se-

quences —also called infinite strings— of 0s and 1s.

Pause. What is an infinite sequence?
It is a total function f on N (left field), which we view as the array

of its outputs:

f(0), f(1), f(2), . . . , f(n), . . . (1)

(1) is an infinite sequence of 0s and 1s if ran(f) = {0, 1}.

We say that “the n-th member of the sequence is f(n)”.◀

Can we arrange ALL of S in an infinite matrix —one element per
row?

No, since the preceding example shows that we would miss at least
one infinite sequence ROW (i.e., we would fail to list it as a row),
because a sequence of infinitely many 0s and/or 1s can be found,
that does not match ANY row!

□ �

Notes on Discrete MATH (EECS1028)© G. Tourlakis

246 5. Functions

5.3.5 Definition. (Uncountable Sets) A set that is not countable
is called uncountable. □

� If it is not countable —is uncountable— then it is NOT enumerable
(implies countable!), right? �

Example 5.3.4 shows that uncountable sets exist. Here is a more
interesting one.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

5.3. Diagonalisation and uncountable sets 247

5.3.6� Example. (Cantor) The set of real numbers in the interval

(0, 1)
Def
={x ∈ R : 0 < x < 1}

is uncountable. This is done via an elaboration of the argument in
5.3.4.

Think of a member of (0, 1), in form, as an infinite sequence of num-
bers from the set {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} prefixed with a dot; that is,
think of the number’s decimal notation.

Some numbers have representations that end in 0s after a certain
point. We call these representations finite. Every such number has
also an “infinite representation” since the non zero digit d immedi-
ately to the left of the infinite tail of 0s can be converted to d − 1
followed by an infinite tail of 9s, without changing the value of the
number.

We allow only infinite representations.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

248 5. Functions

Assume now by way of contradiction that a listing of all
members of (0, 1) exists, listing them via their infinite repre-
sentations —where the leading decimal point is omitted and all aij
satisfy 0 ≤ aij ≤ 9 (decimal digits).

a00a01a02a03a04 . . .
a10a11a12a13a14 . . .
a20a21a22a23a24 . . .
a30a31a32a33a34 . . .

...

(1)

The “How To” of Definition 5.3.2 is applied now to obtain a

number
D = (.)a00 a11 a22 . . . axx . . .

where

axx =

{
2 if axx = 0 ∨ axx = 1

1 otherwise
(2)

Clearly (by 5.3.2)D does not fit in any row i of (1), that is, the number

it represents is both

• IN (0, 1) —since its digits are 1 or 2 it is 0 < D < 1,

AND

• NOT IN (0, 1) —by the diagonalisation in (2).

This contradiction shows that we do NOT have the enumeration of all
of (0, 1) depicted as (1): The real interval is uncountable. □ �

Notes on Discrete MATH (EECS1028)© G. Tourlakis

5.3. Diagonalisation and uncountable sets 249

5.3.7 Example. (5.3.4 Revisited) Consider the set of all total func-
tions from N to {0, 1}. Is this countable?

Connection with 5.3.4? Well, a total function f with right field
{0, 1} is an infinite 0-1 string

f = f(0), f(1), f(2), . . . , f(i), . . .

So, to fit all such strings in a matrix —which 5.3.4 says is impossible—
is the same as asking whether we can fit all total functions f with {0, 1}
as right field in an enumeration f0, f1,

If so, each fi is a “header” of a row of said matrix:

f0=f0(0)f0(1)f0(2)f0(3). . .
f1=f1(0)f1(1)f1(2)f1(3). . .
...
fi=fi(0)fi(1)fi(2)fi(3) . . .
...

Here is a direct proof of the uncountability of all total f with {0, 1}
as right field:

If there IS an enumeration of these one-variable functions

f0, f1, f2, f3, . . . (1)

consider the function g : N→ {0, 1} given by g(x) = 1− fx(x).

Clearly, this must appear in the listing (1) since it has the correct
left and right fields, and is total.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

250 5. Functions

Too bad! If g = fi then g(i) = fi(i). By definition, also g(i) =
1− fi(i).

So, fi(i) = 1− fi(i) which is false for total fi.

A contradiction. □

Notes on Discrete MATH (EECS1028)© G. Tourlakis

5.3. Diagonalisation and uncountable sets 251

The same argument as above shows that the set of all TOTAL func-
tions from N to N is uncountable.

Taking g(x) = fx(x) + 1 also works here to “systematically change
the diagonal” f0(0), f1(1), . . . since we are not constrained to keep the
function values in {0, 1}.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

252 5. Functions

5.3.8� Example. (Cantor) What about the set of all subsets of N —
P(N) or 2N?

Cantor showed that this is uncountable as well: If not, we have an
enumeration of all its members as

S0, S1, S2, . . . (1)

Define the set
D

Def
= {x ∈ N : x /∈ Sx} (2)

So, D ⊆ N, thus it must appear in the list (1) as an Si: D = Si.

But then
i ∈ D iff i ∈ Si

by virtue of D = Si.

However, also i ∈ D iff i /∈ Si by Definition (2).

So,
i ∈ Si iff i ∈ D iff i /∈ Si

This contradiction establishes that a legitimate subset of N, namely
D, is not an Si.

That is, 2N cannot be so enumerated; it is uncountable. □ �

Notes on Discrete MATH (EECS1028)© G. Tourlakis

Chapter 6

A Short Course on
Predicate (also called
“First-Order”) Logic

Nov. 13, 2024

We have become comfortable in using informal logic in our argu-
ments about aspects of discrete mathematics, in particular proving
statements like A ⊆ B and X = Y, for any classes that we know some-
thing about their properties/definitions.

Although we have used quantifiers already —∃ and ∀— we did so
mostly viewing them as symbolic abbreviations of English texts about
mathematics.

In this chapter we will expand our techniques in logic, extend-
ing them to include the correct syntactic —also called
“formal”— manipulation of quantifiers.

This chapter also includes a section on the WHAT and the HOW

Notes on Discrete MATH (EECS1028)© G. Tourlakis

254 6. A Short Course on Predicate (also called “First-Order”) Logic

TO of the versatile Induction —or mathematical induction— technique
used to prove properties of the natural numbers.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

255

We know how to detect fallacious statements formulated in Boolean
logic: Simply show by a truth table that the statement is not a tau-
tology (or not a so-called tautological implication).

Correspondingly, we will show in the domain of quantifier logic not
only how to prove statements that include quantifiers but also how to
disprove false statements that happen to include quantifiers.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

256 6. A Short Course on Predicate (also called “First-Order”) Logic

6.1. Enriching our proofs to manipulate quantifiers

Manipulation of quantifiers boils down to two questions:

“how can I remove a quantifier from the beginning of a formula?”
and
“how can I add a quantifier at the beginning of a formula?”

Once we learn these two techniques we will be able to reason within
mathematics with ease.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

6.1. Enriching our proofs to manipulate quantifiers 257

But first let us define once and for all what a mathematical proof
looks like: its correct, expected syntax or form.

We will need several Preliminaries: In particular, new syntactic
concepts and notation to begin with.

1. The alphabet and structure of Predicate Logic formulas.

Formulas are strings “over” —meaning, using symbols from—
said alphabet that name statements of mathematics and com-
puter science.

The alphabet —that is, the “list of” or “totality of” or “set of”—
symbols that we use to write down formulas contain, at a mini-
mum,

=,¬,∧,∨,→,≡, (,),∀,∃, † object variables:‡ x, y, z, u, v, w, x′′13 . . .

� Among object variables we allow any capital letters as well,
with or without primes or subscripts: Like Q′′′12300042 �

†∃ is not an “official” alphabet symbol; it is introduced as an abbreviation of something more
complex in 6.3.2.

‡That is, variables that denote objects such as numbers, arrays, matrices, sets, trees, etc.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

258 6. A Short Course on Predicate (also called “First-Order”) Logic

2. One normally works in a mathematical area of interest, or
mathematical theory —such as Geometry, Set Theory, Number
Theory, Algebra, Calculus, Theory of Computation— where one
needs additional symbols to write down formulas, like

0, ∅,∈,⊆,⫋,
⋂

,
⋃

,∪,
∫

, ◦,+,×, µ

and many others.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

6.1. Enriching our proofs to manipulate quantifiers 259

3. SYNTAX?? Mathematicians as a rule get to recognise and
use the formulas (which NAME statements) and terms (which
NAME objects) in the math areas of their interest via practise
without being necessarily taught the recursive definition of the
syntax of these.

We will not spell out the syntax in these notes either (but see
[Tou08] if you want to know!)

Notes on Discrete MATH (EECS1028)© G. Tourlakis

260 6. A Short Course on Predicate (also called “First-Order”) Logic

• Terms “are” —or, strictly speaking, stand for— OBJECTS
such as:

(a) variables or

(b) constants or

(c) “function calls”, such as f(x, g(y, w)), in the jargon of the
computer savvy person. Mathematicians call them “func-
tion applications”.

These calls take math objects as inputs and return math
objects as outputs.

Examples of Terms are:

var or const︷ ︸︸ ︷
x,A, ∅, 0,

√
2, 42,

x+ y, x× 3, 0× x+ 1, A ∩B︸ ︷︷ ︸
calls

NOTE. One is told that × is stronger than +, so, notwith-
standing the bracket-parsimonious notation “0 × x + 1”, we
know it means “(0× x) + 1”, so this call returns 1, no matter
what we plugged into x.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

6.1. Enriching our proofs to manipulate quantifiers 261

• Formulas are STATEMENTS.

These are also function calls, but they are SPECIAL: their
output is restricted to be one or the other of the truth values
true or false (t or f) but nothing else! Their input, just as in
the case for terms, is any math object.

Examples are:

2 < 3 (t),

(∀x)x = x (t),

(∀x)x = 0 (f),

(∃x)x = 0 (t),

x = 0 neither true nor false; the answer depends on the input
we place in x.

More: x = x (t) answer is independent of input.

x = 0→ x = 0 (t) answer is independent of input;

x = 0 → (∀x)x = 0 neither true nor false; answer depends on
the input in (the leftmost) x!

The input variable above is the leftmost x; the other two

(x’s)are bound by “(∀x)” and unavailable to accept inputs.
See below.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

262 6. A Short Course on Predicate (also called “First-Order”) Logic

• If an occurrence of a formula variable is available for
input it could rightly be called “an occurrence as an input variable”.

� However, such occurrences are instead called FREE oc-
currences in the literature. �

Non-input occurrences of a variable are called “bound”.

Let’s emphasise: It is not a variable x that is free or
bound in a formula, but it is the occurrences of said
variable that we are speaking of, as the immediately pre-
ceding example makes clear.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

6.1. Enriching our proofs to manipulate quantifiers 263

4. In (∀x)x = 0 the variable x is non input, it is “bound” we say.

Just like this: Σ4
i=1i, which means 1 + 2 + 3 + 4 and “i” is an

illusion! NOT available for input:

Something like Σ4
101=1101 is nonsense!

Also, something like (∀42)42 = 0 is non-
sense! Cannot use the x in (∀x)x = 0 as
input.

No wonder “bound” variables are sometimes called “apparent
variables”.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

264 6. A Short Course on Predicate (also called “First-Order”) Logic

5. We call ∀,∃,
Boolean︷ ︸︸ ︷

¬,∧,∨,→,≡ the “logical connectives”.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

6.1. Enriching our proofs to manipulate quantifiers 265

6. People avoid cluttering notation with too many brackets by agree-
ing that the first 3 connectives have the same “strength” or “pri-
ority”; the highest. The remaining connectives have priorities de-
creasing as we walk to the right.

Thus, if A and B are (denote) formulas, then ¬A ∨ B means
(¬A) ∨ B; ¬ wins the “fight” (with ∨) for A. If we want (∀x)
to apply to the entire A→ B we must write (∀x)(A→ B).

What about A→ B → C and A ≡ B ≡ C? Brackets are implied
from right to left: A→ (B → C) and A ≡ (B ≡ C).

Notes on Discrete MATH (EECS1028)© G. Tourlakis

266 6. A Short Course on Predicate (also called “First-Order”) Logic

Nov. 15, 2024

And this? (∃y)(∀x)¬A. Brackets are implied, again, from right to

left :
(
(∃y)

(
(∀x)(¬A)

))
.

BTW, the part of a formula where a (∀x) or (∃x) acts upon—
the “(. . .)” in (∀x)(. . .) and (∃x)(. . .)— is called their scope.
By convention, the symbols (∀x) and (∃x) also belong to their
own scope.

Bound and free occurrences of variables.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

6.2. Boolean Abstractions; or How to Use Truth Tables inside 1st-Order Logic 267

6.2. Boolean Abstractions;
or How to Use Truth Tables inside 1st-Order Logic

A formula of mathematics may have some Boolean block structure.
This structure abstracts —meaning, removes— detail to
make things “easier”, meaning hoping that the abstracted formula
(the “abstraction”) can be dealt with with Boolean Methods using
Table 2.1.

6.2.1 Example. x = 0 → x = 0 ∨ z > w † has the Boolean abstrac-
tion, or “Boolean shape”,

S1 → S1 ∨ S2 (1)

which —as we know from Remark 2.3.4— means S1 → (S1 ∨ S2) since
∨ is stronger than → (in priority).

We then easily find by using Table 2.1 on p.45 that —regardless of
the assumed truth values of the blocks, that is, the statements S1, S2

and S3— the truth value of S1 → (S1 ∨ S2) is always true.

Such formulas that are true regardless of the truth values of the
“blocks” in some chosen Boolean block structure are called tau-
tologies.

Thus the special case of the “shape” (1) above, namely,

x = 0→ x = 0 ∨ z > w

IS a tautology of Predicate Logic. □

†The boxes arenot part of the formula; they indicate “boxing”.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

268 6. A Short Course on Predicate (also called “First-Order”) Logic

6.2.2 Example. By contrast x = x is NOT a tautology since it has
no Boolean structure: NO Boolean connectives in
x = x. All I can do is to think of x = x as “S1” —a statement—
whose truth value I cannot decide with Boolean methods.

x = x in the eyes of a “Boolean person” behaves like a Boolean
variable p or q, which has no value “automatically” —NOR
“via computation”— but it is us who ASSIGN truth values to
said variables arbitrarily and then just study what is the computed

overall value of the formula, the computation being done with
the help of truth tables (2.1).

On the other hand, invoking the philosophically founded belief (ac-
cepted in mathematics) that “every object equals itself” we can eval-

uate x = x —but do so IN Predicate Logic— as true, no
matter the “value” of —i.e., object assigned to— x. □

Notes on Discrete MATH (EECS1028)© G. Tourlakis

6.2. Boolean Abstractions; or How to Use Truth Tables inside 1st-Order Logic 269

6.2.3 Example. Boolean abstractions of a first order formula are not
unique.

Consider (∀x)A → B. It has a Boolean structure denoted by the
boxing (∀x)A → B .

This particular abstraction has the shape S1 → S2. We cannot con-
clude that it is a tautology since letting the first box to be t and
the second one to be f we obtain an overall truth value of false (f).

� We should not be quick to blame the formula (∀x)A → B as the
culprit who denies us a tautology. We may need to find a finer,
more sophisticated, Boolean abstraction for it. Read on! �

Maybe we are lucky and upon further inspection we find that B has
the form x = 0→ x = 0. With this fact uncovered, we propose a new,
refined, block structure

(∀x)A︸ ︷︷ ︸
box 1

→
(t︷ ︸︸ ︷

x = 0︸ ︷︷ ︸
box 2

→ x = 0︸ ︷︷ ︸
box 3

)
Under this abstraction the formula is always true regardless of the
assumed truth values of the three boxes. It is a tautology!

Of course, the only Boolean abstraction possible for (∀x)A is (∀x)A
since this formula has no Boolean structure.
For all practical (Boolean) purposes it is a Boolean

Variable.

Any Boolean connectives that A might
have are hidden under lock and key in the
scope of the shown (∀x). □

Notes on Discrete MATH (EECS1028)© G. Tourlakis

270 6. A Short Course on Predicate (also called “First-Order”) Logic

Tautologies of various shapes play an important role in Predicate
Logic proofs.

We write |=taut A to say “A is a tautology” symbolically.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

6.2. Boolean Abstractions; or How to Use Truth Tables inside 1st-Order Logic 271

6.2.4 Example.

1. (∀x)A is not a tautology since its abstraction — (∀x)A— has

two possible truth values (single “box”; there are NO (visible)
Boolean connectives).

2. x = x is not a tautology (single “box”; no (visible) Boolean con-
nectives).

3. x = 0→ x = 0 is a tautology. □

4. IMPORTANT! (∀x)x = 0 → x = 0 is not a tautology. The
(“the”?!) Boolean abstraction is obtained via the block struc-
ture (∀x)x = 0 → x = 0 is NOT “always true” IN BOOLEAN
LOGIC! It IS always true in predicate logic BECAUSE IT IS
AN INSTANCE OF AXIOM 2.

� But we NEVER evaluate for true/false within
predicate logic when we look for a tautology.

Why? Because tautologies are a Boolean
phenomenon! We cannot discover tautologies with predi-
cate logic tools. �

□

Notes on Discrete MATH (EECS1028)© G. Tourlakis

272 6. A Short Course on Predicate (also called “First-Order”) Logic

6.2.5 Definition. (Important! Tautological implication)

We say that the formulas A1, A2, . . . , An tautologically imply a for-
mula B —in symbols A1, A2, . . . , An |=taut B— meaning

“the truth of A1 ∧ A2 ∧ . . . ∧ An implies the truth of B”

that is, by the truth table for →, saying that

A1 ∧ A2 ∧ . . . ∧ An → B is a tautology

□

� So, |=taut propagates truth from left to right.

NOTE that if any of the Ai is f , then NO work is needed to
prove the validity of the tautological implication!

We work ONLY if all Ai are true and the work is
to evaluate B.

Thus, Practically, to prove A1, . . . , An |=taut B we just assume
that ALL the Ai are true and then prove that B is true. �

Notes on Discrete MATH (EECS1028)© G. Tourlakis

6.2. Boolean Abstractions; or How to Use Truth Tables inside 1st-Order Logic 273

6.2.6 Example. Here are some easy and some involved tautological
implications. They can all be verified using truth tables, either building
the tables in full, or taking shortcuts.

1. A |=taut A

2. A |=taut A ∨B

3. A |=taut B → A

4. A,¬A |=taut B —any B. Because I do “work” only if A ∧ ¬A is
true! Just look at 6.2.5 and say: This says that A ∧¬A→ B is
“always” t since A ∧ ¬A is always f.

5. f |=taut B —any B. Because I do work only if lhs is true! See 4.
above.

6. Is this a valid tautological implication? B,A→ B |=taut A, where
A and B are distinct.

No, for if A is false and B is true, then the lhs is true, but the rhs
is false!

7. Is this a valid tautological implication? A,A→ B |=taut B? Yes!
Say A = t and (A→ B) = t. Then, from the truth table of →, it
must be B = t.

8. How about this? A,A ≡ B |=taut B? Yes! Verify!

9. READ ME! How about this? A ∨B ≡ B |=taut A→ B? Yes! I
verify:

First off, assume lhs of |=taut —that is, that A∨B ≡ B— is true.

Two cases:

• B = f . Then I need the lhs of ≡ to be true to satisfy the red
“assume”. So A = f as well and clearly the rhs of |=taut is true
with these values.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

274 6. A Short Course on Predicate (also called “First-Order”) Logic

• B = t. Then I need not worry about A on the lhs. The rhs of
|=taut is true by truth table of →.

10. A ∧ (f ≡ A) |=taut B, for any B. Well, just note that the lhs of
|=taut is f so we need to do no work with B to conclude that the
implication is valid.

11.
A→ B,C → B |=taut A ∨ C → B

This is nicknamed “proof by cases” for the obvious reasons. Verify
this tautological implication! □

Notes on Discrete MATH (EECS1028)© G. Tourlakis

6.3. Proofs and Theorems 275

Nov. 18, 2024

6.3. Proofs and Theorems

The job of a mathematical proof is to unfailingly preserve truth in
all its steps as it is developed.

The syntax (SHAPE!) of proofs:

A proof is a finite sequence of formulas —it is our “mathematical

argument”— where EACH formula we write down,ONE per line
with a short explanation to the right, is either

1. an “Assumption”—also called a “Hypothesis∗”— OR an Axiom,

OR

2. is obtained from formulas we wrote earlier IN THIS PROOF em-
ploying some valid rule.

Rules are introduced below!

∗“Hypothesis” to be explained on p.280.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

276 6. A Short Course on Predicate (also called “First-Order”) Logic

Am I allowed in step 1. above to write an already proved theorem
A?

Of course, because doing so is equivalent to lengthening the proof

by adding —instead of just A—ALL OF . . . , A , that is, the entire
proof of A obtained from axioms only, not invoking other theorems.

Programming analogy: I am allowed to invokemacros in
a program because this is equivalent to writing down explicitly the
macro-expansion code.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

6.3. Proofs and Theorems 277

What are our axioms, our starting assumptions, when we do proofs?

We have two types:

1. Axioms needed by Logic (Logical Axioms) that are common
in all proof-work that we do in mathematics or computer science.

▶ For example, such is the “identity” axiom x = x and the tau-
tology ¬A ∨ A.

Both these configurations or Schemata (singular: Schema) —“x =
x” and “¬A ∨ A”— define infinitely many axioms as their “in-
stances”.

The first allows us to use ANY object variable in place of “x” the
second allows to use any “statement” (formula) in place of A.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

278 6. A Short Course on Predicate (also called “First-Order”) Logic

2. Axioms needed to do MATH in some theory (Mathemati-
cal OR “nonlogical” axioms).

Here is a sample of axioms from a few MATH theories:

(i) i. Number theory (“Peano arithmetic”) for N:
• x < y ∨ x = y ∨ x > y (trichotomy)

• ¬x < 0 this axiom indicates that 0 is minimal in N.
• Many others that we omit.

ii. Euclidean Geometry:

• From two distinct points passes one and only one line.

• (“Axiom of parallels”) From a point A off a line named
k —both A and k being on the same plane— passes a
unique line on said plane that is parallel to k.

• Many others that we omit.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

6.3. Proofs and Theorems 279

iii. Axiomatic Set Theory:

• For any set A, we have

(∃y)y ∈ A→ (∃x)
(
x ∈ A ∧ ¬(∃z ∈ A)z ∈ x

)
This is the so-called axiom of “foundation” from which
one can prove things like A ∈ A is always false.

This axiom incarnates Principles 0-2 in an axiomatic
set theory like “ZFC”.

It says that IF A ̸= ∅ —this is “(∃y)y ∈ A”— THEN

there is some element in A —this is the part “(∃x)
(
x ∈

A”— which contains no element of A —this is the part
“¬(∃z ∈ A)z ∈ x”.

• And a few others —including the Axiom of Choice,
acronym “AC”— that we omit. □

� Foundation above tells us, among other things, that we cannot contain
all members of a chain

. . . ∈ x′′ ∈ x′ ∈ x

in a set A. �

Notes on Discrete MATH (EECS1028)© G. Tourlakis

280 6. A Short Course on Predicate (also called “First-Order”) Logic

And then we have “hypotheses” or “assumptions”.

Are those not just axioms of logic or math? Not necessarily!

You recall that to prove A ⊆ B you go like this:

“Let x ∈ A, for some fixed x”. This “Let x ∈ A” is a
hypothesis from which you will prove (hopefully) x ∈ B.

It is NOT an axiom of logic nor one of mathematics!

Notes on Discrete MATH (EECS1028)© G. Tourlakis

6.3. Proofs and Theorems 281

6.3.1 Definition. (The SHAPE of Logical Axioms)

1. All tautologies; these need no defence as “start-up truths”.

2. Formulas of the form (∀x)A[x]→ A[t], for any formula A, variable
x and “object” t.

� Notation A[x] denotes our interest in the (potentially) input vari-
able x.

I said “potentially”!

Having written A[x] any notation “A[t]” that follows that fact
denotes that t has being “read into” (or substituted into) the
input variable x.

▶ x may well be an input variable in A but it is DEFINITELY
NOT an input variable in (∀x)A. It is bound! �

This t-object can be as simple as an (object) variable y (might be
the same as x!), constant c, or as complex as a “function call”,

f
(
g
(
y, h(z)

)
, a, b, w

)
where f accepts 4 inputs, g accepts 2 and h

accepts one. y, z, w are variables while a and b —by notational
convention— are unspecified constants.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

282 6. A Short Course on Predicate (also called “First-Order”) Logic

The axiom is true in any theory as it “says” “if A is true for all
(values of) x, then it is also true for the specific value t”.

The axiom works ONLY IF we take care that no input vari-
able of t (say “z”) lands in the scope of a (∀z) or a (∃z)
that are embedded in formula A.

If that happens, we say that the free variable z of t was
captured and we disallow this substitution as illegal.

The substitution A[x :=︸︷︷︸
↑

input g(z) to x

g(z)] is NOT

ALLOWED IF:

A[x] is · · · (∀z)(. . .

g(z)
↓
x · · ·) · · ·

MOTIVATION: If A[y] is (∃z)z ̸= y —which says that
for any y-value there is an z-value that is different—
we cannot take t to be z and do A[z]. If we do,
we get (∃z)z ̸= z.

This is false in all domains while the original is true,
for example, in the domain of N!

Notes on Discrete MATH (EECS1028)© G. Tourlakis

6.3. Proofs and Theorems 283

As noted already, “[x]” indicates the free variable of inter-
est to us. It does not imply that x actually occurs free in A
nor does it imply that there may not be other free variables in
A.

How do I indicate that x, y, z are precisely all the free variables
(“inputs”) of A? A(x, y, z).

Notes on Discrete MATH (EECS1028)© G. Tourlakis

284 6. A Short Course on Predicate (also called “First-Order”) Logic

3. Formulas of the form A[x]→ (∀x)A[x], for any formula A where
the variable x does not occur free in it.

� We wrote “A[x]” to speak of our interest in x even though we know
(our assumption) that x is non-input in A. �

That is, the truth value of A is independent of the value of x and
writing —or not writing— “(∀x)” up in front makes no difference.

For example say A is 3 = 3. This axiom says then, “if 3 = 3 is
true, then so is (∀x)3 = 3”.

Sure! 3 = 3 does NOT depend on x. So saying “for all values of
x we have 3 = 3” is the same as saying just “we have 3 = 3”.

4. (∀x)(A→ B)→ (∀x)A→ (∀x)B.

Says the same thing as (∀x)(A→ B) ∧ (∀x)A→ (∀x)B.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

6.3. Proofs and Theorems 285

5. x = x is the identity axiom, no matter what “x” I use to express
it. So, y = y and w = w are also instances of the axiom.

6. x = y → y = x and x = y∧y = z → x = z are the equality axioms.

They can be expressed equally well using variables other than x
and y (e.g., u, v and w).

□

6.3.2� Remark. (The “∃”) The symbol ∃ is an abbreviation:

For any formula A, (∃x)A[x] stands for or is short for ¬(∀x)¬A[x].

We also get the tautology (hence theorem)

⊢
using abbrev. of rhs︷ ︸︸ ︷

(∃x)A ≡
it is not true that︷︸︸︷¬ all x make A false︷ ︸︸ ︷

(∀x)¬A

This is a DEFINITION (a “naming” [of ¬(∀x)¬A]) NOT an ax-
iom! □ �

Notes on Discrete MATH (EECS1028)© G. Tourlakis

286 6. A Short Course on Predicate (also called “First-Order”) Logic

The “rules of proving”, or rules of inference. These are two up in
front —you will find I am grossly miscounting:

6.3.3 Definition. (Rules of Inference)
The rules used in proofs are called rules of inference and are these

two (actually the second contains infinitely many rules).

1. From A[x] I may infer (∀x)A[x]. Logicians write the up-in-front
(also called “primary”) rules as fractions without words:

A[x]

(∀x)A[x]
(1)

this rule we call generalisation, or Gen in short.

2. I may construct (and use) using any tautological implication
that I have verified, say, this one

A1, A2, . . . , An |=taut B (2)

the rule
A1, A2, . . . , An

B
Example. Seeing readily that A,A → B |=taut B, we have the
rule

A,A→ B

B
This is a very popular rule, known as modus ponens, for short MP.

� Worth Saying. So rules DO preserve truth. �

Notes on Discrete MATH (EECS1028)© G. Tourlakis

6.3. Proofs and Theorems 287

Read a rule such as (1) or (2) as saying

If you already wrote all the formulas of the “numerator” (in any
order) in a proof, then it is legitimate to write thereafter in the proof
the denominator formula (of the rule).

We call the numerator inputs or hypotheses of the rule and call
the denominator result or conclusion.

□

Notes on Discrete MATH (EECS1028)© G. Tourlakis

288 6. A Short Course on Predicate (also called “First-Order”) Logic

6.3.4� Remark.

1. The second “rule” above is a rule constructor.

Any tautological implication we come up with is fair game:

It leads to a valid rule since the name of the game (in a proof) is
preservation/propagation of truth.

This is NOT an invitation to learn and memorise infinitely many
rules (!) but is rather a license to build your own rules as you go,
as long as you bothered to verify the validity of the tautological
implication they are derived from.

2. Gen is a rule that indeed propagates truth: If A[x] is true, that
means that it is so for all values of x —and all values of any other
free variables on which A depends but I did not show in the [. . .]
notation.

But then so is (∀x)A[x] true, as it says precisely the same thing :
“A[x] is true, for all values of x and all values of any other free
variables on which A depends but I did not show in the [. . .] nota-
tion”.

The only difference between the two notations is that I added
some notational emphasis in the second —(∀x).

Notes on Discrete MATH (EECS1028)© G. Tourlakis

6.3. Proofs and Theorems 289

3. Hmm. So is ∀x redundant? Yes, but ONLY as a formula
PREFIX.

However, in something like this

x = 0→ (∀x)x = 0 (1)

over N it is NOT redundant!

Dropping ∀ we totally change the meaning of (1).

As is, (1) is not a true statement. For example, if the value
of the “input x” (the left one!) is 0, then it is false if we
work in N.

However dropping ∀x, (1) changes to x = 0 → x = 0 which is a
tautology; always true.

□ �

Notes on Discrete MATH (EECS1028)© G. Tourlakis

290 6. A Short Course on Predicate (also called “First-Order”) Logic

6.3.5 Definition. (Theorems)

A theorem is a formula that appears at the end of a proof.

Often one writes ⊢ A to symbolically say that A is a theorem. If we
must indicate that we worked in some specific theory, say ZFC (set
theory), then we may indicate this as

⊢ZFC A

If moreover we have had some “non-axiom hypotheses” (see box on
p.280) that form a set Σ, then we may indicate so by writing

Σ ⊢ZFC A

□

� Why write Σ —and not Q,R, or C?— for a set of (non-axiom) assump-
tions? Because we reserve upper case latin letters for SINGLE formulas.
For sets of formulas we use distinguishable capital letters, so, we chose
here a distinguishable Greek capital letters, such as Γ,Σ,∆,Φ,Θ,Ψ,Ω.
Obviously, Greek capital letters like A,B,E, Z will not do! �

Notes on Discrete MATH (EECS1028)© G. Tourlakis

6.3. Proofs and Theorems 291

6.3.6� Remark. (Hilbert-style proofs) The proof concept as defined
is known as a “Hilbert-style proof”.

We write them vertically, ONE formula per line, every formula con-
secutively numbered, with annotation to the right of each formula writ-
ten (this is the “why did I write this?”).

Like this

1) F1 ⟨because⟩
2) F2 ⟨because⟩
...

...
...

n) Fn ⟨because⟩

□ �

Notes on Discrete MATH (EECS1028)© G. Tourlakis

292 6. A Short Course on Predicate (also called “First-Order”) Logic

6.4. Proof Examples

6.4.1 Example. (New (derived) rules) A derived rule is one we
were not given up in front —in 6.3.3— to bootstrap logic, but we can
still prove that they propagate truth.

1. We have a new (derived) rule: (∀x)A[x] ⊢ A[t].

This is called Specialisation, or Spec Rule. It says “drop the lead-
ing (∀x)”.

Aha! We used a non-axiom hypothesis here!

I write a Hilbert proof to show that A[t] is a theorem if (∀x)A[x]
is a (non-axiom) hypothesis (assumption) —shortened to “hyp”.

1) (∀x)A[x] ⟨hyp⟩
2) (∀x)A[x]→ A[t] ⟨axiom⟩
3) A[t] ⟨1 + 2 + MP⟩

2.

Taking t to be x we have (∀x)A[x] ⊢ A[x], simply written as
(∀x)A ⊢ A.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

6.4. Proof Examples 293

Nov. 20, 2024

3. The Dual Spec derived rule:

A[t] ⊢ (∃x)A[x] (1)

We prove it below, but first I must prove the theorem:

⊢ A[t]→ (∃x)A[x] (2)

Here it goes

1) (∀x)
B[x]︷ ︸︸ ︷
¬A[x]→

B[t]︷ ︸︸ ︷
¬A[t] ⟨axiom⟩

2) A[t]→ ¬(∀x)¬A[x] ⟨1 + Taut. Impl. (contrapositive)⟩
2′) A[t]→ (∃x)A[x] ⟨2 + using abbreviation “∃”⟩

� In step two I used the tautological implication A→ B |=taut

¬B → ¬A. The two sides of “|=taut” are called “contraposi-
tives” of each other. �

Now, Dual Spec:

1) A[t] ⟨hyp⟩
2) A[t]→ (∃x)A[x] ⟨proved above; we quoted a theorem!!⟩
3) (∃x)A[x] ⟨1 + 2 + MP⟩

Taking t to be x we have A[x] ⊢ (∃x)A[x], simply written as A ⊢ (∃x)A.
□

Notes on Discrete MATH (EECS1028)© G. Tourlakis

294 6. A Short Course on Predicate (also called “First-Order”) Logic

There are two principles of proof that we state without proving their
validity (see [Tou03a, Tou08] if curious).

6.4.2� Remark. (Deduction Theorem and Proof by Contradiction)

1. The deduction theorem (also known as “proof by assuming the
antecedent” —acronym we use: “DThm”) states, if

Γ, A ⊢ B (1)

then also Γ ⊢ A → B, provided that in the proof of (1), all
free variables that appear in A were treated as constants (as we
say, were “frozen”) AT or BELOW the point in the proof where
A was inserted as a hypothesis:

This “freezing” applies to ALL formulas, X, not just to A in
the entire proof segment BELOW the spot where we
said “A is a hypothesis”. We cannot apply ∀ nor the
(derived) operation of assigning a value to such free
variables no matter which formula X they occur in.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

6.4. Proof Examples 295

6.4.3 Example. (“Everyday” DThm application)

To show A ⊆ B we do x ∈ A→ x ∈ B for all x.

To do the latter we pick a fixed (“frozen”!) undisclosed x and as-
sume x ∈ A.

Aha! “FROZEN”!

So it behaves as a constant. I cannot do ∀ —in the rest of
the proof— to the variable x!

Then we proceed to show x ∈ B for that same, frozen x.

Hey! This is an application of the DThm! □

Notes on Discrete MATH (EECS1028)© G. Tourlakis

296 6. A Short Course on Predicate (also called “First-Order”) Logic

The notation “Γ, A” is standard for the more elaborate Γ ∪ {A}.

In practice, this principle is applied to prove Γ ⊢ A → B, by
doing instead the “easier” (1).

Why “easier”?

(1) We are helped by an extra hypothesis, A, and

(2) the formula to prove, B, is less complex than A→ B.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

6.4. Proof Examples 297

2. Proof by contradiction. To prove Γ ⊢ A —where A has no free
variables or, as we say, is closed or is a sentence— is equivalent to
proving the “constant formula” f from hypothesis Γ,¬A. □ �

Notes on Discrete MATH (EECS1028)© G. Tourlakis

298 6. A Short Course on Predicate (also called “First-Order”) Logic

6.4.4 Remark. (Ping-Pong) For any formulas A and B, the formula
—where I am using way more brackets than I have to, ironically, to
improve readability—

(A ≡ B) ≡
(
(A→ B) ∧ (B → A)

)
is a tautology.

Thus to prove the lhs of the ≡ suffices to prove the rhs and hence
prove

A→ B and B → A

□

Notes on Discrete MATH (EECS1028)© G. Tourlakis

6.4. Proof Examples 299

Here are a few applications.

6.4.5 Example. 1. Establish ⊢ (∀x)(A ∧B) ≡ (∀x)A ∧ (∀x)B.

By ping-pong.

(I) (→) Prove ⊢ (∀x)(A ∧ B) → (∀x)A ∧ (∀x)B. By DThm
suffices to do (∀x)(A ∧B) ⊢ (∀x)A ∧ (∀x)B instead.

1) (∀x)(A ∧B) ⟨DThm hyp⟩
2) A ∧B ⟨1 + Spec⟩
3) A ⟨2 + tautological implication⟩
4) B ⟨2 + tautological implication⟩
5) (∀x)A ⟨3 + Gen; OK: x is not free in line 1⟩
6) (∀x)B ⟨4 + Gen; OK: x is not free in line 1⟩
7) (∀x)A ∧ (∀x)B ⟨5 + 6 + tautological implication⟩

Why the note “OK: x is not free in line 1”? I thought ap-
plying “Gen” is unconditional??

Because I applied DThm and moved (∀x)(A∧B) to the left
of “⊢”(I made it “hyp”).

DThm requires ALL FREE variables of this formula to be
frozen from the point of insertion down.

In particular I am NOT allowed to invoke (∀x) IF x is free
in the DThm hyp line. Luckily it is NOT!

Notes on Discrete MATH (EECS1028)© G. Tourlakis

300 6. A Short Course on Predicate (also called “First-Order”) Logic

(II) (←) Prove ⊢ (∀x)A ∧ (∀x)B → (∀x)(A ∧ B). By DThm
suffices to do (∀x)A ∧ (∀x)B ⊢ (∀x)(A ∧B) instead.

1) (∀x)A ∧ (∀x)B ⟨DThm hyp⟩
2) (∀x)A ⟨1 + tautological implication⟩
3) (∀x)B ⟨1 + tautological implication⟩

Complete the above proof!

Notes on Discrete MATH (EECS1028)© G. Tourlakis

6.4. Proof Examples 301

2. Prove ⊢ (∀x)(∀y)A ≡ (∀y)(∀x)A.

By ping-pong.

(a) Prove ⊢ (∀x)(∀y)A→ (∀y)(∀x)A.
By DThm suffices to do (∀x)(∀y)A ⊢ (∀y)(∀x)A instead.

1) (∀x)(∀y)A ⟨hyp⟩
2) (∀y)A ⟨1 + Spec⟩
3) A ⟨2 + Spec⟩
4) (∀x)A ⟨3 + Gen; OK, no free x in line 1⟩
5) (∀y)(∀x)A ⟨4 + Gen; OK, no free y in line 1⟩

(b) Prove ⊢ (∀y)(∀x)A→ (∀x)(∀y)A.
Exercise! TWO proofs available readily! □

Notes on Discrete MATH (EECS1028)© G. Tourlakis

302 6. A Short Course on Predicate (also called “First-Order”) Logic

6.4.6 Exercise. Prove for any A and B — where x is not free in A—
that ⊢ (∀x)(A→ B)→ (A→ (∀x)B). □

6.4.7 Exercise. Prove for any A and B — where x is not free in A—
that A→ B ⊢ A→ (∀x)B. □

Notes on Discrete MATH (EECS1028)© G. Tourlakis

6.4. Proof Examples 303

Nov. 22, 2024

� We have seen how to add an (∃x) in front of a formula (6.4.1 3).

How about removing an (∃x)-prefix? This is much more complex
than removing a (∀x)-prefix:

�

Notes on Discrete MATH (EECS1028)© G. Tourlakis

304 6. A Short Course on Predicate (also called “First-Order”) Logic

6.4.8 Metatheorem. (Removing an ∃-Prefix) Suppose I have proved
(∃x)A[x] from some hypotheses Γ.

Suppose that I now want to ALSO prove B from Γ.

How can I benefit from my result (∃x)A in such a
proof?

The (∃x)A MOTIVATES me to assume —for some fresh
constant c that does NOT occur in any of

B

Γ

(∃x)A

that A[c] is true (that is, TAKE IT ASAN ADDITIONAL HYP).

In the “SETUP” above I proceed to prove

Γ, A[c] ⊢ B (1)

I do so by using all free (input-) variables of A[c] as constants in
my proof.b

bThis is a side-effect of using the deduction theorem in the proof of correctness of the theorem below that
justifies this technique.

THEN, (1) guarantees that I also have

Γ ⊢ B

Notes on Discrete MATH (EECS1028)© G. Tourlakis

6.4. Proof Examples 305

IntuitivelyA(c) says “for SOME c, A(c) is true”

Same as (∃x)A(x): “for SOME x, A(x) is true”.

� BUT, Technically, (∃x)A(x) does NOT imply A(c). For one
thing, you cannot put your finger on WHAT c is!

For another, you introduce A(c) as aHYPOTHESIS: See
(1) on previous page!

See also Exercises 6.4.11 and 6.4.12. �

Notes on Discrete MATH (EECS1028)© G. Tourlakis

306 6. A Short Course on Predicate (also called “First-Order”) Logic

6.4.9 Example. Prove ⊢ (∃y)(∀x)A[x, y]→ (∀x)(∃y)A[x, y].

By the DThm it suffices to prove (∃y)(∀x)A[x, y] ⊢ (∀x)(∃y)A[x, y]
instead.

1) (∃y)(∀x)A[x, y] ⟨hyp via DThm⟩
2) (∀x)A[x, c] ⟨aux. hyp. related to 1; for fresh constant c

not in the conclusion⟩
3) A[x, c] ⟨2 + Spec⟩
4) (∃y)A[x, y] ⟨3 + Dual Spec⟩
5) (∀x)(∃y)A[x, y] ⟨4 + Gen; OK, no free x in lines

1(DThm hyp) and 2(aux. hyp)⟩

Worth Noting: The “Γ” here is {(∃y)(∀x)A[x, y]} thus we do
have Γ ⊢ (∃y)(∀x)A[x, y]b as required by Metatheorem 6.4.8.

bWhat I am invoking here is the trivial X ⊢ X that is verified by the 1-line proof “1) X ⟨hyp⟩”.

□

Notes on Discrete MATH (EECS1028)© G. Tourlakis

6.4. Proof Examples 307

6.4.10� Example. Can I also prove the converse of the above? That
is, is it true that

⊢ (∀x)(∃y)A[x, y]→ (∃y)(∀x)A[x, y] (1)

Worth trying.

By the DThm it suffices to prove (∀x)(∃y)A[x, y] ⊢ (∃y)(∀x)A[x, y]
instead.

1) (∀x)(∃y)A[x, y] ⟨hyp via DThm⟩
2) (∃y)A[x, y] ⟨1 + Spec⟩
3) A[x, c] ⟨aux. hyp. for 2; NEW c not in the conclusion⟩
4) (∀x)A[x, c] ⟨3 + Gen; Stop! Forbidden!

Illegal “(∀x)”: I should treat the free x of
aux. hyp. on line 3 as a constant!⟩

Still, can anyone PROVE (1); even if I cannot?

A question like this, if you are to answer “NO”, must be resolved
by offering a counterexample.

That is, a SPECIAL, SIMPLE case of A for which I can clearly see
that the claim is false.

Here is one such (counter)example over the set N:

(∀x)(∃y)
“the A”︷ ︸︸ ︷
x = y︸ ︷︷ ︸

t

→ (∃y)(∀x)
“the A”︷ ︸︸ ︷
x = y︸ ︷︷ ︸

f

(1)

□ �

Notes on Discrete MATH (EECS1028)© G. Tourlakis

308 6. A Short Course on Predicate (also called “First-Order”) Logic

Here is another NON-theorem. We have the axiom A → (∀x)A
if x is not free in A. Can we relax the restriction
on x?

No. If we had ⊢ A → (∀x)A with no restrictions then look at the
special case

x = 0→ (∀x)x = 0 (2)

on N.
We already saw that this is NOT true for all x —not a theorem

then!

In fact over N, (2) is false if the in input x is 0:

t︷ ︸︸ ︷
0 = 0→

f︷ ︸︸ ︷
(∀x)x = 0.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

6.4. Proof Examples 309

6.4.11 Example. (Important “confusion remover”) One might be
confused by the act of adding the hypothesis A(c) whenever we have
(∃x)A(x).

Some lapse of judgement might construe this as an implication:

(∃x)A(x)→ A(c) (1)

The above is false!! NOT a theorem!!

Indeed: Take A(x) to be x = 0 and choose the unspecified c to
be 42.

(1) becomes specifically,

t︷ ︸︸ ︷
(∃x)x = 0→

f︷ ︸︸ ︷
42 = 0 (2)

Thus (1) fails for this A and c so it is NOT a theorem
schema —meaning, NOT valid for all A
and c! □

6.4.12 Exercise. (Important “confusion remover” #2) Prove by
an EASY counterexample that (∃x)A[x]→ A[x] is not provable either.

□

Notes on Discrete MATH (EECS1028)© G. Tourlakis

310 6. A Short Course on Predicate (also called “First-Order”) Logic

� Another useful principle that can be proved, but we will not do so, is
that one can replace equivalents-by-equivalents. That is, if C is some
formula, and if I have

1. Let A ≡ B, via proof, or via assumption, and also

2. A is a subformula of C

then I can replace one (or more) occurrence(s) of A in C (as
subformula(s)) by B and call the resulting formula C ′.

I will be guaranteed the theorem C ≡ C ′.

That is, from A ≡ B, I can prove C ≡ C ′.

This principle is called the equivalence theorem. �

Notes on Discrete MATH (EECS1028)© G. Tourlakis

6.4. Proof Examples 311

Let’s do a couple of ad hoc additional examples before we move to
the section on Induction.

6.4.13 Example. A→ B ⊢ (∀x)A→ (∀x)B.
By the DThm it suffices to prove A→ B, (∀x)A ⊢ (∀x)B instead.

1) A→ B ⟨hyp⟩
2) (∀x)A ⟨hyp from DThm⟩
3) A ⟨2 + Spec⟩
4) B ⟨1 + 3 + MP⟩
5) (∀x)B ⟨4 + Gen; OK as the DThm hyp. (line 2) has no free x⟩

� We don’t CARE whether Line 1 has free
x’s! �

□

Notes on Discrete MATH (EECS1028)© G. Tourlakis

312 6. A Short Course on Predicate (also called “First-Order”) Logic

Nov. 25, 2024

6.4.14 Example. (Substitution Theorem) We have A[x] ⊢ A[t]
for any (substitutable) term t.

Indeed,

1) A[x] ⟨hyp⟩
2) (∀x)A[x] ⟨1 + Gen⟩
3) A[t] ⟨2 + Spec⟩

□

6.4.15 Example. We have A→ B ⊢ (∃x)A→ (∃x)B.
Proof via DThm, that is, prove

A→ B, (∃x)A ⊢ (∃x)B

instead.

1) A[x]→ B[x] ⟨hyp⟩
2) (∃x)A[x] ⟨hyp via DThm⟩
3) A[c] ⟨aux. hyp. for 2⟩
4) A[c]→ B[c] ⟨1 + 6.4.14; OK no free x in lines #2, 3⟩
5) B[c] ⟨3 + 4 + MP⟩
6) (∃x)B[x] ⟨5 + Dual Spec⟩

□

Notes on Discrete MATH (EECS1028)© G. Tourlakis

6.4. Proof Examples 313

6.4.16 Example. A ≡ B ⊢
C︷ ︸︸ ︷

(∀x)A ≡
C ′︷ ︸︸ ︷

(∀x)B.
True due to the equivalence theorem! “C” is “(∀x)A”. We replaced

(one occurrence of) A by B in C, and we have assumed as starting
point that A ≡ B. □

6.4.17 Exercise. Prove A ≡ B ⊢ (∀x)A ≡ (∀x)B without relying on
the equivalence theorem. Rather use 6.4.13 in your proof, remembering
the ping-pong tautology (6.4.4). □

Notes on Discrete MATH (EECS1028)© G. Tourlakis

314 6. A Short Course on Predicate (also called “First-Order”) Logic

6.4.18� Example. Prove that

⊢ ¬(∃y)(∀x)(x < y ≡ x ̸< x) (1)

Use proof by contradiction, so assume the opposite

(∃y)(∀x)(x < y ≡ x ̸< x) (2)

and derive a contradiction. Here it goes:

1) (∃y)(∀x)(x < y ≡ x ̸< x) ⟨hyp⟩
2) (∀x)(x < c ≡ x ̸< x) ⟨aux. hyp for 1); c fresh⟩
3) c < c ≡ c ̸< c ⟨2 + Spec⟩

Line 3 is a contradiction!
So? What is the big deal?
Well, this proof goes through for any binary predicate, not just

“<”. So if I used ∈ instead I’d get the “new” (1)

⊢ ¬(∃y)(∀x)(x ∈ y ≡ x /∈ x) (1′)

(1′) says that y = {x : x /∈ x} is NOT a set! Pure logic proved Russell’s
Paradox!!!

Why “pure”? Why, did you see me using any set theory axiom or
property? :) □ �

Notes on Discrete MATH (EECS1028)© G. Tourlakis

6.5. Induction 315

6.5. Induction

In Remark 4.5.32 we concluded with a formulation —(2) on p.169—
of the minimal condition (MC) for any order <.

See (†) below:

Since we often† depict a class A as A = {x : F [x]} for some “entrance
property” F [x], we have

The statement “some order < has MC ” is captured by the state-
ment

∅ ≠ A→ (∃a ∈ A)¬(∃y)(y < a ∧ y ∈ A)
OR, equivalently (see 4.5.32), For any “property”, that is, formula
F [x], we have that the following is true

(∃a)F [a]→ (∃a)
(
F [a] ∧ ¬(∃y)

(
y < a ∧ F [y]

))
(†)

†“Often”, not “always”. There are more classes —in fact, there are even more SETS— than formulas (“proper-
ties”).

Notes on Discrete MATH (EECS1028)© G. Tourlakis

316 6. A Short Course on Predicate (also called “First-Order”) Logic

Nov. 27, 2024

Using (1st-order) Logic we can transform (†) into an equivalent
statement where “∀” is the quantifier of choice. Here are the logical
steps:

1. (†) is equivalent to its contrapositive

¬(∃a)
(
F [a] ∧ ¬(∃y)

(
y < a ∧ F [y]

))
→ ¬(∃a)F [a] (1)

2. (1) is equivalent to

(∀a)¬
(
F [a] ∧ ¬(∃y)

(
y < a ∧ F [y]

))
→ (∀a)¬F [a] (2)

3. Replacing formulas inside (2) by trivially equivalent ones and writ-
ing ∃ in terms of ∀ we get next

(∀a)
(
¬F [a] ∨

was (∃y)︷ ︸︸ ︷
¬(∀y)¬

(
y < a ∧ F [y]

))
→ (∀a)¬F [a] (3)

4. Obvious:

(∀a)
(
¬F [a] ∨ ¬(∀y)

(
¬y < a ∨ ¬F [y]

))
→ (∀a)¬F [a] (4)

5. Using A→ B for ¬A ∨B in two places:

(∀a)
(
(∀y)

(
y < a→ ¬F [y]

)︸ ︷︷ ︸
Induction Hyp.

I.S.︷︸︸︷→ ¬F [a]
)
→ (∀a)¬F [a] (5)

(5) formulates the strong (also called complete or course-of-values)

induction. No?
Let P (x) be ANY “property” of x —that is, a formula with free

variable x. Define F (x) by

F (x) ≡ ¬P (x)

Notes on Discrete MATH (EECS1028)© G. Tourlakis

6.5. Induction 317

Replacing the above F by its equivalent ¬P in (5) we get

(∀a)
(
(∀y)

(
y < a→ P [y]

)︸ ︷︷ ︸
I.H.

I.S.︷︸︸︷−→ P [a]
)
→ (∀a)P [a] † (CV I)

OR, to prove (∀a)P [a] all I have to do is to show instead
that

For all a,

I.H.︷ ︸︸ ︷
(∀y < a)P [y]−→ P (a)︸ ︷︷ ︸

I.S.

(method)

OR

For any fixed a, Prove P [a] with the help of the I.H.

†CVI=“Course-of-Values Induction”.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

318 6. A Short Course on Predicate (also called “First-Order”) Logic

In what follows we restrict attention to the well-ordered
set N under the standard <.

Now, for a = 0 the I.H. does NOT help. No y < a exists
(in N).

Thus, we prove P [0]unaided by I.H. We prove P [0] From Scratch.

P [0] is, the start of the induction proof of (∀a)P [a]. We call it the
BASIS.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

6.5. Induction 319

There is another simpler induction principle that we call, well, “sim-
ple induction”:

P [0], P [x]→ P [x+ 1]

P [x]
(SI)

“(SI)” for Simple Induction. That is, to prove P [x] for all x (denomi-
nator) do three things:

Step 1. BASIS. Prove/verify P [0]

Step 2. Assume P [x] for fixed (“frozen”) x (unspecified!).

Step 3. prove P [x+ 1] for that same (previously frozen) x.

The assumption is the I.H. for simple induction.

The I.S. is Step 3 that proves P [x+ 1].

� Note that what is described here is precisely an
application of the Deduction theorem towards
proving “P [x]→ P [x+1]”, that is, proving
the implication for every given x. �

Step 4. If you have done Step 1. through Step 3. above, then you
announce that you have proved P [x] (for all x is implied!)

Notes on Discrete MATH (EECS1028)© G. Tourlakis

320 6. A Short Course on Predicate (also called “First-Order”) Logic

THIS PART (6.5.1 and 6.52) is NOT Examinable. SKIP to
HERE 6.5.3, p.323.

Is the principle (SI) correct? I.e., if I do all that the numerator of
(SI) asks me to do (equivalently, Steps 1. – 3.), then do I really get
that the denominator is true (for all x implied)? YES!

6.5.1 Theorem. (MC → SI; Skip Proof) The validity of (SI) is a
consequence of MC (least principle) on N.

Proof. Suppose (SI) is not correct.

Then, for some property P [x], despite having completed Steps 1. –
3., P [x] is not true for all x!

Then,

let n ∈ N be smallest such that P [n] is false.

Now, n > 0 since I did verify the truth of P [0] (Step 1.).

Thus, n− 1 ≥ 0.

But then, when I proved “P [x] → P [x + 1] for all x (in N)” —in
Steps 2. and 3.— this includes proving

P [n− 1]→ P

[
smallest︷︸︸︷

n

]
︸ ︷︷ ︸

false

(4)

Notes on Discrete MATH (EECS1028)© G. Tourlakis

6.5. Induction 321

By the smallest-ness of n, P [n−1] is true, hence P [n] is true after all,
by (4).

� I have just contradicted that P [n] is false! �

(SI) works if MC does! □

In fact, MC and SI are equivalent principles.

6.5.2 Theorem. (SI →MC; Skip Proof) Conversely to the previ-
ous theorem (6.5.1), if SI on N works, then N has MC.

Proof. By contradiction, I assume I have SI, but that MC fails.

So, there is a nonempty S ⊆ N that has no least element.

I will get a contradiction by showing that S
Def
= N− S is all of N

(hence S = ∅).

I apply SI to the property

P (x)
Def
≡ {0, 1, . . . , x} ⊆ S

1. Basis. P (0) says {0} ⊆ S which is equivalent to 0 ∈ S; true since
if 0 ∈ S that would contradict assumption on S.

2. Fix x and assume (I.H.) P (x) —i.e., {0, 1, . . . , x} ⊆ S.

3. P (x+ 1) says {0, 1, . . . , x, x+ 1} ⊆ S. To prove this, note:

Notes on Discrete MATH (EECS1028)© G. Tourlakis

322 6. A Short Course on Predicate (also called “First-Order”) Logic

By 2., we have {0, 1, . . . , x} ⊆ S so if x + 1 ∈ S instead, then it
would be smallest in S, contradicting hypothesis about S.

Thus I MUST have also {0, 1, . . . , x, x + 1} ⊆ S —and hence
P (x+ 1) is true.

By SI, I have P (x) true for all x, thus {0, 1, . . . , x} ⊆ S for all x.

In particular, x ∈ S for all x

But then S = ∅. A contradiction! □

Notes on Discrete MATH (EECS1028)© G. Tourlakis

6.5. Induction 323

Since we have CVI equivalent to MC we now have

JUST KNOW THIS Corollary; NOT its proof.

6.5.3 Corollary. All three of CVI, SI and MC are equivalent
principles over N.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

324 6. A Short Course on Predicate (also called “First-Order”) Logic

6.6. Induction Practice

� To begin with, there are “properties” to prove that are only valid
for all n ≥ k for some constant k > 0.

This is the domain where we have to stay in during the proof.

Thus for those the I.H. MUST “pick a fixed unspecified n ≥ k”.

The points n = 0, 1, . . . , k−1 are outside the domain so are “illegal”.

Thus the “Basis” (same as “Beginning”) of the induction must
be for n = k.

As an example, the smallest n where n + 3 < 2n is true is n = 3
(verify!).

We can prove by induction

n+ 3 < 2n, for n ≥ 3

verifying as Basis the case n = 3.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

6.6. Induction Practice 325

Another example:

The statement “n has a prime factor” is erratic for n < 2.
For n = 1 it is false and for n = 0 it is true (every number is a factor

of zero).

So one must take as domain of truth of the quoted blue property the
set {n ∈ N : n ≥ 2}. 2 is the Basis —the Beginning. �

Let’s do this by CVI. (Why CVI and not SI? See below.)

Basis : For n = 2 we have a prime factor! 2 =

Prime︷︸︸︷
2 ×1.

I.H. On the I.H. above, go to n-case below. Note.

Can also say, “assume for all 2 ≤ k ≤ n; go to n+ 1”.

I.S. Assume for all 2 ≤ k < n; go to n below.
TWO subCASES:

1. n is prime. Then n is a prime factor of n.

2. n is composite, i.e., n = a× b and a ≥ 2 and b ≥ 2.

Pause.

▶ Why is a ≥ 2 and b ≥ 2?

Thus each of a and b are < n and the I.H. applies to each!

So, say, a has a prime factor p. But then p is a prime factor of n.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

326 6. A Short Course on Predicate (also called “First-Order”) Logic

� The CVI was needed because in SI we prove (case of) n based on (case
of) n− 1 OR prove at n+ 1 based on case on n.

▶ So we’d need to prove a prime factor of n− 1 is a prime
factor of n. Won’t work!

A prime factor of n−1 does NOT necessarily divide n. For example
14 has a prime factor 2. This is not a prime factor of 15. The other
prime factor, 7, of 14 is not a factor of 15 either. �

Notes on Discrete MATH (EECS1028)© G. Tourlakis

6.6. Induction Practice 327

6.6.1 Example. This is the “classic first example of induction use” in
the discrete math bibliography! Prove that

0 + 1 + 2 + . . .+ n =
n(n+ 1)

2
(1)

So, the property to prove is the statement (1).

One must learn to not have to rename the various “properties” that
we encounter as “P [n]”.

I will use SI. So let us do the Basis. Boundary case is n = 0. We
verify: lhs = 0. rhs = (0× 1)/2 = 0. Good!

Fix n and take the expression (1) as I.H. (WHY “FIX n”? See (SI)
on p.319).

Do the I.S. Prove:

0 + 1 + 2 + . . .+ n+ (n+ 1) =
(n+ 1)(n+ 2)

2

Here it goes

0 + 1 + 2 + . . .+ n+ (n+ 1)
using I.H.

=
n(n+ 1)

2 + (n+ 1)
= (n+ 1)(n/2 + 1)

=
(n+ 1)(n+ 2)

2

□

I will write more concisely in the examples that follow.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

328 6. A Short Course on Predicate (also called “First-Order”) Logic

6.6.2 Example. Same as above but doing away with the “0+”. Again,
I use SI.

1 + 2 + . . .+ n =
n(n+ 1)

2
(1)

• Basis. n = 1: (1) becomes 1 = (1× 2)/2. True.

• Take (1) as I.H. with fixed n.

• I.S.:

1 + 2 + . . .+ n+ (n+ 1)
using I.H.

=
n(n+ 1)

2 + (n+ 1)
= (n+ 1)(n/2 + 1)

=
(n+ 1)(n+ 2)

2

□

Notes on Discrete MATH (EECS1028)© G. Tourlakis

6.6. Induction Practice 329

6.6.3 Example. Prove

1 + 2 + 22 + . . .+ 2n = 2n+1 − 1 (1)

By SI.

• Basis. n = 0. lhs = 1 = 20 = 21 − 1 = rhs. True.

• As I.H. take (1) for fixed n.

• I.S.

1 + 2 + 22 + . . .+ 2n + 2n+1using I.H.
= 2n+1 − 1 + 2n+1

= 2 · 2n+1 − 1
= 2n+2 − 1

□

Notes on Discrete MATH (EECS1028)© G. Tourlakis

330 6. A Short Course on Predicate (also called “First-Order”) Logic

Nov. 29, 2024

6.6.4 Example. Let

b1 = 3, b2 = 6

bk = bk−1 + bk−2, for k ≥ 3

Prove by induction that bn is divisible by 3 for n ≥ 1. (Be careful to
distinguish between what is Basis and what are Cases arising from the
induction step!)

Proof. So the boundary condition is (from the underlined part above)
n = 1. This is the Basis.

1. Basis : For n = 1, I have b1 = 3 and this is divisible by 3. We are
good.

2. I.H. Fix an arbitrary n and assume claim for all k such that
1 ≤ k < n —that is, assume theorem for all predecessors of
n down to 1.

3. I.S. Prove claim for the above fixed n. There are two cases, as the
I.H. is not useable for the SMALLEST possible value of FIXED
n: n = 2. The I.S. MUST work for ANY “FIXED” unspecified
n!

Why I.H. not “usable” for n = 2? Because bn = b2 re-
quires entries b0 and b1.

The red entry does not exist since the sequence starts with b1. So,

Case 1. n = 2. DIRECTLY. I am OK as b2 = 6; it is divisible
by 3.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

6.6. Induction Practice 331

Case 2. n > 2. Is bn divisible by 3? Well, bn = bn−1 + bn−2 in
this case. By I.H. (valid for all k: 1 ≤ k < n) I have
that bn−1 = 3t and bn−2 = 3r, for some integers t, r. Thus,
bn = 3(t+ r). Done! □

Notes on Discrete MATH (EECS1028)© G. Tourlakis

332 6. A Short Course on Predicate (also called “First-Order”) Logic

Here are a few additional exercises for you to try —please do try!

6.6.5 Exercise.

1. Prove that 22n+1 + 32n+1 is divisible by 5 for all n ≥ 0.

2. Using induction prove that 13 + 23 + . . . + n3 =

[
n(n+ 1)

2

]2
, for

n ≥ 1.

3. Using induction prove that
∑n+1

i=1 i2i = n2n+2 + 2, for n ≥ 0.

4. Using induction prove that
√
n <

1√
1
+

1√
2
+ . . .+

1√
n
, for n ≥ 2.

5. Let

b0 = 1, b1 = 2, b3 = 3

bk = bk−1 + bk−2 + bk−3, for k ≥ 3

Prove by induction that bn ≤ 3n for n ≥ 0. (Once again, be careful
to distinguish between what is basis and what are cases arising
from the induction step!) □

Notes on Discrete MATH (EECS1028)© G. Tourlakis

Chapter 7

Inductively defined sets;
Structural induction

We often define objects “recursively” or “inductively” meaning—loosely
speaking— that we define the object in terms of “smaller instances”
of itself.

For example, we define for any real a ̸= 0 and natural number n ≥ 0
the object an+1 in terms of the “smaller instance” an by stating

an+1 = an × a

or, by implying the “×” as is usual,

an+1 = ana (1)

So, what is an? Well, we can compute a few partial results towards
the answer:

an = an−1a = an−2aa = an−3aaa = an−4aaaa = · · · = a0
n a′s︷ ︸︸ ︷

aa . . . aa

� The size of the “instance” of the object is gauged exclusively by the
induction or recursion variable; the exponent n. We do not care about
the numerical size of “an+k” for positive or negative k. �

Notes on Discrete MATH (EECS1028)© G. Tourlakis

334 7. Inductively defined sets; Structural induction

Wait! How do I stop the definition that gets to smaller and smaller
instances? Well, smallest instance is a0 —see blue statement above.

So we state the Basis of the recursion, the value of a0, since we are
not going to keep going a−1, a−2, etc.

Incidentally, the “normal” definition of a0 is “1”.

� “Normal”?! Yes! We expect, say, a3 to mean aaa.
If we defined a0 = 42 then

a3 = a2a = a1aa = a0aaa = 42aaa

�

The objects we will define inductively in this chapter will be exclu-
sively sets. Not numbers.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

7.1. Inductively Defined Sets 335

7.1. Inductively Defined Sets

.
We saw above how an operation (“times” on the reals, ×) can define

another operation —exponentiation— on real number objects, by an
inductive definition.

The ingredients were one operation, ×, and one initial object defined:
a0 = 1.

We can apply this idea to defining sets inductively using one or more
operations on sets.

We will need

1. A set of initial objects, I.

2. A set of operations (a countable set is OK).

What is an operation on a set?

7.1.1 Definition. An operation on a set S is a function f : Sn →
S; for some n > 0. A set of operations will be denoted by O. □

Notes on Discrete MATH (EECS1028)© G. Tourlakis

336 7. Inductively defined sets; Structural induction

7.1.2 Definition. We say that “a set T ⊆ Q is closed under an n-ary
operation f : Qn → Q” meaning that whenever c1, . . . , cn are all in T ,
then f(c1, . . . , cn) —if defined— ∈ T as well. □

With these preliminary understandings out of the way we now state:

7.1.3 Definition. (Closure) A set S is defined by recursion, or by
induction, from initial objects I and set of operations O, provided it
is the smallest (least inclusive) set with the properties

(1) I ⊆ S,

(2) S is closed under every f in O. In this case we say that S is
O-closed.

We write S = Cl(I,O), and say that “S is the closure of I under
O”. □

Notes on Discrete MATH (EECS1028)© G. Tourlakis

7.1. Inductively Defined Sets 337

We have at once:

7.1.4 Theorem. (Induction on a Closure S) If S = Cl(I,O) and
if some set T satisfies

(1) I ⊆ T , and
(2) T is closed under every operation f in O

then S ⊆ T .

Proof. Immediate, since (2) simply says that S is the smallest with T ’s
stated above properties. □

� � Reminder: We have not yet proved that a unique set Cl(I,O) exists
fitting the stated definition 7.1.3.

Well, uniqueness is trivial. Suppose “computing” Cl(I,O) comes
up with two answers, S and S ′. Looking at S as closure, “smallest”
implies S ⊆ S ′. Reversing the roles, we get S ′ ⊆ S. � �

Notes on Discrete MATH (EECS1028)© G. Tourlakis

338 7. Inductively defined sets; Structural induction

� But does Cl(I,O) exist for all choices of I and O? Yes! �

7.1.5 Theorem. (Cl(I,O) Exists) Definition 7.1.3 does define a set
Cl(I,O).

Proof. Define first a set (it is so, as we show below) A by

A
Def
= I ∪

⋃{
ran(f) : f ∈ O

}
O being a set (7.1.3), so is

{
ran(f) : f ∈ O

}
and hence so is A.

Moreover, A contains I as a subset and is closed under all opera-
tions f ∈ O, since all outputs of any f ∈ O are in⋃{

ran(f) : f ∈ O
}

Let F be the family of sets {T : I ⊆ T AND T is O-closed}.
Since A ∈ F,

S =
⋂

F ⊆ A

is a set by the subclass (or by the
⋂
-)theorem.

Trivially, S contains I and is O-closed and by
⋂

is the ⊆-smallest
such.

S is Cl(I,O)! □

Notes on Discrete MATH (EECS1028)© G. Tourlakis

7.1. Inductively Defined Sets 339

7.1.6� Example. One can see now that Cl(I,R) ⊆ N, where I = {0}
and R contains just the function x 7→ x+ 1 (input x, output x+ 1).

Indeed, do Induction on the Closure (7.1.4 —N plays the role of T
in loc. cit.):

1. {0} = I ⊆ N.

2. Trivial, since N is closed under the only operation, x 7→ x+1. □ �

7.1.7 Example. Similarly, Z, the set of all integers, contains Cl(I,R),
where I = {0} and R contains just the two functions x 7→ x + 1 and
x 7→ x− 1 (input x, output x− 1).

Indeed (following the pattern of 7.1.4)

1. {0} = I ⊆ Z.

2. Z is closed under x 7→ x+ 1 and x 7→ x− 1. □

Notes on Discrete MATH (EECS1028)© G. Tourlakis

340 7. Inductively defined sets; Structural induction

Another interesting closure is obtained by I = {3} and the two rules
(x, y) 7→ x+ y and (x, y) 7→ x− y. The members of this closure are all
in the set {3k : k ∈ Z} (Exercise!).

Notes on Discrete MATH (EECS1028)© G. Tourlakis

7.1. Inductively Defined Sets 341

7.1.8 Example. Let A = {a, b}.

Let I = {λ}, let O consist of one operation R:

X −→ R −→ aXb (3)

where “aXb” means concatenation of the strings a,X and b in that
order.

We claim that Cl(I,O) = {anbn : n ≥ 0}, where for any string X,

Xn Def
= XX . . .X︸ ︷︷ ︸

n copies of X

If n = 0, “0 copies of X” means λ.

Let us write S = {anbn : n ≥ 0}.

1. For Cl(I,O) ⊆ S we do induction over the closure to prove that
all x ∈ Cl(I,O) satisfy x ∈ S (“the property”) —that is, x has
the form x = anbn.

• Well, if x ∈ I then x = λ = a0b0. Done.

• The property propagates with rule R.

For example, say X has the property, that is, X = anbn ∈ S.
Using (3) we see that the output, aXb, is an+1bn+1 ∈ S. The
property does propagate! Done.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

342 7. Inductively defined sets; Structural induction

2. For S ⊆ Cl(I,O) we will do induction over N on the n that occurs
in x = anbn (arbitrary member of S) to prove that any x ∈ S
satisfies x ∈ Cl(I,O)︸ ︷︷ ︸

P [x]

(“the property P [x]”).

We do SI.

Basis. n = 0. Let x = a0b0, a member of S. This is equal to λ
hence is in Cl(I,O) too (in I in fact).

I.H. Assume for fixed n that anbn of S is in the closure.

I.S.Prove now for the same n, that an+1bn+1 in S is in the closure
as well.

Well, Our ONLY operation transforms

anbn
I.H.
∈ Cl(I,O)

into aanbnb=an+1bn+1. Thus, an+1bn+1 ∈ Cl(I,O) by the closure
of this set under X 7→ aXb. Done. □

� Doing SI can be bypassed if we can give a derivation of anbn. Here is
one,

λ = a0b0, a1b1, a2b2, . . . , anbn

�

Notes on Discrete MATH (EECS1028)© G. Tourlakis

Bibliography

[Dav65] M. Davis, The undecidable, Raven Press, Hewlett, NY, 1965.

[Kle43] S.C. Kleene, Recursive predicates and quantifiers, Transac-
tions of the Amer. Math. Soc. 53 (1943), 41–73, [Also in
[Dav65], 255–287].

[Kur63] A.G. Kurosh, Lectures on General Algebra, Chelsea Publish-
ing Company, New York, 1963.

[Sch77] K. Schütte, Proof Theory, Springer-Verlag, New York, 1977.

[Tou03a] G. Tourlakis, Lectures in Logic and Set Theory, Volume 1:
Mathematical Logic, Cambridge University Press, Cam-
bridge, 2003.

[Tou03b] , Lectures in Logic and Set Theory, Volume 2: Set
Theory, Cambridge University Press, Cambridge, 2003.

[Tou08] , Mathematical Logic, John Wiley & Sons, Hoboken,
NJ, 2008.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

	Some Elementary Informal Set Theory
	Russell's ``Paradox''

	Safe Set Theory
	The ``real sets'' —Introduction to Stages
	What caused Russell's paradox
	Some useful sets
	Operations on classes and sets
	The powerset

	The Ordered Pair and Cartesian Products
	redThe Cartesian product

	Relations and functions
	Relations
	blueFields
	blueTotalness and Ontoness
	blueDiagonal or Identity and other Special Types of Relations

	Relational Composition
	Transitive closure
	Equivalence relations
	Partial orders
	Preliminaries
	Definitions and Some Results

	Functions
	Preliminaries
	Finite and Infinite Sets
	Diagonalisation and uncountable sets

	A Short Course on Predicate (also called ``First-Order'') Logic
	Enriching our proofs to manipulate quantifiers
	Boolean Abstractions; or How to Use Truth Tables inside 1st-Order Logic
	Proofs and Theorems
	Proof Examples
	Induction
	Induction Practice

	Inductively defined sets; Structural induction
	Inductively Defined Sets

