Lassonde School of Engineering

Dept. of EECS Professor G. Tourlakis EECS 1028E. Problem Set No3 Posted: Oct. 29, 2024

Due: Nov. 18, 2024; by 6:00pm, in eClass.

Q: <u>How do I submit</u>?

A:

- (1) Submission must be a SINGLE standalone file to <u>eClass</u>. Submission by email is not accepted.
- (2) Accepted File Types: PNG, JPEG, PDF, RTF, MS WORD, OPEN OFFICE, ZIP
- (3) Deadline is strict, electronically limited.
- (4) MAXIMUM file size = 10MB

 \bigstar It is worth remembering (from the course outline):

The homework **must** be each individual's <u>own work</u>. While consultations with the <u>instructor</u>, tutor, and <u>among students</u>, are part of the <u>learning</u> <u>process</u> and are encouraged, **nevertheless**, at the end of all this consultation each student will have to produce an <u>individual report</u> rather than a *copy* (full or partial) of somebody else's report.

The concept of "late assignments" does not exist in this course, as you recall.

Page 1

G. Tourlakis

Ş

- 1. (4 MARKS) Show that if \mathbb{F} is a function and dom(\mathbb{F}) is a set then \mathbb{F} is a set.
- 2. (3 MARKS) True or False and WHY? (without the <u>correct</u> "WHY" this maxes out to 0 (zero) Marks). If ℙ is a <u>function</u> and ran(ℙ) is a set, IS then ℙ a set?
- **3.** (3 MARKS) Prove that if $f : A \to B$ is a 1-1 correspondence, then so is $f^{-1} : B \to A$.

Hint. You must prove four things about the relation f^{-1} .

4. (6 MARKS) Let $f : A \to B$ have g and h as *left* inverse <u>and</u> *right* inverse respectively.

Prove

- (a) $g = h = f^{-1}$.
- (b) f is a 1-1 correspondence.
- 5. (3 MARKS) Suppose that <u>each</u> of A_x is a nonempty set for each $x \in \mathbb{R}$ (the reals). Prove that the family of sets $\{A_x : x \in \mathbb{R}\}$ is a set itself. What Principle, if any, did you use, and exactly how?
- **6.** (2 MARKS) Express \mathbb{V} as $\{x : P(x)\}$ for an appropriate property P.
- 7. (3 MARKS) Prove that if $f : \mathbb{N} \to B$ is onto, then for some $S \subseteq \mathbb{N}$ we have $S \sim B$.