Lassonde School of Engineering

Dept. of EECS Professor G. Tourlakis EECS 1028E. Problem Set No2 Posted: Oct. 5, 2024

Due: Oct. 27, 2024; by 6:00pm, in eClass.

Q: <u>How do I submit</u>?

A:

- (1) Submission must be a SINGLE standalone file to <u>eClass</u>. Submission by email is not accepted.
- (2) Accepted File Types: PNG, JPEG, PDF, RTF, MS WORD, OPEN OFFICE, ZIP
- (3) Deadline is strict, electronically limited.
- (4) MAXIMUM file size = 10MB

 \bigstar It is worth remembering (from the course outline):

The homework **must** be each individual's <u>own work</u>. While consultations with the <u>instructor</u>, tutor, and <u>among students</u>, are part of the <u>learning</u> <u>process</u> and are encouraged, **nevertheless**, at the end of all this consultation each student will have to produce an <u>individual report</u> rather than a *copy* (full or partial) of somebody else's report.

The concept of "late assignments" does not exist in this course, as you recall.

Page 1

G. Tourlakis

Ş

- **1.** (3 MARKS) Prove that $\bigcup \mathbb{V}$ is a proper class.
- 2. (4 MARKS) "Grade" the following proof of the Claim below, that is, show me where exactly it went wrong.

Claim. Let P be a relation on A that satisfies $aPb \land aPc \rightarrow bPc$. Prove that P is an equivalence relation on A.

Faulty Proof: I will show that (1) it is reflexive, (2) it is symmetric and (3) its transitive.

- (1) Reflexivity: By logic, I have $aPb \land aPb$. Thus bPb, so I have reflexivity.
- (2) Symmetry: Let aPb. Using reflexivity that we proved above, I have aPa. Thus using the given red property $aPb \wedge aPa$ gives me bPa and I got symmetry.

Finally

- (3) Transitivity: Let $aPb \land bPc$. By Symmetry, I have bPa. Now $bPa \land bPc$ gives me aPc via the red property I was given. Done!
- **3.** (3 MARKS) Prove that $\mathbb{U} \times \mathbb{U}$ is not a set.
- **4.** (3 MARKS) Provide a <u>relation</u> \mathbb{R} such that for some <u>object</u> *a* has the property that $(a)\mathbb{R}$ is a proper class.

The underlined words are significant.

<u>Relation \mathbb{R} </u>: Must be defined clearly which relation \mathbb{R} we are talking about.

Object a must be specified exactly.

The "Property" of $(a)\mathbb{R}$ according to which it is a proper class MUST be **proved**.

5. (3 MARKS) In class I noted but did not prove, that \mathbb{N}^2 is an equivalence relation on \mathbb{N} .

Prove this claim.

6. (6 MARKS) Let R on set A be symmetric and reflexive. Show that the same is true of R^n for the arbitrary n > 0: It is <u>on A</u> and is reflexive and symmetric.

G. Tourlakis

- *Hint.* No need for any induction!! Work by noting (known from class that) $R^n = \overbrace{R \circ \cdots \circ R}^{n \cdot R}$.
- 7. (5 MARKS) Let R on A be reflexive and symmetric. Prove that R^+ is an equivalence relation.
- 8. (4 MARKS) If < is a *linear* order on \mathbb{A} , then **prove that** every minimal element is also minimum.