math1090 Introduction to Logic for Computer Science Lecture 4

Ruth Urner

September 17, 2018

Announcement

Evaluation

Assignments:

- 4 Assignments
- Roughly every two weeks starting next week

Tests:

- In-class midterm (expect mid/end October)
- Final exam (December)

Mark composition:

- 1/3 Assignments
- 1/3 Midterm
- 1/3 Final exam

Wednesdays, noon-1pm, ACE 009

It will be announced on moodle when the tutorial takes place.

(Structural) Induction

Structural induction-general definition

Consider some inductively defined set $\mathcal{A} = I(U, C, O)$. To show that all elements of \mathcal{A} satisfy property \mathcal{P} we prove the following:

Base case Show that all elements $c \in C$ of the core set satisfy the property

Induction hypothesis Assume that some $a_1, a_2, \ldots a_n \in I(U, C, O)$ satisfy the property (here *n* needs to be the largest arity of the operations in *O*)

Induction step Show that (if the induction hypothesis holds) for all operation $o_i \in O$, the property also holds for

$$o_i(a_1, a_2, \ldots a_{r_i}).$$

Game with cups

We consider three cups placed on a table as follows:

$\cup \cap \cup$

(That is, two upright and the middle one upside down.)

 \bullet We can now play with the cups by, at each step, flipping exactly two of them

• Eg, flipping the two left ones results in $\bigcap \bigcup \bigcup$

Question: Can we, by repeatedly flipping two cups, end up with all cups upright \bigcup \bigcup \bigcup ?

First, we note that we can define the set of all reachable cup-configurations as an inductively defined set:

- Universe: $U_c = AII$ ways to place three cups on the table. (Question for you: How big is this universe?)
- **Coreset**: The initial configuration, $C_c = \{\bigcup \bigcap \bigcup\}$
- **Operations**: $O_c = \{ flip-left-two, flip-outer-two, flip-right-two \}$

Question: Is $\bigcup \bigcup \bigcup \in I(U_c, C_c, O_c)$?

Conjecture: It is not possible to get all cups upright..

We will prove the following property by induction: In all reachable states, the number of upright cups is even.

Since $\bigcup \ \bigcup \ \bigcup$ has an odd number of upright cups, this will imply that this state is not reachable.

Property: The number of upright cups is even.

Proof by in induction:

Base case In the initial configuration $\bigcup \bigcap \bigcup$, the property holds (2 cups are up, which is even).

Induction hypothesis Assume that for some configuration $XYZ \in I(U_c, C_c, O_c)$ the number of up-cups is even.

Structural induction-example

Induction step If the number of up-cups in *XYZ* is even, it is either 0 or 2.

- Case 1: It is 0 Then flipping two cups results in 2 up-cups, which is even again.
- Case 2: It is 2 Then we either flip the two up-cups in *XYZ* or we flip one up-cup and one down-cup. In the first case, we end up with 0 up-cups, which is even, in the second case, we maintain 2 up-cups.

Thus in all cases, the number of up-cups in flip-left-two(XYZ), flip-outer-two(XYZ), flip-right-two(XYZ) is even again.

Question for you: Where did we use the induction hypothesis?

The set WFF of well formed propositional formulas is the inductively defined set $I(\Sigma^*, P, O)$, where the three components are defined as follows:

- 1. Universe: Σ^* , the set of all strings over the alphabet of propositional logic
- 2. Core set: The set P of all propositional variables
- Operations: The set O = {o_¬, o_∧, o_∨, o_→}, defined as follows:
 - $o_{\neg}: \varphi \mapsto (\neg \varphi)$
 - $o_{\wedge}: \varphi, \psi \mapsto (\varphi \land \psi)$
 - $\blacktriangleright \quad \mathbf{o}_{\mathsf{V}} : \varphi, \psi \mapsto (\varphi \lor \psi)$
 - $\boldsymbol{o}_{\rightarrow}:\varphi,\psi\mapsto(\varphi\rightarrow\psi)$

Now we will show the following properties by by structural induction:

- 1. Every well formed formula is either atomic (that is, an element of the core set) or starts with the symbol (.
- 2. In every well formed formula the number of left brackets (is equal to the number of right brackets).
- 3. In every proper initial segment of a well formed formula, the number of left brackets (is strictly larger than the number of right brackets.

We call a well formed formula α atomic if it is a member of the coreset, that is, if α consists of a single propositional variable.

Examples:

- p
- q
- *p*₁
- *q*₁₆

are all atomic formulas.

- Let $\alpha = a_1 a_2 \dots a_l$ be a well formed formula. A string $\beta = b_1 b_2 \dots b_k$ is a proper initial segment of α
 - if k < l and
 - for all $i \leq k$ we have $b_i = a_i$

Proof of property 1 of WFF

Property 1

Every well formed formula is either atomic (that is, an element of the core set) or starts with the symbol (.

Base case Let $\alpha \in WFF$ be a member of the coreset, that is atomic. (E.g. $\alpha = p$). Then the property holds.

Induction hypothesis We assume α_1 and α_2 are in WFF and that property 1 holds for them. That is, both are either atomic or start with (.

Induction step If we apply o_{\neg} to α_1 , we get

$$o_{\neg}(\alpha_1) = (\neg \alpha_1),$$

which starts with (, thus, the property holds for $o_{\neg}(\alpha_1)$. Let * be a placeholder symbol for any symbol in $\{\land, \lor, \rightarrow\}$. Then, by applying o_* we get

$$o_*(\alpha_1,\alpha_2)=(\alpha_1*\alpha_2),$$

which again starts with (, thus, the property holds $o_*(\alpha_1, \alpha_2)$.

Proof of property 2 of WFF

Property 2

In every well formed formula the number of left brackets (is equal to the number of right brackets).

Notation:

For a string α , we let $I(\alpha)$ denote the number of occurrences of (in α and $r(\alpha)$ the number of occurrences of).

Base case Let $\alpha \in WFF$ be atomic. Then $I(\alpha) = 0 = r(\alpha)$. Thus, property 2 holds. Induction hypothesis We assume that for some $\alpha_1, \alpha_2 \in WFF$ we have

$$l(\alpha_1) = r(\alpha_1)$$
 and $l(\alpha_2) = r(\alpha_2)$

Induction step If we apply o_{\neg} to α_1 , we get

$$l(o_{\neg}(\alpha_1)) = l((\neg \alpha_1)) = 1 + l(\alpha_1) = 1 + r(\alpha_1) = r((\neg \alpha_1)) = r(o_{\neg}(\alpha_1))$$

Thus, $\neg(\alpha_1)$ has the same number of left and right brackets (and the red equality sign indicates where the hypothesis was used). Again, we let $* \in \{\land, \lor, \rightarrow\}$. Then, by applying o_* we get

$$l(o_*(\alpha_1, \alpha_2)) = l((\alpha_1 * \alpha_2)) = 1 + l(\alpha_1) + l(\alpha_2) = 1 + r(\alpha_1) + r(\alpha_2) = r((\alpha_1 * \alpha_2)) = r(o_*(\alpha_1, \alpha_2)) = r(o_*(\alpha_1$$

Thus the number of left and right brackets in each of $o_{\wedge}(\alpha_1, \alpha_2)$, $o_{\vee}(\alpha_1, \alpha_2)$, and $o_{\rightarrow}(\alpha_1, \alpha_2)$ are equal.

Proof of property 3 of WFF

Property 3

In every proper initial segment of a well formed formula, the number of left brackets (is strictly larger than the number of right brackets.

Notation:

```
As before, we use I(\alpha) for the number of ( in \alpha and r(\alpha) for the number of ).
```

Base case Let $\alpha \in WFF$ be a member of the coreset. Then α has no proper initial segments. Therefore, the property is vacuously true.

Induction hypothesis We assume α_1 and α_2 are in WFF and that the property holds for them. That is, for every proper initial segment β_1 of α_1 and every proper initial segment β_2 of α_2 , we have

 $l(\beta_1) > r(\beta_1)$ and $l(\beta_2) > r(\beta_2)$

Induction step Consider $o_{\neg}(\alpha_1) = (\neg \alpha_1)$, and let β be a proper initial segment of $o_{\neg}(\alpha_1)$. We now need to distinguish several cases:

Case 1: $\beta = ($ Then $l(\beta) = 1 > 0 = r(\beta)$. Case 2: $\beta = (\neg$ Then $l(\beta) = 1 > 0 = r(\beta)$. Case 3: $\beta = (\neg\beta)$ where β_1 is a proper initial segment of α_1 . Then

$$l(\beta) = 1 + l(\beta_1) > 1 + r(\beta_1) > r(\beta)$$

Case 4: $\beta = (\neg \alpha_1$ Then

$$l(\beta) = 1 + l(\alpha_1) = 1 + r(\alpha_1) > r(\alpha_1) = r(\beta)$$

Here, for the second equality, we used property 2, namely that $l(\alpha_1) = r(\alpha_1)$ since $\alpha_1 \in WFF$.

Proof of property 3 of WFF

Step continued Again, we let $* \in \{\land, \lor, \rightarrow\}$ and consider $o_*(\alpha_1, \alpha_2) = (\alpha_1 * \alpha_2)$. We let β be a proper initial segment of $o_*(\alpha_1, \alpha_2)$. We again need to distinguish several cases:

Case 1: $\beta = ($ Then $l(\beta) = 1 > 0 = r(\beta)$. Case 2: $\beta = (\beta_1 \text{ where } \beta_1 \text{ is a proper initial segment of } \alpha_1$. Then

$$l(\beta) = 1 + l(\beta_1) > 1 + r(\beta_1) > r(\beta)$$

Case 3: $\beta = (\neg \alpha_1$ Then

$$l(\beta) = 1 + l(\alpha_1) = 1 + r(\alpha_1) > r(\alpha_1) = r(\beta)$$

Case 4: $\beta = (\neg \alpha_1 * \text{ Then })$

$$l(\beta) = 1 + l(\alpha_1) = 1 + r(\alpha_1) > r(\alpha_1) = r(\beta)$$

Case 5: $\beta = (\neg \alpha_1 * \beta_2)$ where β_2 is a proper initial segment of α_2 . Then

 $l(\beta) = 1 + l(\alpha_1) + l(\beta_1) > 1 + r(\alpha_1) + r(\beta_1) > r(\alpha_1) + r(\beta_1) = r(\beta)$

Case 6: $\beta = (\neg \alpha_1 * \alpha_2)$ Then

$$l(\beta) = 1 + l(\alpha_1) + l(\alpha_2) = 1 + r(\alpha_1) + r(\alpha_2) > r(\alpha_1) + r(\alpha_2) = r(\beta)$$

Task for you: Justify each step (each equality and each inequality sign) to yourself! Where are we using the induction hypothesis? Where property 2? How do you justify the remaining steps?