Exercises 3

Discussion of solutions: Monday, Oct 30 in class

In this assignment, we are working with the hypothesis class of (homogeneous) linear classifiers in a \(d\)-dimensional euclidian space:

\[\mathcal{H}_{\text{lin}} = \{ h_w : w \in \mathbb{R}^d \}, \]

where

\[h_w(x) = \text{sign}(\langle x, w \rangle) = \text{sign}\left(\sum_{i=1}^{d} x_i w_i \right). \]

We often just write \(w \) instead of \(h_w \).

1. Convexity of losses

(a) Show that the empirical 0–1-loss on a sample can have local minima. That is, give an example of a sample \(S = ((x_1, y_1), \ldots, (x_n, y_n)) \) where the function

\[f(w) = L_0^1_S(w) \]

has a local minimum.

(b) Can this also happen for the true loss, that is the function

\[f(w) = L_0^1_P(w) \]

for some distribution \(P \) on \(\mathbb{R}^d \)?

2. Gradient descent

Let \(S = ((x_1, y_1), \ldots, (x_n, y_n)) \) be a sample that is linearly separable. Let \(w^* \) be a vector of minimal norm that separates the data with margin 1. Let \(R = \max_i \|x_i\| \).

Define a function \(f \) as follows:

\[f(w) = \max_{i \in [n]} (1 - y_i \langle w, x_i \rangle) \]

(a) Explain why \(w^* \) exists.

(b) Is \(f \) convex?

(c) Show that \(\min_{w: \|w\| \leq \|w^*\|} f(w) = 0 \). Show that any \(w \) for which \(f(w) < 1 \) has \(L_0^1_S(w) = 0 \).

(d) Show how to calculate a subgradient of \(f \).

(e) Describe and analyze the subgradient descent algorithm for this function.
3. SVM

(a) Give an example of a data sample S and a parameter λ, where the output of hard-SVM and soft-SVM are identical.

(b) Give an example of a separable data sample S and a parameter λ, where the output of hard-SVM and soft-SVM are not identical.

(c) Proof or refute: There is a parameter λ such that for all separable samples S, the output of soft-SVM and hard-SVM are identical.