LOCK-FREE LINKED LISTS AND SKIP LISTS

MIKHAIL FOMITCHEV

A thesis submitted to the Faculty of Graduate ®fsith
partial fulfilment of the requirements
for the degree of
Master of Science

Graduate Programme in Computer Science
York University
North York, Ontario

November, 2003

Abstract

Lock-free shared data structures implement distributed objettewvithe use of
mutual exclusions, thus providing robustness and reliability. We present
implementations of lock-free linked list and lock-free skip listiditary data structures
for shared-memory systems. We give a detailed proof of coresctoeboth of them and
present an amortized performance analysis for our linked Tiststhe best of our
knowledge, our implementation of the lock-free skip lists is thethiedt does not use the
universal constructions. We also show that our linked lists implenmntads a better
amortized performance than prior lock-free implementations ofdiiia structure. Our
algorithms use the single word C&S synchronization primitive.

Acknowledgements

First, 1 want to thank my supervisor Eric Ruppert. Without his guidaarm
support, this thesis probably would not have been completed, or at the ggrit iwauld
be in a much poorer shape. | am very grateful for his vast contmisutio this thesis and
for the many things that | have learnt from him during my M. Sc. studies.

| would also like to thank the professors | have been taking cowrgesluring my
graduate studies in York University. Particularly, 1 would likehtank Patrick Dymond,
my co-supervisor. The insight into the amortized analysis technigae$ have obtained
from him was critical to the success of this work.

| am grateful to all members of my examining committedHeir time and for their
helpful comments on my thesis.

| would like to express my gratitude to the Ontario Graduate Sshgbaprogram
for the scholarship | was awarded in 2002-2003 academic year.

Last, but not least, | would like to thank Computer Science Depattof York
University and Computational Physics Department of St. ReteysState University for
the excellent educational opportunities that | have been offered during mgsstudi

Table of Contents
1 INTRODUCTION
2 RELATED WORK

3 LINKED LISTS

3.1 High-level description and motivation
3.1.1 Common problems
3.1.2 Mark bits and successor fields
3.1.3 Back_links
3.14 Flagging successor fields

3.2 Algorithms
3.21 The data structure and notation
3.2.2 Pseudo-code

3.3 Correctness
3.3.1 Invariants
3.3.2 Critical steps of a node deletion
3.3.3 The SearchFrom routine
3.34 Linearization points and correctness

3.4 Performance analysis
3.4.1 Billing extra work to the successful C&S'’s
3.4.2 Introduction to Billing
3.4.3 More on Billing
3.4.4 Mapping C&S operations.
3.4.5 Mapping back_link pointer traversals
3.4.6 Mapping next_node and curr_node pointers updates
3.4.7 Putting everything together

4 SKIP LISTS

4.1 High-level description
4.1.1 The skip list data structure
4.1.2 Lock-free skip list design
4.1.3 Implementation issues

4.2 Algorithms
421 Pseudo code

4.3 Correctness
4.3.1 Invariants for the levels of the skip list
4.3.2 Critical steps of a node deletion

33

39
40
40
44
49
54

58

61

61
61
62
64

67
68

73
73
80

55

4.3.3 Vertical structure of the skip list

4.3.4 The SearchRight and SearchToHeight_SL routines
4.3.5 The Insert_Node and Insert_SL routines

4.3.6 Proving invariants for the towers of the skip list
4.3.7 A stronger SearchTolLevel_SL postcondition

4.3.8 Linearization points and correctness

4.3.9 The heights of the towers

4.4 Lock-Freedom and performance

4.4.1 Lock-freedom
4.4.2 Fine tuning performance and space requirements

5 MEMORY MANAGEMENT

5.1 Existing approaches
51.1 Reference counting
5.1.2 Garbage collectors
5.1.3 Deferred freeing

5.2 The new approach
6 CONCLUSION

REFERENCES

81

106

111
111

116

116
116
117
117

117

119

121

84
90
93
93
100

114

1 Introduction

One of the standard ways to implement data structures inbdistti systems is to
usemutual exclusionWith mutual exclusionpcksare used to resolve conflicts between
processes attempting to access data structure simultaneolistugh this approach is
widely used and it is easy to implement data structures thjisitn@as a major weakness
— when one process is in thetical section(i.e. when it is modifying the data structure),
all the other processes must wait before they are permitsatéss it. Thus, any delay of
a process while in the critical section (due to a page fenglinory access latency, etc.)
becomes a bottleneck, which can cause serious performance probléers. pvdcess
failures are possible, this becomes particularly important, bedhasentire system can
stop making progress if a process fails in the critical section.

By contrast, an implementation of a shared-memory objeldclsfree (or non-
blocking, if for any possible execution, the system as a whole is always makingsspg
l.e. starting from any point of time during an execution, aftenigefnumber of steps
taken by one of the processes, some process is guaranteed to caspleteation. An
implementation iswait-free if any non-faulty process will make progress, i.e. starting
from any state of the system each process is guaranteethfete its operation after a
finite number of its own steps.

Lock-freedom is a desirable property, because if an implementatitmtk-free,
individual delays or failures of the processes do not block the progfresiser processes
in the system. Thus a lock-free data structure is more faalant and more resilient to
scheduling decisions, compared to a data structure implementgdnusinal exclusion.
Lock-free data structures also have the potential to have betfernp@nce, because
several processes are allowed to modify a data structure aathe time. Indeed,
practical testing of recent implementations of lock-free linkstd [HarO1, Mic02-1] has
shown that they perform better than their counterparts that use locks.

When an object is lock-free and not wait-fre@rvationof the processes trying to
perform operations on the object is possible. A process P experstapesion when it
takes steps, but due to the other processes operating on the obprmhoPcomplete its
operation indefinitely. If an object is wait-free, processesopeihg operations on it do
not starve. The wait-freedom property, although desirable for somieatis, usually
entails significant overheads compared to lock-freedom. In thissthesfocus on the
lock-free designs.

A system is callecasynchronousvhen processes in the system run at arbitrary
varying speeds, i.e. the scheduling of each process is independetidreaneduling of
other processes.

Our model is anasynchronous shared-memodistributed system of several
processes, where an arbitrary numbepmicess failuresare allowed. The failures that
are allowed ardnalting failures: a failed process can stop taking steps indefinitely, but
does not exhibit Byzantine (malicious) behaviour.

To define the correctness of our implementations we use the nofion
linearizability [HW90]. An execution of concurrent operations on a shared-memory
object is said to bdinearizable if each operation performed on this object by the
processes can be viewed as happening instantaneously at some tiveenbés
invocation and response. This time is called lthearization pointof the operation.

Responses to the operations have to be same as if the operationexeeused
atomically at their linearization points. For example, if R i®ad-write register initially
containing 0, the execution showed in Figure 1(a) is linearizablecAidechoose the
linearized the operations as follows: Write(R, 2) at timg, The Read that returns 2 at
time T, Write(R, 1) at 1, and the Read thatreturns 1 at T

The execution showed in Figure 1(b), on the other hand, is not lindarikzst T,;,
Twe, and Ty, Ti1, and Ti' be the linearization points of Write(R, 1), Write(R, 2), the Read
that returns 2, the Read performed by P2 that returns 1, and the Riesched by P3
that returns 1 respectively. Write(R, 1) must be linearized bdf@ Read performed by
P2, because the Read returns 1. Process P2 starts Write(FRer 2) @mpletes the Read
operation, therefore Write(R, 2) has to be linearized after WRite), i.e. Tz < Two. The
Read performed by P1 returns 2, so Write(R, 2) must be lieglabefore that Read.
Then Write(R, 2) is linearized before the Read performed bpé&tause P3’s read starts
after P1’s read finishes. Thereforg,T< Tu. So, T < Twz2 < T, but then the read
performed by P3 must return 2 — a contradiction.

P1: Read(R) = 2
*
P2: Write(R, 2)
*
P3: Write(R, 1) Read(R) =1
* *
1 | ftime
>
Twze T2 Tw Tn
(a) Linearizable execution.
P1: Read(R) = 2
P2: Read(R) =1 Write(R, 2)
P3: Write(R, 1) Read(R) =1
time
>

(b) An execution that is not linearizable.

Figure 1: Linearizability.
(R is a read-write register initially containing 0.)

An implementation of an object imearizable[HW9O0] if all its possible executions
are linearizable. Linearizability is a commonly desired prypéor shared-memory
objects, because it allows a user to abstract away and igrmometails of the object
behaviour when several operations by different processes overlap é With
linearizability, all operations performed on the object can bavetl as a sequence of
atomic steps, and therefore in a deterministic system @cut@n can be defined by the
schedule in which the processes take steps. In our model this sciseclubsen by the
adversary. Linearizability is one of the properties that weire our implementations to
possess.

Herliny showed [Her91, Her93] that multi-writer multi-readengisters alone are
not sufficient to implement arbitrary lock-free data structurEs showed that in order to
be able to design arbitrary lock-free data structures, onalsnee universal
synchronization primitiveOur algorithms use a single-wo@8DMPARE&S&EWAP object
(sometimes called a COMPARE&SWAP register), which is afethe universal
synchronization primitives. This object implements an atomic skvgkel
COMPARE&SWAP operation, denoted C&S (see Figure 2), which paecéhree
arguments: address, old_value, and new_value. If the value stored at #wss aslédqual
to old, it updates it to new and returns the old value stored in tigered@therwise, it
just returns this value stored at the address. The C&S objectalidses processes to
perform simple reads and writes.

C&S(a: Address; old, new: Word): Word {ATOMIC}
if (@™ == old)

at = new

return old
return a’

Figure 2: C&S operation.

The single-word C&S object was first introduced in the IBMst8&y/370
architecture in the late 1970’s. Today this primitive or its eqentsal are commonly
supported by many popular parallel architectures (SPARC v.9, Aptiy PowerPC,
etc.). Some implementations of lock-free data structures usenger double-word C&S
operation, denoted DC&S. This operation executes two different sirgg-@&S’s at
once, and if one of these C&S’s fails, the other fails as wellan operation can either
succeed on both addresses, or fail on both. DC&S was supported on soareldvot
machines of the 68000 processor family in the 1980s, but proved to heiemeffSince
then no processor architectures support this operation. In the future vehseaywC&S
operation, we will mean a single-word C&S, unless stated otherwise.

Herliny [Her91, Her93] introduced the first universal method of desgylack-free
data structures using C&S. Many others followed, but all of tkaffer from several
major flaws, such as inefficiency, low parallelism, excessomying, and generally high
overhead, which often make them impractical. To achieve adequatenpente, original
algorithms, specific to a particular data structure are ysteduired. The design of such
algorithms is a challenging task even for very simple datatstes. For example, no one
knows yet how to implement efficient lock-free doubly-linked lists or BSTs.

We present a new design of a lock-free singly-linked list usingS Gaéhich
implements dictionary operations with a better order of completkign all prior

implementations. (The constant factors of the complexity of ourcimgnhtation are quite
reasonable). We give a detailed proof of correctness and a peréarranalysis of our
data structure.

We also give a new implementation of a lock-free skip list uSi&& along with a
detailed proof of correctness. A skip list [Pug90] is a dictionatg structure, providing
randomized algorithms for searches, insertions, and deletions. Tis¢-case cost of
operations on the skip list is O(n), but the expected cost of anytiopeis O(log(n))
(where the expectation is taken over random choices made bjgthréhms). Here n is
the number of elements in the skip-list. We talk about skip igensively in Chapter 4.
Our implementation of lock-free skip lists is the first such enpéntation that does not
use the universal constructions. It is worth mentioning, that the mesEnt
implementations of lock-free linked lists [HarO1, Mic02-1] were eatdd by their
authors by doing practical testing rather than a performangigsa We believe that
there exists a certain lack of theoretical development inatleig, and we hope that our
work partially addresses this problem.

When analyzing performance of a lock-free data structure, energly cannot
evaluate the worst-case cost of individual operations, because khiededom property
allows individual operations to take arbitrarily many steps, as &nthe system as a
whole is making progress. On the other hand, performirepartized analysiseems to
be a natural thing to do, because it evaluates the performance of a systehoks a

We evaluate the performance of our data structure and the prefrée linked list
implementations by performing an amortized analysis, and weure¢he performance
as a function otontention

Point contentions the number of processes running concurrently at a given point of
time. We definecontention of operation $lenoted c(S) to be the maximum point
contention during the execution of S.

The amortized analysis of our data structure relies on & tarhplex technique of
billing part of the cost of each operation to the successful C&@tsare performed by
operations that are running concurrently. Generally speaking, pfoeess P has to
perform some extra work because of a modification performed byemnobncurrent
process R then the cost of that extra work is billed to Phe amortized cost of an
operation S, denotetl (Sis equal to the actual cost of S plus the total cost billed to S
from other operations minus the total cost billed from S to other opesa\We prove
that t(S) = O(n(S) + ¢(S)), where n(S) is the number of elements imlake structure

when operation S is invoked and c(S) is the contention of operation $iewstow that
for any execution E, the cost of the entire execution, denoted t@&), i

O{Z (n(S)+ c(S))] where the sum is taken over all operations invoked during E, and
SIE

2., ((S)+c(9))

that the average cost of an operation in the executi¢8) 00 O] =E

where m is the total number of operations invokedng) E. If convenient, one can also
use the following two bounds that are less tigh{S) O O(max(n) + max(c)) (and hence

tz(S) O O(m)), where max(n) is the maximum value of n(&)img E, and max(c) is the

maximum value of c¢(S) for all S in E.

The rest of the thesis is organized as follows.pBdra2 gives an outline of related
work done in the area. Chapter 3 presents ourditike data structure: Section 3.1 gives
a high-level description and motivation for our ieypentation, Section 3.2 contains the
algorithms themselves, Section 3.3 presents tharisavs and some properties of our
data structure, as well as the proof of correctnasd Section 3.4 is devoted to the
performance analysis. Chapter 4 presents our stijglata structure, and is organized
similarly to the third chapter, except that in $mtt4.4 we only prove the lock-freedom
property, without giving an analysis. Chapter 5 ctlié®s several existing memory
management schemes that can be used with our ttatduse, and outlines a new
scheme, which we currently are investigating. Céiaf@@ contains some concluding
remarks.

2 Related Work

A general method for creating lock-free implementations of shngred data
structure using C&S operations was presented by Herligr9gH Her93]. Although
universal, his methods are highly inefficient for most of the IfEalapplications
(including linked lists and skip lists), because they essentiaplay C&S to change one
shared global pointer to the data structure, and thus each operatiocopyshe entire
data structure, and when several processes are attemptingaiwnpeperations on the
data structure concurrently, only one can succeed.

An efficient lock-free implementation of singly-linked lists wiast presented by
Valois [Val95]. The main idea of his approach was to maintainliaoxinodes in
between normal nodes of the linked list and to use the fields s¢ thades to perform
insertions and deletions. One of the major problems was to delegeairetiary nodes
once the corresponding “real” nodes were deleted. Valois pag@ihed this problem by
introducing back_link pointers to the nodes (back_link is basically a pamtemode’s
predecessor). Still, in the worst-case execution, arbitranityel chains of auxiliary nodes
could be created, which hampered the performance of the data strdd¢sorebecause of
the auxiliary nodes, algorithms for the basic operations on thewkst fairly
complicated. Valois claims [Val95] that his linked list implertaion can be used to
design skip lists, but he does not explain how exactly this can be done. Implementing skip
lists, as we will see, involves several challenges that doriset\aith the linked lists and
are not trivial to deal with. This is especially true when an tyidg linked lists design
is complicated, as Valois’s design. Also, in Valois’s linkeditigplementation processes
used rather complicated cursors consisting of three pointers toseave linked list. It
was not clear how these cursors could be maintained when proocessee levels
performing the searches in a skip list.

Another implementation of linked lists was given by Harris [Har6il$ algorithms
are simpler than Valois’'s and his experimental results showgiraerally they also
perform better, but, as we will show later, in the worst casegédorm worse. His main
idea was to introduceark bits and to perform deletions in two steps: first mark the node
by setting its mark bit to lqgical deletior), and then delete it from the list by updating
the right pointer of the preceding noghdnysical deletion The right pointer of each node
was replaced with a composite field (let us calsutcessor field consisting of the
normal right pointer and a mark bit. All C&S operations performedHayris’'s
algorithms were applied to a successor field, and none of them ndoslieeessor fields
with a mark bit set to 1. Although these algorithms performeetitan Valois’'s during
practical testing, there was no theoretical analysis predeirt Subsection 3.1.2 we
present an example, which illustrates that Harris’s approachrmbdedways result in a
good performance.

Yet another implementation of a lock-free linked list was proposedlichael
[Mic02-1], as part of his lock-free hash table design. His impleatient was based on
Harris’s ideas and uses the same design. The same exahlglatihg the possibility of
bad performance, which we give for Harris’'s algorithms in Seilzse 3.1.2, applies to
Michael's algorithms as well. However, Michael's algorithmsilike Harris’'s, are
compatible with efficient memory management techniques, suchBkbk fieelists
[IBM83, Tre86] and the safe memory reclamation method (SMR) [Mic02-2].

Another contribution in the area of the lock-free data structut@shwis worth
mentioning, is the implementation of lock-freetensiblehash tables proposed by Shalev
and Shavit [SS03]. They use a linked list to store all the eleroémite table with each
bucket storing a pointer to an appropriate section of the list.

No implementations of lock-free skip lists have been published. iitéseisting,
however, that a lot of data structures similar to skip-lists a@ppe peer-to-peer
distributed applications (e.g. Chord [SMKKBO0O]).

Our design is built using several new ideas, as well as sdnige ideas from
Harris’s and Valois’s approaches. An amortized cost of an opei@&tparformed by our
algorithms is O(n(S) + c(S)), where n(S) is the numbeldehents in the data structure
when S is invoked and c(S) is the contention of S. Based on this, wetlshiofer any
execution E, the average cost of an operation in the executids) O

2. (n(S)+c(9))

O 0 O(max(n) + max(c))d O(m) where m is the total number of

operations invoked during E, max(n) is the maximeatue of n(S) during E and max(c)
is the maximum value of ¢(S) during E . To compé#ne, average costs of operations in
Valois’s implementation can b&(m) (even when nil O(n)). Obviously, m is always at
least n, and the difference can be quite significihe average costs of operations in
Harris’s implementation can ¢(max(n)max(c)), which is also strictly worse tharour
implementation.

3 Linked Lists

In this chapter we present our implementation of a lock-freedsbriieed list data
structure. We start by giving a high-level description of oua ddructure and the
motivation behind our implementation, then we present our algorithms, prowe the
correctness, and finally present the performance analysis of our datargtr

3.1 High-level description and motivation

In this section we will describe some common difficulties one eneosinthen
designing a lock-free linked list, and explain how our data structure overcomes the

3.1.1 Common problems

One of the major problems one runs into when designing a lock-fred liiskas
illustrated below. Suppose we use a straightforward approach anchpergertions and
deletions by using C&S on the right pointers of the nodes. Considerxtdrapke
illustrated in Figure 3. Initially the list contains nodes A, B &dNode B is deleted
from the list by switching A.right from B to D, and at the samee node C is inserted by
switching B.right from D to C. The pre-change pointers are septed with solid lines,
and post-change pointers are represented with dashed lines. Thegdmiltcontains
only nodes A and D, so B was successfully deleted, but C was not successfukbginsert

T

Figure 3: Concurrent deletion of B and insertion of C

4 C -~

A similar problem arises when we try to delete two adjacentsnodecurrently as
shown in Figure 4. Initially the list contains nodes A, B, C, and D. Nbdedeleted by
switching A.right from B to C, node C is deleted by switchinggBt from C to D. As a
result of these changes, node B is successfully deleted fietist, but node C remains
in the list.

~<
~<

Figure 4: Concurrent deletion of B and C

The root of these problems lies in the fact that we canndly eamsitrol both the
right pointer of the node we are deleting and the right pointer pfetseding node at the

same time if we use a simple C&S primitive. (It can be deite a stronger double-
compare-and-swap primitive [Gre99].)

3.1.2 Mark bits and successor fields

To counter these problems one can use the technique of Harris&merghtion
[HarO1]. Instead of applying C&S’s to the right pointer of the nag®ly it to the
successor fieldwhich consists of a right pointer andnark bit Normally, the mark bit of
a node is 0. To perform a deletion of the node, use two C&S operatent:st marks
the successor field of the node by setting its mark bit to 1tledecond removes the
node from the list, as illustrated in Figure 5, where marked successor feeldessed. A
node islogically deletedafter the first step, anphysically deletefter the second step.
A node is callednarkedif and only if its successor field is marked. All of the C&S’s
performed by the algorithms will only modify unmarked succe$stis, so once the
successor field of a node is marked, it never changes, and thush&hghysical deletion
of a node is performed, its right pointer (which is part of the successor fiéikbds This
solves the problems described above.

A|—T—»B | —T—»D

Initial configuration
A|—+—B DG D A //B—> D

Step 1: Marking Step 2: Physical deletion

Figure 5: Two-step deletion of a node.

We use a three-step deletion procedure and 2 bits, not 1, to refletatilne of the
node. The reason is that, although a two-step deletion solves somemmpidl also
introduces performance-related problems. Suppose there is a récethat is
performing an insertion of node C between nodes B and D, and sdrtieetime process
P, is performing a two-step deletion of node B. ThenjsPtrying to update the right
pointer of B from D to C, and,Rs trying to mark B (see Figure 6).

A|—T—»B | —T—»D

Initial configuration

P,is aboutto |P1
insert node C
between B and D > AlT "B ?‘ Z: D
P,
P, is about to A |-—T—»B |)<—» D
mark node B

Figure 6: Conflict of two processes.

Suppose thatfperforms the change beforg des. Then £ C&S will fail and R
will have 2 options:

1. Start the Insert operation all over again, or
2. Tryto recover from the failure.

The first approach is an easier way to deal with the problem,hahdstbasically
how Harris’s [HarO1] algorithm works. But this requirgst®start the search for the right
place to insert C all over again, from the beginning of theTlss results in the average
cost of an operation for some executions tadgmax(n)max(c)), where max(n) is the
maximum number of elements in the list during the execution, andcmax(the
maximum contention during the execution. The following example execyields this
bound.

First processes insert n elements with keykk ... , k into the list. Then q — 1
processes PP, ... , R attempt to insert the keys.k, kn+2, ... \Kmsg-1Such that K <
Km+1, Km+2, ... , kn+g-1, 1.€. they are trying to insert keys greater than the $atgey in the
list. Concurrently, the remaining one procegsdPletes keys km-1, ..., k (in that
order). Suppose Ralways performs deletions just before any of the insepnogesses
perform their C&S'’s, but after all of them locate the positiory thiesh to insert the key
into. In other words, the execution goes as follows: processés, P.. , R,_ 1 start their
searches, find the appropriate insertion position, and thepeRorms a deletion.

Consequently, processes P, ... , R, _1fail their respective insertion C&S'’s, and thus
they have to start their searches all over again from the dfethe list, and the cycle
repeats. Since processes P, ... , R, - 1 are attempting to insert the keys at the end of

the list, they have to search through the whole list to lottedeappropriate insertion
position. Before the first deletion the length of the list is n, @it each deletion it
decreases by 1, so the total work done by the system throughosedhence of
operations is at lea®(q(m + (m — 1) + ... + 1) =(gn?). The total number of
operations performed is 2m + g — 1: m initial insertions, m delebgng,, and q — 1
insertions by B P, ... , R~ 1 so the average cost of an operation in this execution is
Q(gqmf/(2m + g — 1)). If we choose m > g, thefgn’/(2m + q — 1)) =Q(gqm). Note that
in the described execution the maximum number of elements in ttmeabign) is m and
the maximum contention max(c) is q. Therefore, this execution yields thhedibsund.

Our algorithms do allow a process to recover from the failure atgeve an

>, ((S)+c(S))

average cost 00| <E O O(max(n) + max(c)) per operation. The recovery
m

procedure is described below.

3.1.3 Back_links

The first idea is to introduce back _link pointers, similar to thes ggreposed by
Valois [Val95], and use them to replace mark bits, so that now theessar field
consists of a right pointer and a back_link. If the node has a null baclkdinter, it is

10

not marked, otherwise it is. In the marking stage of a deletipno@ess would set the
back_link of the node to be deleted to point to the preceding node, usin@C &t
node’s successor field.

For example, when P2 marks node B (Figure 6), it would set Bls hak to point
to node A. Then, if another process (P1 in our example) failssmntion because B has
been marked, it would traverse the back _link to the preceding node ahdirsither
search from there, instead of starting it from the head dfsh& hus, if everything goes
as described, the cost of recovery would be reduced from O(njljo @owever this
approach does not always work. There can be three problems thaadan iecreases in
the recovery cost:

1. Before the physical deletion of B takes place, new nodes dasdy&ed between
A and B, so that after P1 fails its insertion of C and foll@isback_link to A, it
will have to search through all of these new nodes before it Gang@tto insert C
again.

2. Nodes that have back_links pointing to them (such as A) can get dadetesl,
so that instead of following one back_link from B to A, P1 might haviellow a
chain of such back_links.

3. Back_links might be set to point to nodes that are already mankexien
physically deleted. In the case illustrated in Figure 6, ipassible that right
before P2 marks B by setting its back_link to point to node A, Afitsel get
marked and physically deleted by another process P3. Againteasilaprocess
P1 will have to traverse a chain of back _links to recover fromdihard. This
might look similar to the b problem described previously, but it is actually
different: here back_links are added at the right end of the dtats,beginning,
and the chain is growingowards the right whereas in the second problem
back_links were added at the left end of the chain, at its end, antdimewas
growingtowards the left

The f'and the 2 problems do not actually increase the order of the amortized cost
of operations. We will present a formal proof of this later, batreason for this is that if
back_link chains cannot growowards the right each process will traverse a given
back_link no more than once, and the cost of traversing back_links and neetted
nodes can be billed to respective deletions and insertions. Then it shoviae that each
process can be billed no more than O(c) for each C&S operatiorfatms, so that the
amortized cost of any operation is O(n + c).

The third problem, however, leads to the possibility of an execution higth
amortized cost of operations and high memory requirements. Eventhdenaximum
number of elements in the list throughout an execution does not exceedriduthe
number of processes does no exceed three, the amortized cost opewation and the
amount of memory required a®(m), where m is the total number of operations
invoked. (Thus, to guarantee good performance and reasonable memory reqisiy e
would need to rebuild our data structure each time it performstaircenumber of
operations.) An example of such an execution is presented below.r&sWenfike the
processes build a long chain of back_links, and then make one of ¢pemtadly fail
insertions and traverse that chain.

11

Suppose the list initially contains three nodes: A, B, C. ProcesbeBibs by
performing a deletion of node B, and process P2 begins by penfpardeletion of node
C. They both locate their respective nodes at approximately the sam and are
prepared to perform C&S on their successor fields: Pl is poisetatk node B by
setting its back_link to point to A, and P2 is poised to mark node Getiing its
back_link to point to B (Figure 7(a)). Then, suppose P2 gets delajéd,”L marks and
physically deletes node B, then inserts node D, and then ssamesxt operation, which is
a deletion of node D. Before P2 takes any steps, P1 locates nodedeamtly to mark it
(see Figure 7(b)). Then P1 gets delayed, while P2 marks node &ftibg gs back_link
to node B. Then P2 tries to physically delete node C by swgdhia right pointer of B
from C to D, but it fails because B was marked, so it phygicaletes C by switching
A’s right pointer from C to D. (We do not focus here on how eyd® locates node A).
Then P2 inserts node E and starts its next operation, which istmdelf node E. Before
P1 takes any more steps, P2 locates node E and is ready tot rfs& Figure 7(c)).
Notice that the system configuration in (c) looks like configaratn (b), except that P1
and P2 are reversed and the chain of back links is one longgreyming steps
similar to the step from (b) to (c), we can make this chauirarily long, with the
maximum number of elements in the list never exceeding 3. It thlkesertion and 1
deletion to increase the length of the chain by 1, and ther@ aoeles in the list in the
initial configuration, so to get a chain of length k, we would neepdetform 2k + 3
operations: k + 3 insertions and k deletions.

Al 1 B[d1—»fcC

P1l.prev P1.del
P2.prev P2.del

(a) Initial configuration

A [B cl 11—/ D
\\7(

P1l.prev P1.del
P2.prev P2.del

(b) P1 deletes B, inserts D and starts deletion of D.

A | B —p C D| +——» E
P1l.prev P1.del
P2.prev P2.del

(c) P2 deletes C, inserts E, and starts deletion of E.
Figure 7: Building a chain of back_links.

Suppose processes P1 and P2 perform 2k + 3 operations to create afchain

back_links of length k, as discussed above (see Figure 8(a)). Thecohaists of nodes

12

B, ..., U. Process P1 is in the middle of the deletion of node Vaivasit to mark V and
then to try to physically delete it by switching U’s rightinter. Process P2 is in the
middle of the deletion of node X: it is ready to mark X and thetotphysically delete it
by switching V’s right pointer. From this configuration proce8sskarts the insertion of
node W, locates the place to insert it, and is ready to switchight pointer from X to
W.

Then P2 and P3 are delayed, while P1 marks node V and physidaligsdie by
switching the right pointer of A from V to X. Then P1 inserts nddstarts a deletion of
node Z, and becomes delayed just when it is ready to mark Z. Thee$® tswitch the
right pointer of V from X to W, but fails because V is markeal,tshas to traverse a
chain of back_links to A, performin@(k) steps (see Figure 8(b)). Then P3 inserts node
W by switching the right pointer of A from X to W, and then tstats next operation,
which is a deletion of node W (see Figure 8(c)). In the next Bpeletes W and starts
an insertion of node Y (see Figure 8(d)). Notice that the systarfigaration is now
similar to the configuration in Figure 8(a) with the role?défand P2 interchanged. The
only difference is that the length of the back_links chain waeased by 1 by adding
node V to it, and is now k + 1.

The total work done by the system in going from Figure 8(a)gor€ 8(d) isQ(k),
the number of operations performed is 4: the deletion of V, the mseofi W, the
deletion of W, and the insertion of Z. Notice that at any timentheber of non-deleted
elements in the list does not exceed 4. Now let us consider aatiexeavhich first
creates a chain of back_links of length k and then repeatsghers® of steps shown in
Figure 8 k times. The total number of operations performed by tlvesses would be m
= 2k + 3 + 4k = O(k), and the total amount of work wouldCi{&?) = Q(m?). Thus the
amortized cost of each operation would @ém). Notice that the whole chain of
back links of length k needs to be stored in memory after iteigtexd, because it is
constantly traversed by P3 performing insertions, so the amountrobmeequired by
the data structure R(k) = Q(m).

13

wl 7/

P1l.prev P1l.del

P2.prev P2.del
P3.prev P3.ins

(a) P1is deleting V, P2 is deleting X, P3 is inserting W.

Al B —» —»{ U —p V X| +—»Z
wl| 7
P1l.prev P1.del
P2.prev P2.del

P3.prev P3.ins

(b) Step 1: P1 deletes V, inserts Z, and starts the deletion of Z,
P3 fails the insertion of W and follows a chain of back_links to A.

. I T AT

P1l.prev P1.del
P2.prev P2.del
P3.prev P3.del

(c) Step 2: P3 inserts node W between A and X,
then starts the deletion of W.

Y|/
P1l.prev P1.del
P2.prev P2.del
P3.prev P3.ins
(d) Step 3: P3 deletes W and starts the insertion of Y.
Figure 8: Traversing the chain of back_links.

14

3.1.4 Flagging successor fields

The simple introduction of back_links does not yield a data structute geod
performance. The main problem is that long chains of back_link poc#erise traversed
by the same process several times, which happens becausehthiesecan grow towards
the right, i.e. back_links can be set to marked nodes, and thus nodes ckedeodlithe
beginning of the chain. We show there is a way to stop that frgpehang, thereby
obtaining a data structure with better performance.

One of the ways to do so is to ensure thiaénever a back_link is set, it is pointing
to an unmarked nod&Ve do this by introducing one more bit to reflect the stafube
node — thdlag bit. The flag bit, like the mark bit, is part of the successad.fid/hile a
node is flagged, its successor field is fixed and cannot be markebeswiste changed
until the flag is removed. So before marking a node, a proaagstfie predecessor node,
thus ensuring that when the back_link is set to point to the predecéssiir,not be
pointing to a marked node. The flag can be thought of as a warning deégtion of the
next node is in progress.

With introduction of the flag bits, back link does not need to be a pattheof
successor field, and we make it a separate field. In our comstribe successor field
consists of a right pointer, a mark bit, and a flag bit. Note tleatould make back_link
part of the successor field, similarly to the construction in tegipus subsection. The
successor field would then consist of a right pointer, a back_link poamédra flag bit.
However, this would impose a tighter upper bound on the possible size pbinters in
the data structure, because the size of the successor field cannot beltapdtes size of
the C&S registers.

The three-step deletion procedure is illustrated in Figure 9 and is explained bel

Al|l+—B || +—C

Initial configuration

A —» B ——» C
Step 1: Flagging
Al D& cC
Step 2: Setting back_link and marking

\
I CHS

Step 3: Physical deletion

Figure 9: Three-step deletion of a node.

15

Shaded boxes denote flagged fields, and crossed boxes denote marked fields.
Initially nodes A, B, and C are in the list and node B is abogetadeleted (Figure 9,
Initial configuration). Deletion consists of three steps. The 8tep is flagging the
predecessor node A by applying C&S to its successor field @&yustep 1). The second
step is setting B’s back_link to point to its predecessor A amdrttaeking B by applying
C&S to its successor field (Figure 9, Step 2). The third and &tegd is a physical
deletion of node B by applying C&S to A’s successor field. TS Gwitches right
pointer of A from B to C and sets the flag bit of A to 0 at the same time.

By introducing flag bits we solve the problem of chains of back_lgrksving
towards the right, because a flagged node cannot be marked, so ankacdn Inever be
set to point to a marked node. However, we also create another prabkemprocess
wants to update a flagged node’s successor field, it will be unable to do so uitdidtise
removed. We solve this problem by allowing processes to help one amather
deletions: if a process cannot complete its operation because fddghed node, it will
try to complete the corresponding deletion, thus removing the flagthemdcontinue
with its own operation.

3.2 Algorithms

In the previous section we gave a high-level description of théatelgocedure in
our data structure. In this section we provide a more detailed itestrof the
implementation of deletions, insertions, and searches in our datastrastd we present
the pseudocode for them.

3.2.1 The data structure and notation
Each node in our data structure has the following fields:

* key

* element

e back link

e succ, which has three parts:
o right
0 mark
o flag

Key is the key of the node. All the nodes in the list are ordeyetidr keys. We
assume that all the keys are distinct. (A simpler versidheoflata structure, that allows
duplicate keys, can be obtained by removing from the Insert robnknes that check
for duplicate keys.) Element is the rest of the data to bedstorthe node. Back link is
set by the deletions and used by the insertions as discussedlabawvade is not marked
(or about to get marked) as deleted, its back_link is null. Sucsusaessor field, which
itself consists of three fields: right, mark, and flag. Righd jgointer to the next node in
the list. Mark and flag are both 1-bit fields, which reflect tete of the node. If both of
these fields are 0, the node is in a normal state. If flag = 1, then the node is fldgghd, w
means that its successor node is about to get deleted fromtthienhiark = 1, it means
that the node is marked as deleted. Both flag and mark cannot beacedual the same
time.

16

For simplicity, we will often omit “succ”, when refering to dlisit parts of
successor field of the node, i.e. we will use node.right instead of noclegiic
node.mark instead of node.succ.mark, and node.flag instead of node.succ.flag.

In addition, there are shared variabesdandtail that point to the head and to the
tail nodes of the list respectively. These variables are mewdified. The head node has
a key of e, and the tail node has a key 06.+The head and tail nodes have no elements.
When the list is initialized, the head and tail nodes are the onlgsnod the list,
head.succ = (tail, 0, 0), and tail.succ = (null, 0, 0).

3.2.2 Pseudo-code

We present our algorithms in pseudo-code. Figures 10-17 show various routines
used by our data structure. Figures 10, 12, and 13 show the pseudo cdetfoed
major routines Search, Insert, and Delete; the rest of the figures showayxibutines.
The variables of the Node type can be either node pointers, or one gpecial return
values (DUPLICATE_KEY, NO_SUCH_KEY).

Search (Key k): Node

1 (curr_node, next_node)SearchFrom(k, head)
2 if (curr_node.key = k)

3 return curr_node

4 else

5 return NO_SUCH_KEY

Figure 10: The Search routine searches for a node with the supplied key.

SearchFrom (Key k, Node *curr_node): (Node, Node)
next_node = curr_node.right
while (next_node.key <= k)
while (next_node.mark == 1 && (curr_noah@rk == O || curr_node.right |= next_node))
if (curr_node.right == next_node)
HelpMarked(curr_node, next_node)
next_node = curr_node.right
if (next_node.key <= k)
curr_node = next_node
next_node = curr_node.right
10 return (curr_node, next_nod

O©CO~NOOTA WN P

Figure 11. The SearchFrom routine finds two consecutive nodes such that. thaéirst
the key less or equal than k, and the second has the key strictly draatlr t

17

Insert (Key k, Elem e): Node

1 (prev_node, next_node)SearchFrom(k, head)

2 if (prev_node.key == k)

3 return DUPLICATE_KEY

4 newNode = new node(key =k, elem = e)

5 loop

6 prev_succ = prev_node.succ

7 if (prev_succ.flag == 1)

8 HelpFlagged(prev_node, prev_succ.right)

9 else

10 newNode.succ = (next_node, 0, 0)

11 result = c& s(prev_node.succ, (next_node, 0, 0), (newNode, 0, 0))
12 if (result == (newNode, 0, 0)) SWCCESS

13 return newNode

14 else /I FAILURE

15 if (result == (*, 0, 1)) /[failure due to flagging
16 HelpFlagged(prev_node, result.right)

17 while (prev_node.mark == 1) // possibly a failure due to marking
18 prev_node = prev_node.bhek

19 (prev_node, next_nodepearchFrom(k, prev_node)

20 if (prev_node.key == k)

21 free newNode

22 return DUPLICATE_KEY

23 end loop

Figure 12: The Insert roune attempts to insert a new node into the

Delete(Key k): Node

1 (prev_node, del_node)SearchFrom(k ¢, head)
2 if (del_node.key !'=k) // kis not foumdthe list

3 return NO_SUCH_KEY

4 (prev_node, result) BryFlag(prev_node, del_node)
5 if (prev_node != null)

6 HelpFlagged(prev_node, del_node)

7 if (result == false)

8 return NO_SUCH_KEY

9 return del_node

Figure 13: The Delete routine attempts to delete a node with the supplied key

HelpMarked(Node *prev_node,
Node *del_node)
1 next_node = del_node.right
2 c&9S(prev node.suce, (del node, 0, 1), (next _node, 0, 0))

Figure 14: The HelpMarked routine attempts to physically delete the marked nodedel n

18

HelpFlagged(Node *prev_node, Node *del_node)
1 del_node.back_link = prev_node

2 if (del_node.mark == 0)

3 TryMark(del_node)

4 HelpMarked(prev_node, del_node)

Figure 15: The HelpFlagged routine attempts to mark and physically delete¢bessor of the
flagged node prev_node.

TryMark(Node del_node)

1 repeat

2 next_node = del_node.right

3 result = c& s(del_node.succ, (next_node, 0, 0), (next_node, 1, 0))
4 if (result == (*, 0, 1)) /[failurdue to flagging
5 HelpFlagged(del_node, result.right)
6 until (del_node.mark == 1)

Figure 16: The TryMark routine attempts to mark the node del_node.

TryFlag (Node *prev_node, Node *target_node): (Noderesult)

1 loop
2 if (prev_node.succ == (target_node,)D, 1/ predecessor is already flagged
3 return (prev_node, false)
4 result = c& s(prev_node.succ, target_node, 0, 0), (target_node, 0, 1))
5 if (result == (target_node, 0, 0)) /I c&s was successful
6 return (prev_node, true)
[* Failure */
7 if (result == (target_node, 0, 1)) // failure due to flagging
8 return (prev_node, false)
9 while (prev_node.mark == 1) I/ gibdy failure due to marking
10 prev_node = prev_node.back_link

11 (prev_node, del_nodefsearchFrom(target_node.keye—prev_node)
12 if (del_node !=target node) // &trghode got deleted

13 return (null, false)

14 end loop

Figure 17: The TryFlag routine attempts to flag the predecessor of prev_node.

Let us start with an overview of the SearchFrom routine (Figurewtiig¢h is used
to perform the searches in our data structure. This routine takes and a node as its
arguments. It traverses the list starting from the speaifoet®, looking for the first node
with a key strictly greater than the specified key. ltume$ the pointers to two
consecutive nodes nl1 and n2, that satisfy the following condition at [goimteof time
during the execution of SearchFrom: nl.right = n2 and nkKey n2.key. SearchFrom
also deletes the marked nodes along its way by calling the HelpMarked rdinerts.(

The Search routine (Figure 10) calls SearchFrom in itslifrest then uses the first
of the two nodes returned to determine if there is a node with key k in the list.

Now, before we move on to other routines, consider a hypotheticalnEeamt2
routine, which would be the same as SearchFrom, except thatoflesjual”’ £) in lines
2 and 7 would be replaced with “strictly less” (<). Then SeamhB(k, n) would

19

execute the same as SearchFromgkn), wheree is an extremely small number (smaller
than the difference between any two keys in the list). Tadawating a separate routine,

we use SearchFrom(ke&: n) in our pseudocode to denote SearchFrom2(k, n). The keys
of the two nodes that SearchFrom(k,-head) returns satisfy the following: nl.key <k
n2.key (not nl.ke¥ k < n2.key, as would be the case with SearchFrom(k, n)).

The Insert routine (Figure 12) first calls SearchFrom tohdre to insert the new
key. SearchFrom returns a pair of node pointers prev_node and next_nodé&aguch t
prev_node.keyx k < next_node.key. Insert compares the key of prev_node to the new
key it is trying to insert, and if they are not equal (rementtetrwe require all the keys
to be unique), it creates a new node and enters the loop in lines 5/3ylfiioh it can
only exit if it successfully inserts the new node or another psaossrts a node with the
same key (lines 20-22). In each iteration of the loop, the executieggs will attempt to
insert the node between prev_node and next_node by performing andi&& 11. If the
C&S succeeds, Insert returns, otherwise it detects the reason for the fabavers from
it, and enters the next iteration. The reason for the failure canbenthe change of
prev_node’s successor pointer. There are several possible waysch thve successor
pointer can change: it can get flagged, marked, redirected to anottesror any two of
the above, except that it cannot be both marked and flagged. If prev_notiggetf it
means that another process was performing a deletion of thessoicoede. In this case
Insert calls the HelpFlagged routine (lines 15-16), which helps to etentiiat deletion
and remove the flag from prev_node. If prev_node got marked, Inseerses the
back_link pointers until it finds an unmarked node and then sets prev_npdmtdo it
(lines 17-18). In any case, Insert performs another search inl@nestarting from
prev_node, and updates its prev_node and next_node pointers. Then Insert enéxis the
iteration of the loop.

To obtain a simpler version of the data structure that would allowadiplkeys, it
is enough to remove lines 2-3 and lines 20-22 from the Insert routine.

The Delete routine (Figure 13) performs a three-step deletiomeofnbde, as
discussed in Section 3.1. If the deletion is successful, Deletmsea pointer to the
deleted node, otherwise it returns NO_SUCH_KEY. A successfuliatels linearized
when the marking is performed. Delete starts by calling SearchFresnfkead) to find a
node del_node and its predecessor prev_node such that prev_node.kex < k
del_node.key.

After SearchFrom returns, Delete checks if del_node’s key id égda If not, it
reports that key k was not found in the list. Otherwise it ¢al#sTryFlag routine. We
will examine this routine in more detail later, for now let us say thap&atedly attempts
to flag del_node’s predecessor, until it is successful or del_nodealgjeted. TryFlag
returns two values: a node pointer prev_node and a boolean result valuecarhdre
three ways the TryFlag routine can return. If TryFlagsldgl_node’s predecessor itself,
it returns a pointer to the predecessor and result = true. Hagyetects that another
process flagged del_node’s predecessor (which means that anottessprsoperforming
a deletion of del_node), it returns a pointer to the predecessor suitl xefalse. If
TryFlag detects that del_node got deleted from the list, it returns null ant=réslse.

If prev_node returned by TryFlag is not null, Delete proceedsdiyng the
HelpFlagged routine, which sets the back_link of del_node pointing to prev_node, the
ensures that del_node gets marked and physically deleted. If Tmdtlaged result =

20

true, Delete then returns a pointer to the deleted node in line. 9efperts success).

Otherwise, if result = false, it means that either del_nodelgjeted, or another process
flagged del_node’s predecessor (and is going to report success)s loasie Delete

returns NO_SUCH_KEY.

Note that if several deletions of del_node are executed concurlsntiyfferent
processes, the one that successfully flags del_node’s predesébssgport success, and
the other processes will report failure. So, even though deletiongeagized at the
moment of marking, the process that performs the marking does nosardgeeport
success.

The HelpMarked routine (Figure 14) accepts two arguments — theedhaode that
it helps to delete (del_node) and its flagged predecessor (prev_nodeMaHed
physically deletes del node by swinging prev_node’s successoemptintdel node’s
successor.

The HelpFlagged routine (Figure 15) accepts two arguments — thehaddehelps
to delete (del_node) and its predecessor, which is flagged (prev_nagpkladgged
starts by setting a back _link of del_node to point to prev_node. Welvall later that
although each back_link can be set multiple times by different gsesgit is actually
always set to the same value, i.e. once it is set the firs, tit never changes.
HelpFlagged tries to mark del_node by calling the TryMark routuingch does not exit
until del_node gets marked. Finally, HelpFlagged calls HelpMark&i;hwphysically
deletes del_node.

The TryMark routine (Figure 16) accepts as its one argument thetmatdée should
mark (del_node). TryMark does not return until it marks del_node or anptbeess
does. When the routine is called, it enters the loop in lines 1-6chmitmation of the
loop it attempts to mark del_node by performing C&S in line 3.i# guccessful, it exits
the loop and returns. The reason for the failure can be markingl afatle by another
process, flagging of del_node, or a change of del_node’s right pointelastn af
marking, the routine exits the loop and returns. In case of flagles 4-5), the routine
calls HelpFlagged to remove the flag from del_node and entersth&eration of the
loop. In case of a change of del_node.right, the routine just enterexhieration of the
loop, where it updates next_node in line 2.

The TryFlag routine (Figure 17) accepts two arguments — target (fioelenode
whose predecessor it should flag), and prev_node (the node that wget nade’s
predecessor when the process last checked). Before TryFlagetespphe target _node’s
predecessor gets flagged, or target_node gets deleted. In theasesTryFlag returns
target_node’s predecessor and result = true (if it flagged thegessie itself), or result
= false (if another process did). In the second case, it refoufis false). When the
routine is called, it enters the loop in lines 1-14. In each iterati the loop it attempts to
flag prev_node by performing a C&S in line 4. If it is sucoassf returns (prev_node,
true) (lines 5-6). If it fails due to another process flagginy prede, and prev_node is
still target_node’s predecessor, it returns (prev_node, false3 {@89. If TryFlag detects
that prev_node got marked, it follows the chain of back links from prev_node and
updates prev_node to be the unmarked node at the (left) end of thelidkesi®{10). In
line 11 TryFlag performs a search to find a new predecessorget taode. If it detects
that target_node got deleted, it returns (null, false) (lines 1ZFh&8n TryFlag enters the
next iteration of the loop.

21

3.3 Correctness
In this section we will give a proof of correctness of our linked list implertienta

3.3.1 Invariants

To prove the correctness of our algorithms we will first shioat there are several
invariants that hold throughout the execution. To state the invariantsustefirst give a
few definitions. We have already used the notions of logically ardigdily deleted
nodes, when we talked about Harris’s algorithms. We use siassification when we
define the types of nodes in our data structure. We classify nodedyiserr algorithms
into four types: preinserted, regular, logically deleted, and phlgi deleted. The
definitions of these are given below.

Def 1: A preinsertednode is a node that was created, but has not yet been inserted
into the list. More precisely, it is a node referred to by Mede pointer in the Insert
routine after line 4 is executed, but before the C&S in line 11 is successfullytece

Def 2: A node isregularif it is unmarked, and it is not a preinserted node.

Def 3: A node islogically deletedf it is marked and has a regular node linked to it,
l.e. n is logically deleted if n.mark = 1 and there exists alaegnode m such that m.right
=n.

Def 4: A node isphysically deletedf it is marked and there is no regular node
linked to it, i.e. n is physically deleted if n.mark = 1 and theneo regular node m such
that m.right = n.

Notice that this classification is complete: if a node is narked, it is either
preinserted, or regular, and if a node is marked, it is eitheralbgmr physically deleted.
Also note that head and tail nodes are always regular. Wiestate the invariants we
will give alternative, equivalent definitions of the notions of thgsidally deleted and
logically deleted nodes.

In our algorithms preinserted nodes are only the nodes referrguthe mewNode
pointer in the Insert routine, and only before the C&S in line 11 df rihatine is
executed successfully. For all of the other node pointers in conithlgs it is true that if
the referred node is unmarked, it is a regular node. The preinseded can only be
modified by the process that created them, and we do not think of them as partaigour d
structure. In the future, when we refer to the nodes of the éisvM mean the nodes of
one of the other three types (regular, logically deleted, origdilys deleted), unless
stated otherwise.

Algorithm invariants given below apply to all the nodes of the [sei(iserted
nodes are not considered).

Inv 1. Keys are strictly sorted: For any two nodes nl, n2, if n1l.Agh®, then
nl.key < n2.key.

Inv 2: The union of regular and logically deleted nodes forms a linkedttucture
with head being the first node and tail being the last nodeif ireis a regular or a
logically deleted node and#head, then there is exactly one regular or logically deleted
node m such that m.right = n. Node m is called n’s predecesso# thih then m =
n.right is a regular or a logically deleted node, which itedah’s successor (it follows
from Inv 1 that m# n). The head node has no predecessors, and the tail node has no
successors: tail.right = null. The head and tail nodes are always unmarked.

22

Inv 3: For any logically deleted node, its predecessor is flagged (andrkeaf),
and its successor is not marked, i.e if n is logically deleted,m is a node of the list
such that m is not physically deleted and m.right = n, then m.sugt 6, 1) and
(n.right).mark = 0.

Inv 4: For any logically deleted node, its back_link is pointing to its predecessor, i
if n is logically deleted, and m is a node of the list suchrtha& not physically deleted
and m.right = n, then n.back_link = m.

Inv 5: No node can be both marked and flagged at the same time, i.e. there is
node n such that n.succ = (*, 1, 1).

Perhaps a more intuitive way to define a notion of a physidalgted node would
be to say that a node is physically deleted if there is notavaget to it from a regular
node by following only right pointers.

Def 3: A node islogically deletedf it is marked, and one can get to it from some
regular node by following a chain of right pointers, i.e n is laifyadeleted if n.mark = 1
and there exists a set of nodeg m, ..., mx such that m1 is a regular node and.right
= my, Mp.right = my, ..., Mc1.right = m..

Def 4: A node isphysically deletedf it is marked, and one cannot get to it starting
from a regular node by following a chain of right pointers, i.s physically deleted if
n.mark = 1 and there is no set of nodesm, ..., nm, such that mis a regular node and
my.right = mp, mp.right = my, ..., mc1.right = m..

Definitions 3 and 3 as well as definitions 4 and, 4re equivalent. The equivalence
follows from Inv 3. (To show that Def 3 follows from Dé€f apply an induction on the
length of the chain mmy, ..., m to prove that if m1 is regular, then all the nodes in this
chain are either regular or satisfy the property stated in Def 3.)

Now we will prove the invariants. We will start by proving Inv §,iiais the easiest
one. Then we will prove invariants 1-3 by proving that they are predeby all the
C&S’s performed by our algorithms. Finally, we will prove Inv 4. Aldhg way we will
prove several useful propositions and lemmas. A few of these propssiénd lemmas
will be used in the analysis section, and so they will include sdaies that are not
required to prove the invariants themselves.

Theorem 1:Invariant 5 always holds.

Proof:

The invariant obviously holds for an empty list. When a new node isedreiéd
successor pointer is set to be unflagged and unmarked (line 10 in,lasdrt) does not
change until the node is inserted into the list. The successorrgaftine nodes that are
part of the list can only be modified by one of the four C&S dpmers: line 11 in Insert,
line 2 in HelpMarked, line 3 in TryMark, and line 4 in TryFl&pne of them makes the
successor field both marked and flagged, and therefore invariant 5 alway#holds.

Proposition 2: Once a node is marked, its successor field never changes.
Proof:
It is easy to see that none of the four C&S’s can change a marked succesdr field.

Proposition 3 (weak SearchFrom postconditions):Suppose SearchFrom(k, n) is
executed, and suppose n.kek. Let (n1, n2) be the pair of nodes SearchFrom returns.

23

Then nl.key< k < n2.key, and there exists a point of time during the executiomeof t
routine such that at that time nl.right = n2 and SearchFrom doey notperform any
C&S’s on nl.succ after that time.

Proof:

The first of the two nodes returned in line 10 (n1 = curr_node) is @thal to n or
was set in line 8. In the first case, since n.kedy nl.key< k. In the second case, since
line 8 is only executed if condition in line 7 is true, nl.kely as well. Since the loop in
lines 2-9 exits only when the condition in line 2 is false, we caxclade that n2.key > k.
Let T1 be the moment of time when variable next_node is lagjreessl a value. That can
be in line 1, 6, or 9. In any case, next_node is assigned a value afiane.right, and
SearchFrom performs no C&S’s on nl after that moment. Alsdlaturr_node = nl,
because the value of curr_node can only be changed in line 8, and i€hanged,
next_node is changed as well. So at time T1, n2 = next_node = nMright.

We are going to prove that invariants 1-3 always hold by provingthiegt are
preserved by all the C&S’s performed by our algorithms. Y& by proving this for the
C&S in the Insert routine.

Proposition 4: The C&S in line 11 of the Insert routine preserves invariants 1-3.

Proof:

The C&S isresult = c&s(prev_node.succ, (next_node, 0, 0), (newNode, 0, 0)).

A successful execution of this C&S swings the right pointer @ mode from
next_node to newNode.

Before this C&S is executed, there are no other nodes linked toaumyNecause
newNode was created by this invocation of Insert in line 4, and oslym¥ocation can
insert newNode into the data structure, and then it is poised tim ¢éixi¢ 12 without any
further attempts to perform a C&S. Therefore, before the C&3asuted, newNode is a
preinserted node. Also, it is not marked or flagged. After the execatithis C&S there
is exactly one node linked to newNode, and newNode is still not mahkedit becomes
a regular (unmarked) node of the list. Let us prove the propositioraselpdor each of
the three invariants.

1. Since newNode.right is set pointing to next_node in line 10, to provih¢hieeys
remain sorted after the execution of this C&S, it is sufficientprove that
prev_node.key < newNode.key < next_node.key. Prev_node and next_node were
returned either by SearchFrom in line 1, if this is the fiesation of the loop, or
by SearchFrom in line 19. In either case we know from PropositiohaB t
prev_node.key k < next_node.key. Since in lines 2-3 and in lines 20-22 we
ensure that prev_node.keyk, and since newNode.key = k (line 4), this yields
what we have to prove.

2. To prove that Inv 2 is preserved, it is sufficient to prove that #fe execution of
this C&S it holds for newNode and next_node. After the C&S thezrastly one
node of the list linked to newNode, and that is prev_node, which is a regular node,
so Inv 2 holds for newNode. Since Inv 2 held for next_node before the @xecuti
of the C&S, the only regular or logically deleted node linked to_meode was
prev_node. Thus after this C&S the only regular or logicallytdéleode linked
to next_node is newNode, and thus Inv 2 holds for next_node as well.

24

3. Prev_node was not flagged before the C&S, so since Inv 3 held, next_node was
not marked before the C&S. Thus, next_node is not marked immediatsl et
C&S is executed. Prev_node and newNode are also not markethafte&S, so
since the third invariant held before the C&S, and none of the successors
predecessors of the other nodes changed, the invariant holdshaft€&s as
well. m

Before we are ready to prove that the other C&S’s preserve invariants 1-3jstve m
prove a couple of the auxiliary propositions about the HelpMarked routine.

Proposition 5: If the HelpMarked routine is invoked with parameters prev_node
and del_node, then del_node was marked at some point before this invocation.

Proof:

The HelpMarked routine can only be called from SearchFrom inSjn& from
HelpFlagged in line 4. If HelpMarked(prev_node, del_node) was called frorohfeam
in line 5, then the condition in line 3 had to be true, so del_node was markeat a
moment. If HelpMarked(prev_node, del_node from HelpFlagged in line 4, thantgr
this call either TryMark(del_node) was called in line 3 or del_nwae already marked.
It is easy to see by looking at the code of TryMark routine,ttfgatoutine does not exit
until del_node is marked. So in any case, before HelpMarked(prev_nodeodie) is
invoked, del_node is marken.

Lemma 6 (Physical deletion): Suppose HelpMarked(prev_node, del _node)
successfully executes a C&S in line 2. Then if invariant 2 hdlaré¢his C&S, del_node
is physically deleted immediately after the C&S.

Proof:

By Proposition 5 del _node is marked before the execution of the @&®& by
Proposition 2 it stays marked. By Inv 2 there cannot be more than one regular node linked
to del_node before the C&S is executed. Thus the only non-marked node Inked t
del_node immediately before the C&S is prev_node. After the erecaofithis C&S,
there are no more regular nodes linked to del node, del node is marked, and thus
del_node becomes physically delemd.

The following two propositions prove that the C&S’'s performed by the
HelpMarked and TryFlag routines preserve invariants 1-3.

Proposition 7: The C&S in line 2 of the HelpMarked routine preserves invariants
1-3.

Proof:

The C&S isc&s(prev_node.succ, (del_node, 0, 1), (next_node, 0, 0)).

A successful execution of this C&S swings the right pointer ef prode from
del_node to next_node and removes the flag from prev_node. Just before ssfalicce
C&S, prev_node is unmarked and linked to del _node. Del _node is marked, and thus
del_node was a logically deleted node before the C&S. By Lemmiatiée iC&S is
executed successfully, del_node becomes physically deleted. Alse bsi Proposition 5
del_node was marked before HelpMarked was called, marked suc@ietd®rdo not

25

change, and del_node.right = next_node when line 1 of HelpMarked istedgedt
follows that del_node.right = next_node immediately before the C&%asuted. Now
let us prove the proposition separately for each of the 3 invariants.

1. Before the C&S prev_node.right = del_node and del_node.right = next_node.
Since Inv 1 held before the C&S, prev_node.key < next_node.key. Thus, after the
C&S is executed, Inv 1 still holds.

2. Del_node becomes physically deleted after the execution ofC&is, and
prev_node becomes linked to next_node. Since the structure of the trestisf
does not change, Inv 2 holds after the execution of this C&S.

3. Del_node becomes physically deleted, so there is no condition imposed on
predecessor. Before the C&S, del node is a logically deleted node a
del_node.right = next_node, thus by Inv 3, next_node is not marked. Prev_node is
also not marked immediately after the C&S, and thus Inv 3 hmlds.

Proposition 8: The C&S in line 4 of the TryFlag routine preserves invariants 1-3.

Proof:

The C&S isc&s(prev_node.succ, (target_node, 0, 0), (target_node, 0, 1)).

A successful execution of this C&S flags prev_node. The fldg eany node is
not relevant to invariants 1 or 2. Flagging a node cannot make invarfalse, thus the
invariants will hold after the execution of this C&sb.

To prove that Inv 1-3 always hold, we now only need to show that the C&® in
TryMark routine does not violate these invariants. In particular, we need to pat\his
C&S does not violate Inv 3. Thus, we need to show that when a node gkéesimts
predecessor is flagged. The next lemma will help us to prove this.

Lemma 9 (HelpFlagged is invoked only if a flagged node is deted): Suppose
process P invokes the HelpFlagged routine with parameters prev_noaed=del node
= m during the execution M of some major routine (Search, Irgelielete). Then there
exists time T during the execution M and before the invocation giFtegged, when
n.succ = (m, 0, 1). Also, P does not try to perform any C&S’a tletween T and the
moment it calls HelpFlagged.

Proof:

HelpFlagged can be called in line 6 of the Delete routine, indime 16 of the
Insert routine, or in line 5 of the TryMark routine.

Suppose it was called from the Delete routine. Then TryFlalgdcal line 4 must
have returned a non-null prev_node, which means that TryFlag returned 8) 6, or 8.
If TryFlag returned in line 3, then the moment when it executegréngous line (line 2)
is a valid moment for T. If TryFlag returned in line 6 orl&rt the moment just after it
last tried to perform a C&S in line 4 is a valid moment for T.

Suppose HelpFlagged was called from line 8 of the Insert routine. ihen
prev_node and m = prev_succ.right. At the moment when Insert executédfoneéhe
last time before calling HelpFlagged, n.right = prev_succ.righin=and n.flag =
prev_succ.flag = 1. Since nodes cannot be both marked and flagged atehersgthis
is a valid moment for T.

26

If Insert called HelpFlagged in line 16, then n = prev_node and ssuatmright.
When Insert tried to perform the C&S in line 11 for the lastetibefore calling
HelpFlagged, n.succ = result = (m, 0, 1), and this is a valid moment for T.

Finally, suppose HelpFlagged was called in line 5 of the TryMarkn®uthis case
is very similar to the previous case: when TryMark tried togperithe C&S in line 3 for
the last time, n.succ = (m, 0, 1), and this is a valid moment #r T.

TryMark is the only routine that marks nodes. The only place thildnky/ routine
is called is line 3 of the HelpFlagged routine. In the previous lemenahowed that if
HelpFlagged was invoked, prev_node was flagged at some point of time leéor
invocation. Now we will prove that prev_node stays flagged at leastitsnsuccessor
gets marked.

Lemma 10 (Predecessor is still flagged when a node gets marke@uppose the
C&S in line 3 of the TryMark routine successfully marks del_nodg.\Lbe the first
parameter of the HelpFlagged routine that called this TryMarkmeuifihen starting
from some time before HelpFlagged was invoked, and until the C&SyiNlark is
performed, v.succ = (del_node, 0, 1).

Proof:

Let C1 be the C&S in question. From Lemma 9 it follows thabatespoint of time
T before the HelpFlagged(v, del_node) that called this TryMark masked, v.succ =
(del_node, 0, 1). Let us prove that v.succ does not change before C1 is performed.

Suppose there was a C&S C2 that changed it (let us takeghsuioh C&S after T
if there are several of them). The only C&S that can chanfiggged successor field is
the C&S in the HelpMarked routine. Since immediately before C2,ws\del_node, 0,
1), and C2 was successful, HelpMarked had to be called with paramedind del_node.
By Proposition 5, del_node had been marked before the HelpMarked roasneailed.
Marked nodes never become unmarked (Proposition 2), so del_node is &kt mdren
C1 is performed. But C1 would fail if del_node was marked, and we knevguiccessful
— a contradictiorm

Proposition 11: The C&S in line 3 of the TryMark routine preserves invariants 1-3.

Proof:

The C&S isresult = c&s(del_node.succ, (next_node, 0, 0), (next_node, 1, 0)).

A successful execution of this C&S marks del_node. Suppose Inv 1-3 hold before
the C&S. By Lemma 10 when this C&S is executed, there eaistede v such that
v.succ = (del_node, 0, 1), i.e. there is an unmarked node linked to del_node. Thus
immediately after this C&S is successfully executed del_nodenbes logically deleted.
Also, since the C&S succeeded, del_node was not flagged, and thug,3ynbxt_node
was not marked before the C&S. Now let us prove that all threeiants hold after the
C&S.

1. No right pointers are changed, so Inv 1 holds.

2. Immediately after the C&S del_node becomes logically delddsil. node’s
successor next_node was not marked before the C&S, and thus itregdaa
node immediately before the C&S, and it remains a regular nodedmately

27

after the C&S as well. The status of other nodes is not affdny this C&S, and
no right pointers change, so Inv 2 holds.

3. By Lemma 10 when C&S is executed, prev_node.succ = (del_node, 0, 1), so Inv 3
is satisfied for del_node. Also, next_node was not marked before&Be &nhd
therefore it is not marked immediately after the C&S, sorkariant is satisfied
for del_node’s successor. Thus, Inv 3 holls.

Theorem 12:Invariants 1-3 always hold.

Proof:

Initially the list contains no keys and all the invariants obviouslyd.n@ur
algorithms modify the data structure only by performing C&S af@mns or by setting
back links in line 1 of HelpFlagged routine. Notice that setting & Iha& cannot
violate any of the invariants 1-3. There are 4 different types&S8'€performed by our
algorithms: the C&S in the Insert routine, the C&S in TryFtagtine, the C&S in
TryMark routine, and the C&S in HelpMarked routine. By Propositions 4, 14
none of these four C&S operations can violate invariants 1-3, so they alwaym hold.

We proved that invariants 1, 2, 3, and 5 always hold, and the only invieftaist
invariant 4. Before we will be ready to prove it, we need to psmBaeral auxiliary
claims.

Proposition 13: Once a node is physically deleted, it remains physically etklet
forever.

Proof:

A marked node can never become unmarked, so a node can stopleioglly
deleted only if the right pointer of an unmarked node is set pointiriig ©ut of the 5
possible modifications of our data structure only 2 change right psiitker C&S in the
Insert routine and the C&S in the HelpMarked routine.

The C&S in the Insert routine i®sult = c&s(prev_node.succ, (next_node, 0, 0),
(newNode, 0, 0))First note that newNode is obviously not marked when this C&S is
performed. Also note that since the C&S is successful, prev_nosi@atdlagged, and
thus by Inv 3, next_node was not marked, when this C&S was perfoiihecefore, no
physically deleted nodes can be reinserted into the list by this C&S.

The C&S in the HelpMarked routine is&s(prev_node.succ, (del_node, 0, 1),
(next_node, 0, 0))In order to prove that this C&S cannot reinsert physically dilete
nodes into the list, it is sufficient to show that if it is sesfel, then immediately before
it is performed, next_node is not a physically deleted node. Imtegdtzefore the C&S
del_node is a logically deleted node, because by Proposition fadrked, and, since the
C&S is successful, its predecessor is not marked. Thereforay®;, next_node is not
marked, and thus it cannot be a physically deleted mbde.

Lemma 14: For any node m, after some flagged node n is linked to it, mexkr
have a regular predecessor other than n. When n’s successahfelges, m becomes
physically deleted.

Proof:

28

By Inv 2 the node m cannot have two regular predecessors, so ivefanchave a
regular predecessor other than n, n must have its successa@hfelged. The only C&S
that changes successor fields of flagged nodes is the C&S litetpblarked routine. By
Lemma 6 we know that if this C&S successfully changes n’sessoc field, m becomes
physically deleted, and by Proposition 13 it remains physicalbtete forever, so there
can be no regular nodes linked to it after tiat.

Proposition 15: Once a back_link is set, it never changes.

Proof:

Suppose process P set the back_link of del_node to prev_node, and preedss P
the back_link of del_node to prev_nbéderoving that prev_node = prev_nbgeoves the
proposition. Since back_links are set only in the HelpFlagged routine, rweoocalude
that at some point HelpFlagged(prev_node, del_node) was called by R,samaegpoint
HelpFlagged(prev_notledel_node) was called by.BBy Lemma 9 this means that at
some moment of time prev_node.succ = (del_node, 0, 1), and at some othert mbme

time prev_nodesucc = (del_node, 0, 1). Then by Lemma 14 prev_node = preV. Bode
We are now ready to prove that Inv 4 always holds.

Theorem 16:Inv 4 always holds.

Proof:

This invariant obviously holds in the beginning when the list is emptyus @rove
that if it holds before a modification, it will hold afterwardsveall. There are five types
of modifications that can be performed by our algorithms: four tygegsuccessful)
C&S'’s and setting the back_link in line 1 of HelpFlagged routine. Weepnove that
none of these modifications can violate Inv 4.

* The C&S in the Insert routine is

result = c&s(prev_node.succ, (next_node, 0, 0), (newNode, 0, 0)).

Immediately before the C&S prev_node is not flagged, and thus by3]Inv
next_node is not marked. Also, when the C&S is performed, newNode mmarkéd.
Thus this C&S preserves Inv 4.

e The C&S in the HelpMarked routine is

c&s(prev_node.succ, (del_node, 0, 1), (next_node, 0, 0)).

By Proposition 5 del_node was marked before HelpMarked was calledhasd t
from Proposition 2 it follows that next_node is del_node’s successordiataly before
the C&S. Also, from Proposition 5 it follows that immediatelydsefthe C&S del_node
is a logically deleted node. Therefore, by Inv 3 next_node is not thank@ediately
before the C&S. By Lemma 6 del_node becomes physically deletadilait C&S, and
since next_node is not marked, Inv 4 holds.

* The C&S in the TryFlag routine is

result = c&s(prev_node.succ, (target_node, 0, 0), (target_node, 0, 1)).

This C&S flags the successor field of prev_node, which cannot violate Inv 4.
e The C&S in the TryMark routine is

result = c&s(del_node.succ, (next_node, 0, 0), (next_node, 1, 0)).

29

Before the C&S, del _node is a regular node, and after the C&®cibmes a
logically deleted node (since by Lemma 10 it has an unmarkel@égessor), so we must
show that it has a correct back_link.

Let v be the predecessor of del_node at the time of the C&S. Lemma 10 imglies tha
TryMark was called from the HelpFlagged routine with the fxatameter prev_node =
v. Therefore, when that HelpFlagged executed the first line, del s\bdek_link was set
to v. From Proposition 15 we know that back_links do not change, and Hams @&S
was executed, del_node’s back_link was pointing to its predecessor.lihds holds
after the C&S.

e Back links are set only in line 1 of the HelpFlagged routine:
del_node.backlink = prev_node.

Let us prove by contradiction that this modification does not viokaervariant.
Suppose it did. Then del_node was a logically deleted node when thicatah was
performed. Since the invariant held prior to the modification, and del_nasléogiaally
deleted, it means that del node’s back link was set to a correet lbefore this
modification. But by Proposition 15 once back_link is set, it nevengd®s so this
modification could not violate the invariam.

3.3.2 Critical steps of a node deletion

Just after a node is inserted into the list, it is a regular.nd@eshow that the
deletion of a node must proceed in three steps.

Def 5: There are three types of successful C&S’s that are eam tthecritical
steps of the deletioof del_node. These are:
1. The C&S that flags del_node’s predecessor.
2. The C&S that marks del _node.
3. The C&S that unflags del node’s predecessor and physically delete
del_node.

Proposition 17 (Critical steps of a deletion)The three C&S steps described in
Definition 5 can be successfully performed only once for each partiocode del _node
and only in the order they are listed.

Proof:

First, just by looking at the C&S’s that are performed by our algorithmse#sg to
see that step 1 can be performed only by the C&S in line HeofityFlag routine, step 2
can be performed only by the C&S in line 3 of the TryMark routin€, step 3 can be
performed only by the C&S in line 2 of the HelpMarked routine. Lethasv that each of
these steps can be performed only once for each particular node del_node.

After step 1 takes place in line 4 of TryFlag, prev_node.succl=no@e, 0, 1). To
perform this step again, the C&S in line 4 of the TryFlag routimst succeed, which
means that there must exist a node prev_nadeh that prev_nodesucc = (del_node, 0,
0). By Inv 2, two nodes cannot be linked to del_node at the same time, andqule’s
successor does not change as long as prev_node is flagged. Thus, prevouiddeve
to be unflagged before prev_nédaelinked to del_node. But, by Lemma 14, changing the
successor field of prev_node physically deletes del_node and del_node eulstay

30

physically deleted forever by Proposition 13, and thus the unmarkedpmedenodée
cannot be linked to del_node. Thus, step 1 cannot be performed more than once.

Immediately before step 2 is performed, del_node is unmarkeek. #t#tp 2 takes
place, del_node becomes marked, and by Proposition 2 it stays marked forever. $hus, thi
step cannot be performed more than once.

Immediately before step 3 is performed del_node is not phiysideleted, since
there exists a regular node prev_node linked to del_node: prev_node(sietcnode, O,
1). By Lemma 6, after step 3 takes place, del_node becomes [igydelated. By
Proposition 13, it stays physically deleted forever. Thus, step 3 cannot berseifmore
than once.

Now let us show that these steps can only be performed in the loeglerre listed
in Definition 5. By Lemma 10, del_node's predecessor prev_node gets flagiyed
del_node gets marked, thus step 2 can be performed only after stegrfbimed. Step 3
can be performed only in the HelpMarked routine, and by PropositiongMdegted can
be invoked only after a node is marked. Thus step 3 can be performeaftenistep 2 is
performedm

A given invocation of the Delete routine starts a deletion operatiowever, it is
not necessary that all three critical steps of a deletion wperare performed by the
Delete routine that started it: other processes hedy to perform some of the critical
steps. Also, while a process is executing a Delete routingyitapply some changes to
the data structure, such as helping other deletions, which aratedréd the deletion
operation that was started by the routine. So, there is a difeebateween the notions of
“the Delete routine” and “the deletion operation”, although there isne-to-one
correspondence between the two. A similar thing can be said &eobrisert routine vs.
the insertion operation and the Search routine vs. the search operation.

3.3.3 The SearchFrom routine

In this subsection we investigate the properties of the SearohFoutine, and
prove a few useful propositions concerning it. We start by proviagllisy proposition
about marked nodes.

Proposition 18: If nl is a marked node and n.lright = n2, then either n2 is
unmarked, or n1 got marked before n2.

Proof:

Marked pointers never change, so when nl was marked, it had to bagainti2.
After n1 was marked, it became a logically deleted node, arttidothird invariant its
successor had to be unmarked at that moment. So, when nl got markeds n2 wa
unmarked. Thus, n2 is either unmarked, or got marked aft@ n1.

The following proposition states an important property of the SeamwhFoutine,
which we will use to prove the SearchFrom postconditions. We widl ale this
proposition later, when we perform a performance analysis of our data sructur

Proposition 19 (SearchFrom property): Suppose the SearchFrom routine is
executed. Let 7 m,, ..., iy be the sequence of nodes curr_node points to during the

31

SearchFrom execution. Suppose curr_node gets setabtime T for 1<i < s, and
suppose some nodgia not marked or was not in the list at time<I'T;. Then nodes;n
..., s were either not in the list or were in the list and unmarked (i.e. regulgfr) at T

Proof:

Suppose there are some nodes in the sequgnce, ns which were in the list and
marked at J. Let nc be the first such node. We know thatk, because jowas not
marked or not in the list a'T Therefore, pis not the first node in the sequenge.n, n
and node g, also belongs to this sequence. We shall show that SearchFrom could not
move its curr_node pointer from.nto n.

Since R, and i are two consecutive nodes in the sequence, there had to be a
moment T during the execution of SearchFrom, when curr_node and next_node
was assigned a valug. i\t that moment, SearchFrom could be executing line 1, line 6, or
line 9. In any case, at that momeptnext_node = curr_node.right zright. Since n
was marked at moment'Tit is marked at time T as well, becauge<TT; < Ty.; < T. Let
us show that yy cannot be marked at T. If.pwas marked at this moment, then it must
have got marked after;T{because nis the first node in the sequenge .n., ns that was
marked before T), which means that.rgot marked before, contradicting Proposition
18. So, r1 has to be unmarked at time T.

By the third invariant at time Tyn.succ = (R, 0, 1), and by Lemma 14, onceils
successor field changes, Ilecomes physically deleted. Let us take the first moment T
after time T when SearchFrom executes line 3. Note thatcldgam performs no
curr_node or next_node pointer updates between T &ndoTcurr_node = and
next_node =pat T.

If nk.1.succ changed between T and then by Lemma 14nbecame physically
deleted between T and.TAlso, when r got physically deleted,xn.right was set to s
successor, and after that by Proposition d3right could never be set back tp &0, at
time T ngj.right = n,, and therefore SearchFrom will enter the while loop in lines 3-6,
and update its next_pointer in line 6. After that SearchFrom has aloioter set to
and ny is physically deleted, so there is no way SearchFrom canset its curr_node
pointer to R — a contradiction.

If nk.1.succ is still equal to (N0, 1) at time T, then SearchFrom will enter the while
loop in lines 3-6. In lines 4-5 it will make sure that next_node getsigdlly deleted (if
nk.right doesn’t change «mwill be physically deleted by HelpMarked in line 5, and if it
does, then ngets physically deleted by Lemma 14), and then in linewdllitupdate its
next_node pointer. As in the previous case, SearchFrom will nevebl&doaset its
curr_node pointer tografter that — a contradictiom.

The following proposition states the postconditions of the SearchFromeolitis
an extension of Proposition 3.

Proposition 20 (SearchFrom postconditions):Suppose SearchFrom(k, n) is
executed, and suppose n.kek. Let (n1, n2) be the pair of nodes SearchFrom returns.
Then the following conditions are true.

¢ nl.key< k <n2.key.

32

* There exists a point of time during the execution of SearchFroem w1.right =
n2, and after that time SearchFrom does not call any C&S operations on nl.succ.
e For any time T before or when SearchFrom is invoked the follovartgue: if
n.mark = 0 at T, then there exists a point of timddtween T and the moment
SearchFrom returns, when nl.right = n2 and nl.mark = 0.

Proof:

The first two statements were proved in Proposition 3. Let useptiog third
statement. Let T1 be the time, specified by Proposition 3. If nbtisnarked at time T1,
then T1 is a valid time for'Tand we are done with the proof. Suppose nl got marked at
some time T2 < T1. Since curr_node = n when SearchFrom is invokediaindocle =
nl just before SearchFrom returns, it follows from Proposition I9nthavas either not
in the list (i.e. preinserted or not created), or was unmarkedTdtefefore, T < T2 < T1.
Since successor fields of marked nodes do not change, and we know tihat atl
nl.right = n2, we can conclude that at time T2 nl.right = n2 assegllist before T2 we

have nl.mark = 0 and nl.right = n2. This is a valid moment'fa T

3.3.4 Linearization points and correctness

Our data structure allows three types of dictionary operatg@esches, insertions,
and deletions, which are executed by invoking the Search, InserDelate routines
respectively. There is a one-to-one correspondence between egatnopgeerformed by
our data structure and each execution of one of the major routiné€Se@reh, Insert, or
Delete). An execution of an operation starts with the invocatiomefcbrresponding
major routine and ends when that routine returns. (Also, the lineanzpgint of an
operation is the same as the linearization point of the correspogxiiegtion of a major
routine).

Consider any concurrent execution of our algorithms. In this subsest show
how to assign linearization points to operations performed duringesuton and prove
that our algorithms implement the dictionary operations. We sayhbaet of elements
currently stored in the dictionary is the set of the elements of the regula ofonle data
structure. We show that this set is modified only at the lineoin points of the
insertions and deletions according to the specifications of thesatiopsr We also prove
that if an operation completes, it returns a correct resatiording to its point of
linearization.

We will start by assigning linearization points to the delefidng before we do
this, we need to prove the following proposition for the TryFlag routine.

Lemma 21 (TryFlag invariant): Suppose TryFlag(n, m) is called. Then at any
time during its execution, prev_node.key < m.key and target _node = m.

Proof:

The value of target_node never changes, so target node = m. Notideyflag
can only be called in line 4 of the Delete routine, so n and m vetuened by
SearchFrom in line 1 of Delete, and therefore n.key < m.key by Rtiopd20. So, at the
beginning of the execution of TryFlag, prev_node.key < m.key. The valpeewf node
can be changed only in line 10 or 11. In the first case the key wfrde decreases
(follows from invariants 1 and 4), and in the second case prev_nodekey

33

target_node.key € < m.key by Proposition 20, so prev_node.key is always strictly less
than m.keym

In the following theorem we assign linearization points to thecettons of the
Delete routines. We will linearize each unsuccessful deletimorae moment when no
regular node has the key it searches for. We will linea@d successful deletion at the
moment when a (regular) node with the key it searches for geteedh Our algorithms
are designed in such a way that a deletion of some node n reporsssocty if it
performs the first critical step of n’s deletion (flagging pi®decessor). A successful
deletion does not necessarily perform the second step (maitgalf) another process
may do it. We also define a mapping that will help us prove dhaélement can be
deleted from the dictionary only by executing an appropriate deletion.

Theorem 22 (Delete correctness)f an execution of the Delete(k) routine returns
NO_SUCH_KEY (indicating an unsuccessful deletion), then for thexuion we can
choose a linearization point, at which there was no regular node &yitk kn the data
structure. If an execution of the Delete(k) routine returns a pdmte node (indicating a
successful deletion), then for this execution we can choose adatear point, at which
this node became marked.

Furthermore, there exists a mappm@f all marked nodes to the successful Delete
executions and non-terminated Delete executions such that

1. oisinjective.

2. For any successful execution D of the Delete routine,din¥if and only if the
node D returns is n.

3. At any time T, if node n is marked at T, thefm) is linearized at the moment
when n got marked.

Proof:

Let P be the process that is executing the deletion. We choose the lirmapoatt
for the execution depending on how it runs.

Case 1:Suppose Delete returns NO_SUCH_KEY in line 3. This is a céssm w
Delete could not find a node with key k in the list. Let n1 and n2 besdhees of
prev_node and del_node SearchFrom returns in line 1. Since head is akedhnuate,
by Proposition 20 there was a momehduiring the execution of that SearchFrom when
nl.right = n2, nl.mark = 0, and nl.key <ki2.key. We linearize Delete at.TSince
n2.key# k (line 2), it follows that nl.key < k < n2.key. At the linearizagmint node nl
is unmarked, thus nl is a regular node of the list, and since nl.rightn2 2 gither a
regular or a logically deleted node. Since the union of regatatagically deleted nodes
is a sorted linked list, and since at the linearization point the\kais between the keys
of the two consecutive nodes of this list, we can conclude that ihee regular node
with key k in our data structure at the linearization point of the deletion.

Case 2:Suppose the routine returns NO_SUCH_KEY in line 8. This is avdase
Delete found a node with the required key, but still failed to detetend we must
linearize Delete at a moment when there was no regular notlekeyt k in the data
structure. Let (n1, r) be the values that were returned by thi@alyryoutine in line 4, and
let n2 be the value of del_node. Since Delete returns in line 8, n2 kend r = false.
We will prove that there was a point of time T during Dele&xscution, when n2 is a

34

logically deleted node. We will linearize Delete at thamment, and then we will prove
that this is a valid linearization, i.e. that at this momentetieno regular node with key
Kk in our data structure.

First notice that as in Case 1, there was some moment of Ttinaeiring the
execution of the deletion, when n2 had a regular node linked to ih2i.eas either a
regular or a logically deleted node. Suppose n2 was a regulamahddeSince TryFlag
returned result = false, it had to return in line 3, 8, or 13.

Case 2(a): TryFlag returns in line 13. This is a case wheret®dgleted before
TryFlag can flag its predecessor. Let us examine the &micBrom in line 11 which
TryFlag executed before returning in line 13. Let (n3, n4) be theesaf prev_node and
del_node that search returned, and létb&the value of prev_node immediately before
that search was executed. At moment T2, when line 9 in Trykiéegexecuted for the
last time before that SearchFrom, r3prev_node was not marked. Also, by Lemma 21,
n3.key < target_node.key = n2.key (and thus,.ke¥y < n2.key —). Therefore, by
Proposition 20, there is some momeHtduring the execution of TryFlag (between T2
and the moment when SearchFrom returned), when n3.right = n4 and n3.Mhahkss,
by Proposition 20, n3.key n2.key —e < n4.key, or, equivalently, n3.key < n2.kgy
n4.key. By invariants 1 and 2, all the regular and logically deleteigs form a linked
list with strictly ordered keys. Since n3 and n4 are in tisdt T' (because n3 is not
marked and n3.right = n4), n3.key < n2.key4.key, and n4 n2 (line 12), n2 is not a
regular or a logically deleted node &dt. Bince T > T', node n2 is physically deleted at
T". Thus, by Proposition 17, there was a moment T betweand T', when n2 was a
logically deleted node

Case 2(b): TryFlag returns in line 3 or 8. This is the case wber® other process
Q flags the predecessor of n2. Q is also executing a Deletr(ihe and will report
success (or die before finishing its deletion). Process R&tddensures that all critical
steps of the deletion are performed and reports failure. Let us ghravin this case there
also exists a moment T during the execution of P’s deletion, whes a2logically
deleted node.

TryFlag returned in line 3 or 8, so #lnull, and thus before Delete returns in line 8,
it calls HelpFlagged(nl, n2) in line 6. If n2 is not marked, HelpFldggells
TryMark(n2), which does not exit until n2 is marked. So n2 is a mankel@ at some
point of time T' during the execution of the TryMark routine. Therefore, by Proposition
17, there exists a moment T betweeérafid T', when n2 is logically deleted.

So, regardless of how TryFlag returned, there is a time T dthiengxecution of
Delete when n2 is a logically deleted node, and n2.key = k. So by Inv 1 and 2r¢éheoe a
regular nodes with key k in the list, and thus we can choose Redmeéarization point
for the deletion.

Case 3:Suppose the Delete routine returns del_node in line 9. As in theysevi
case, let (n1, r) be the values that were returned by the grydldine in line 4, and let
n2 be the value of del_node. This is the case when the deletiorcéssiut, and it must
be linearized at the moment when n2 got marked.

We know that Delete returns in line 9, so n2.key = k and r = truehwhéans that
the TryFlag routine returned in line 6. This means that the C&&emM of the TryFlag
routine was successfully executed flagging node prev_node = tiatAhoment nl was
the predecessor of n2. Flagging is the first critical stejpetieletion, so by Proposition

35

17, n2 was not marked at that point of time. Before returning in ljri@efete called
HelpFlagged(nl, n2) in line 6, which, as we reasoned before, does noneixit?2 is
marked. Therefore n2 gets marked during the execution of theeDedatine. We
linearize Delete at this moment.

Case 4:Suppose the execution of the routine is non-terminated. Suppose Ralete h
already called the TryFlag routine in line 4, and that TryHiagtine performed a
successful C&S in line 4. Let n2 be the value of target_node immabdiafore that
C&S. If n2 is marked, then we linearize this execution of Dedetame T when n2 got
marked By Proposition 17, marking of a node is performed after flaggitise node’s
predecessor, so T is after the deletion started. Therefogsea Valid linearization point.
In any other case we do not linearize this execution.

Finally, let us construct a mappimgof all marked nodes to successful and non-
terminated Delete executions, which has the properties descriltlee proposition. By
Proposition 17, before a node gets marked, its predecessor gets fldgded.can only
get flagged in the TryFlag routine, which can be called only flemDelete routine. Let
us definec so that it maps a marked node n to the execution of the Deleieertiugt
flagged n’s predecessor, i.e. the Delete execution that perfohadutst critical step of
n's deletion. If a Delete execution flags n’s predecessor, thempdised to return node n
in line 9, so at any point of time this execution is either successful or non-texdiina

Each Delete invocation flags at most one nodepse injective (property 1
proved).

If D is a successful execution of the Delete routine, and Dn®tay then, as we
have showed in Case 3 above, D has flagged n’s predecessor, and tm{s)DOn the
other hand, if D is successful and Dofn), then by the definition of, the TryFlag
routine called by D has flagged n’s predecessor by performgug@essful C&S in line
4. Since that C&S has flagged n’s predecessor, TryFlag's lodabieitarget node is
equal to n immediately before the C&S. By Lemma 21, target_node nkaages its
value, so when TryFlag was called by D, target_node = n, and tlsub &l variable
del_node = n. Therefore the node returned by D in line 9 is n (property 2 proved).

Finally, if at time T node n is marked, theitn) is defined, and by property 2,
execution D =a(n) returns n. From the way we assign linearization points to the
executions of the Delete routines, it follows that D is linesiat the moment n got
marked (property 3 provedi.

The next three propositions are not directly concerned with coesst but we
prove them because we will need them later when we do the penfmenamalysis.
Proposition 23 below proves that all three critical steps of thdiaelef a node are
performed during the execution of the respective Delete routine.

Proposition 23: Each of the three critical steps of n’s deletion is peréafmuring
the execution of the Delete routiaén).

Proof:

As we showed above, if the Delete routo(@) returns n, then the first step of n’s
deletion was performed during the execution of the TryFlag routinallgd in line 4.
After that, HelpFlag is called in line 6, and it ensures thatsecond critical step of n’s
deletion is performed (lines 2-3 of HelpFlagged). Then HelpFlagges! idalpMarked.

36

Let us show that before HelpMarked returns, the third step of resialelis performed,
i.e. n = del_node becomes physically deleted. Successful executioe G&S in line 2

of HelpMarked physically deletes n. Suppose this C&S fails. Them ppde.succ was
changed after prev_node was flagged, but by Lemma 14 this meamelthadde = n

was physically deleted

In the following theorem we assign linearization points to thecatxons of the
Insert routines. We will linearize successful insertions atrtbment when they insert the
node. We will linearized unsuccessful insertions at the moment wieea is a regular
node in the list that contains the key they are trying to ingégtalso define a mapping
that will help us to prove that an element can be inserted intdi¢tienary only by
executing an appropriate insertion.

Theorem 24 (Insert correctness)if an execution of the Insert(k, €) routine returns
DUPLICATE_KEY (indicating an unsuccessful insertion), then for éxiscution we can
choose a linearization point, at which there was a regular nodekeytlk in the data
structure. If an execution of the Insert(k, e) routine returns agedmia node (indicating
a successful insertion), then the node’s key is equal to k, and faxisition we can
choose a linearization point, at which this node gets inserted, becoming a regular node.

Furthermore, there exists a mappigg of all regular, logically deleted and
physically deleted nodes of the data structure to the suaté&ssfrt executions and non-
terminated Insert executions such that

1. Yisinjective.

2. For any successful execution | of the Insert routine,yi(m) if and only if |
returns n.

3. At any time T, if node n is regular, logically deleted, orgptally deleted at T,
theny(n) is linearized in the moment when n got inserted.

Proof:

We choose the linearization point depending on how the Insert routine runs.

Case 1:Suppose the routine returns DUPLICATE_KEY in line 3. Let (n1, n2) be a
pair of nodes SearchFrom returns in line 1. The head node is alwaysrked, so by
Proposition 20 there exists a moment of time during the executioeaofldg-rom in line
1, when nl is unmarked. We linearize Insert at that point of tirnthah moment nl is a
regular node, and nl.key =k (line 2).

Case 2:Suppose the routine returns DUPLICATE_KEY in line 22. Let (n1, n2) be
a pair of nodes SearchFrom returns when it is executed féagheme in line 19. First
notice that nl.key = k (line 20), so to prove the theorem for this d¢asesufficient to
choose a linearization point at which nl is a regular node.

Let nl be the value of prev_node immediately before the search in line 19 is
executed for the last time. We will show that there exstsoment during the execution
of Insert, when nlis not marked. Let T1 be the moment when Insert executes line 6 for
the last time before returning. If the condition in line 7 was then nl was not marked
at T1 (Invariant 5). If the condition in line 7 was false, the G&$ne 11 was executed
and failed, and then Insert entered the loop in lines 17-18. When line ¥keaded for
the last time, prev_node ='mdnd it is not marked.

37

So there exists a moment of time T during the execution oft]ngeen n1was not
marked. Since the first argument of SearchFrom in line 19" j9pProposition 20 there
was a moment of time between T and the completion of Searchikenuyring the
execution of Insert), when nl1 was not marked. This is where weitiadasert. At that
moment nl is a regular node.

Case 3:Suppose the routine returns newNode in line 13. Let nl be the last node
prev_node was pointing to. Insert returns in line 13 only if the conditianerlP is true,
i.e. if the C&S in line 11 is executed successfully. When thisSA& successfully
executed, newNode becomes a regular node, because newNode is an unode kst
has a predecessor nl, which is a regular node of the list. (C&®rdg succeed if
prev_node is unmarked.) Also notice that newNode.key = k (line 4). Weiledhe
Insert routine at the moment of the successful execution of the C&S.

Case 4:Suppose the execution of the routine is non-terminated. If the routine has
performed a successful C&S in line 11, then we linearize it at the moment wh@&hat
was performed. This is non-ambiguous, because once Insert perfounseastul C&S
in line 11, it is poised to return in line 13, so each execution oftlpseiorms at most
one successful C&S in line 11. If the routine has not performed assfat C&S, we do
not linearize it.

Finally, let us construct a mappiggof all regular, logically deleted, and physically
deleted nodes to successful and non-terminated Insert executions, wkictheha
properties described in the proposition. In order for a new node n to be taciihe data
structure, a preinserted node must be created by the executionlo$eheroutine, and
then the C&S in line 11 of that Insert routine must be performed ssfodly. Let us
definey so that it maps each node to the Insert execution that successfully perfoatmed t
C&S. If the Insert executiop(n) successfully performs the C&S in line 11, then it is
poised to return n in line 13, so at any point of time this Insertutom is either
successful or non-terminated.

Each Insert invocation executes at most one successful C&S idlinsoy is
injective (property 1 proved).

If 1 is a successful execution of the Insert routine, andurmstn, then, as we have
showed above, | has successfully performed the C&S in line 11 teateits, and thus |
= (n). On the other hand, if | is successful andy®), then by the definition ap, |
has performed a successful C&S in line 11 that inserted n,hemdfdre the node it
returns is n (property 2 proved).

Finally, if at time T node n is regular, logically deletedpbysically deleted, then
Y(n) is defined, and by property 2, executionén) returns n. From the way we assign
linearization points to the executions of the Insert routines, it follows théinkerized at
the moment when it successfully performed the C&S in line 11, i.en wigot inserted
(property 3 provedm

In the following theorem we assign a linearization points to Keewions of the
Search routines. This is the last theorem we need to prove theteesse of our
implementation.

Theorem 25 (Search correctness)f an execution of the Search(k) routine returns
NO_SUCH_KEY, then we can choose a linearization point, at which there was na regula

38

node with key k in the data structure. If an execution of the B@gdrooutine returns a
pointer to a node, then the key of this node is k, and for this executi@anvchoose a
linearization point, at which this node was a regular node.

Proof:

In the first line the Search routine calls SearchFrom. Tlael Inede is always an
unmarked node, so by Proposition 20 the nodes returned by SearchFrom(katisd) s
the following condition at some point of time during the execution ofcB&aom:
curr_node.kex k < next_node.key, curr_node.right = next_node, and curr_node.mark =
0. We linearize the Search routine at this point of time. Atri@nhent curr_node is a
regular node, because it is not marked (and it is obviously not a preinserted node).

Case 1:Suppose the Search execution returns a pointer to a node in line 3. Then
curr_node’s key is k (line 2), and, as we showed, it is regular at the linearization point.

Case 2:Suppose the Search execution returns NO_SUCH_KEY in line 5. Then
curr_node.key k. In this case at the linearization point curr_node and next_node are the
two consecutive nodes in the list of regular and logically deleted snoded
curr_node.key < k < next_node.key, which means that there is no regularittoétey k
in the data structura

Note that if an execution of the Search(k) routine is non-terntinate do not
linearize it.

It follows from Theorems 22, 24, and 25, that our data structure tgrrec
implements the three dictionary operations. The set of the elemaméntly stored in the
dictionary is the set of the elements of the regular nodesralata structure. An element
of a node n is added to the dictionary at the moment when the inspftipis linearized,
and is removed from the dictionary at the moment when the detgimns linearized.

3.4 Performance analysis

In this section we present a performance analysis of our &lg@itWe express the
performance in terms of contention.

Recall thatpoint contentionis the number of processes running concurrently at a
given point of time, and theontention of operation &enoted c(S) is the maximum point
contention during the execution of operation S.

Our amortized analysis relies on a fairly complex techniquieillrig part of the
cost of each operation to the successful C&S’s that are pertbby operations that are

running concurrently. The amortized cost of an operation S, defotedis G)ual to the
actual cost of S (which is equal to the cost of the executiothefmajor routine
(including all subroutine calls), corresponding to S) plus the tatstl billed to S from
other operations minus the total cost billed from S to other operatfdasprove that
%(S) = O(n(S) + ¢(S)), where n(S) is the number of elements inlake structure when
operation S is invoked and c(S) is the contention of operation S.
Let E be an entire execution. The cost of an execution E, denotedstégual to

the sum of the costs of all the steps performed by the procestes system during E.
Note that it follows from our bound on the amortized cost of an aperahat t(E) =

>SS) =Y 1) = O[Z (n(S)+ c(S))}, where the sum is taken over all operations

39

invoked during E. Let max(n) be the maximum value of n(S), and(anhde the
maximum value of ¢(S) for all S in E. Let m(S) be the numbespafrations invoked
before S and m be the total number of operations invoked during E. Fleally(S) be

_ uE)

the average cost of an operation in execution Ee Nwtt.(S) = gt From our bound
2. (n(S)+c(S))
on the amortized cost of an operation it followatth. (S) O O| < - . Since

m = max(n) and n® max(c), one can simplify this formula in a followgi way, getting a

Y- (n(S)+c(S))
less tight boundt_(S) O O] £ - 0 O(max(n) + max(c))d O(m).

3.4.1 Billing extra work to the successful C&S’s

If two processes are executing operations conctlyreheir operations on the data
structure may interfere, and as a result, one ®fptlocesses may need to perform some
extra work. We will bill such extra work to the sessful C&S’s that caused this work to
be done. For example, suppose process P is exg@utimjor routine M. If P follows a
right pointer into a node that was inserted afteni®ked M, the cost of the right pointer
traversal is billed to the C&S that inserted thatle. If P has to traverse a back_link of a
node, the cost of the traversal is billed to theSC#at marked that node. If P fails a
C&S, the cost of the failure is billed to the C&Bat caused this failure. For every
successful C&S we will then define an operatios &S is part of. Then we will prove
that any successful C&S that is part of operatiota be billed no more than ¢(S) — 1
times, and that the total cost billed to a C&S {&(S)). Finally, we will show that since
each operation performs a constant number of ssitdeS&S’s, the amortized cost of
operation S is O(n + c(S)), where the O(n) term e&sifiom the cost of performing an
operation without an interference from other preess

3.4.2 Introduction to Billing

First let us show that when we calculate the cdsbwr algorithms it is only
essential to calculate the number of C&S attemibis, number of back link pointer
traversals, and the number of next_node/curr_noitegr updates by searches. We will
show that counting these steps gives an accurataer@iof the required time (up to a
constant factor).

Proposition 26: Suppose process P is executing a routine M ofdata structure.
Then the total work done by P during M’s execut®®(1 + b + ¢ + u +'), where b is
the number of back_link pointer traversals perfatrbg P during the execution of M (i.e.
line 10 in TryFlag, line 18 in Insert), c is themioer of C&S’s (both successful and
unsuccessful) performed by P during the executioMou is the number of times P
updates a next_node pointer of a SearchFrom ro(tme 6 in SearchFrom) during the
execution of M, and 'uis the number of times P updates a curr_node goiot a
SearchFrom routine (line 8 in SearchFrom) durirggetkecution of M.

40

Proof:

We will start by proving auxiliary propositions for each of thatines used by the
data structure. We express the performance of the routines heingotation of the
proposition: each routine R has its own valuesgfdi, Uz, and Ug which accordingly
reflect the number of back link traversals, C&S’s, next_node updatessuandhode
updates performed during the execution of the routine (including all the subrolishe ca

Case 1:M is an execution of HelpMarked, TryMark or HelpFlagged.

Let us first show that the cost of executing a HelpMarked, ark\or HelpFlagged
routine M is O(&).

The cost of the HelpMarked routine is O(1), and there is 1 C&S. liresd 2 in
the HelpFlagged routine, and lines 1, 2, 4, and 6 in the TryMark eoabet O(1) to
execute. We assign the cost of executing lines 1 and 2 of ldglp#d to the C&S in the
HelpMarked routine called in line 4 of HelpFlagged — this resulgglding an additional
cost of at most O(1) to each of the C&S’s in HelpMarked. Wegadbkie cost of lines 1,
2, 4, and 6 of TryMark to the C&S in line 3 of TryMark. As a resullthe work done in
the HelpFlagged, TryMark, and HelpMarked routines will be bile€&S’s, and each
C&S will be billed for no more than O(1) steps. Thus the cost giMarked, TryMark
or HelpFlagged routine M is Qgg.

Case 2:M is an execution of SearchFrom.

Let us show that the cost of executing the SearchFrom routine M is Q(* tc+
u'm).

Since execution of HelpMarked costs @ (where gu is the number of C&S
performed by HelpMarked), line 5 does not influence the correctigle claim and we
can ignore it. Line 1 costs O(1). Each iteration of the loop in Br@scosts O(1) + cost
of loop in lines 3-6, and in each iteration there is at least ongauptiaext _node pointer
in line 6 or curr_node pointer in line 8. Each iteration of the loopnesli3-6 (ignoring
line 5) costs O(1), and there is one update of next_node pointer initeestion.
Therefore, the cost of Mis O(1 & Uy + Upm).

Case 3:M is an execution of TryFlag.

Let us show that in this case M costs O(LyHagy + Uy + Up).

The SearchFrom routine called in line 11 costs O(kgHcusg + Usp = O(1) +
O(csg + Usp + Usp. The second addend does not influence the correctness of thesdaim,
we only need to account for the O(1) term in the analysis. Eation of the loop in
lines 9-10 has one back_link pointer traversal and costs O(1), so wgncaa lines 9-10
as well. What is left of each iteration of the loop in lines 1-4gtx O(1) and has one
C&S attempt. So, the claim for TryFlag holds.

Case 4:M is an execution of Delete.

Let us show that in this case M costs O(Iyt+Hxy + Uv + Uw).

By the same argument as in the proof of the claim for TryRAsgonly need to
account for the O(1) term in the cost of SearchFrom in lineyEldg in line 4 costs O(1
+ bre + e + Urg + UtR), HelpFlagged in line 6 costs Q, the rest of the routine costs
0O(1), thus the claim holds.

Case 5:M is an execution of Insert.

Let us show in this case M costs O(1ytbay + Uy + Up).

The cost of lines 2-4 is O(1). We only need to account for the é&xfh)ih the cost
of SearchFrom in lines 1 and 19. Lines 8 and 16 are already acctomiethe analysis.

41

Each iteration of the loop in lines 17-18 costs O(1) and has one baclpdinter
traversal, therefore lines 17-18 are accounted for as well. Thewn & left of each
iteration of the loop in lines 5-23 costs O(1). Note that if HelpFldggealled in line 8,
it will call HelpMarked, which will execute a C&S. Thus, edtdration of the loop Iin
lines 5-23 does one C&S (either in line 8 or in line 11), and has an unaat@ast of
O(1), which we can bill to this C&S. So, the claim holds for the Insert routine

Case 6:M is an execution of Search.

Finally, we show that an execution M of the Search routine codts@g + uy +
U'M).

SearchFrom in line 1 costs O(1 48 Usk + Usp), the rest of the routine costs O(1),
thus the claim holda

When we perform the amortized analysis of our algorithms, Weuse the above
proposition to focus on the lines of the code that are performanioaicand can change
the order of complexity of operations.

Now let us examine the interaction of the processes with one anAtpeocess P
completes a particular operation using the minimal number of gtepsoperations by
other processes run concurrently, so that P does not have to helpmthations to
complete, and none of the other processes interfere with P’s wpdakig more
specifically about our algorithms, P makes the minimal number jof,sfethe searches it
performs never have to call HelpMark routine, and none of the C&S’s it performs fail

For each operation S that is executed, we will define a diffeneecution of that
operation, which will be used to measure the complexity of the actual execution of S

Consider the system configuration C right before process P invokegiopes. Let
us examine all the deletions that are in progress in C.éfaion performed exactly one
critical step, we roll it back by unflagging the node igfiad. If a deletion performed
exactly two critical steps, we complete it by performintpied critical step for it, i.e. we
switch the predecessor’s right pointer to the successor and unégyddecessor. If a
deletion performed zero, or three critical steps, we do not dbiagyfThe configuration

that results from all these changes is den@edNow let P invoke S and execute it from

C without any other processes taking steps. Pgssstee called &olo executiorof
operation S from configuration C, and the costhig £xecution is called theolo costof
S from C.

Note that if all operations executed by the datauctire were performed
instantaneously at their respective linearizatiomn{s, the execution of any operation
would have the same steps as its solo execution.

Proposition 27: If node n is a regular node in configuration Gertim remains a
regular node inC. If n is a logically deleted node in C, then raiphysically deleted

node inC .
Proof:

To createC from C, we complete all the deletions that penied at least two
critical steps. This physically deletes from thst All the logically deleted nodes. It does
not change the status of the regular nodes. Unfigghe flagged nodes does not change
the status of the regular nodes either. Therefdr¢he nodes that were regular in C will

42

remain regular inC, and the nodes, which were logically deleted iii hecome
physically deleted irC .m

Proposition 28: If the number of keys in the list in configurati@is n, then the
solo cost of S from C is O(n + 1)
Proof:

In C there are no flagged or marked nodes in theTltstrefore, P will never have
to help other deletions, while executing S solo. Mde/ show that P will also never fail a
C&S in the solo execution of S. If P is performeng insertion, a C&S in line 11 does not
fail, because the search performed in line 1 rst@adjacent nodes, and since no other
processes are performing operations, the nodesagfagent until the C&S. Also, since
there are no deletions in progress, prev_nodeflagrev_node.mark = 0. If P is
performing a deletion, the first C&S (line 4 in Higg) does not fail for the same reasons
the C&S in Insert does not fail. It is easy to Hest the second C&S (line 3 in TryMark)
also does not fail. The third C&S (line 2 in HelpMed) does not fail because prev_node
was flagged by the first C&S. So, P will also nefal a C&S. Therefore, P will attempt
to perform a maximum of three C&S operations, dhdfahem will be successful. Since
P will never fail a C&S, it will never traverse abwck_link pointers. Also, P will never
perform any updates of the next_node pointer ie 6rof SearchFrom, because there are
no marked nodes in the list. Finally, since theetiehs are linearized at the point of
marking, by Proposition 27, there will be exactlyregular nodes in the list and no
logically deleted nodes, when P starts the solewi@n of S. Therefore, P will perform
no more than n updates of the curr_node pointding 8 of SearchFrom. Then, by
Proposition 26, the cost of the solo execution &@bg C is O(n + 1)m

When many processes are working together, a chpagermed by one of them
may cause C&S'’s of other processes to fail andgases may also need to do some extra
work to help other processes complete their deistip.e. HelpMarked, HelpFlagged
routines). In our amortized analysis we will bHiet cost of such extra work to the C&S
that performed the change that caused this wotketaone. For example, if a process
tries to insert some node after node n, but the @&tBe Insert routine fails because n is
marked, we will bill the cost of this failed C&S dirihe cost of recovering from the
failure to the C&S that performed the marking. Wil design a function that will map
all the “extra” steps taken by the actual executiban operation to the successful C&S’s
executed by the operations running concurrently. Wi use this function in our
amortized analysis, so that if the actual costrofoperation exceeds its solo cost, the
difference between the two is billed to the sudtggS&S’s of the operations running
concurrently. Then we will calculate the amortioedt of each successful C&S, which is
the cost of the C&S itself (1 step) plus the totadt billed to it. Finally the amortized cost
of the operation will be comprised of the solo cokthe routine corresponding to this
operation and the sum of the amortized costs o$tlteessful C&S’s that apart of this
operation We explain this in more detail in the next pasgir.

Our data structure implements three types of opeisit searches, insertions, and
deletions. As far as the billing is concerned, cees are the most straightforward: if P
performs a search operation, its amortized costigal to its solo cost (all the rest is
billed to the successful C&S’s of other operation§)P performs an insertion, the

43

amortized cost of the operation is comprised of the solo cost aigbdion and the cost
that is billed to the C&S that P successfully executes in the Insert routitinethéd/ Delete
routine it is more complicated, because processes can help one avitittdletions. As
we showed in Proposition 17, for each deletion there are three sut¢a&Sfs that are
considered its critical steps. Processes can help each otiedeletions by calling
HelpFlagged and HelpMarked routines, so the process that invokeslé¢herdwill not
necessarily execute all three of these C&S’s. Nevedbethese C&S’s are considered to
be part of the delete operation and their amortized cost is addkd cost of the delete
operation. The amortized cost of the delete operation is comprisbd afritortized cost
of these three successful C&S’s and the solo cost of the deletion itself.

3.4.3 More on Billing

In this section we will introduce two mapping functions that Wwélp us in our
amortized analysis. The first functigh will define most of our billing scheme, the
second mapping functionwill be used to prove that the amortized cost of any operation
S is O(n + ¢c(S)). Before we define these functions, we needote @ few auxiliary
propositions that will be useful in showing that a C&S can fail ghbnother process
running concurrently performed a successful C&S on the same field.

Proposition 29: If SearchFrom calls HelpMarked(n, m) in line 5, then at the time
when SearchFrom executes line 4 for the last time beforgMéeked is called, n.succ =
(m, 0, 1).

Proof:

Let T be the moment when SeachFrom executes line 4 for théinestbefore
calling HelpMarked. At that moment n.right = m. If we prove thathat moment it is
also true that n.mark = 0 and m.mark = 1, then it would follow fronthind invariant
that n.succ = (m, 0, 1) at T. First notice that when SearchFrecutd line 3, m was
marked, so it is still marked at T. Let us show by contradictiabrt cannot be marked at
moment T. Suppose n is marked at time T. We know that n.right = masadnarked at
time T. Therefore, by Proposition 18, n got marked before m, but wheshSeam
executed line 3, it first saw that m is marked and then that motsmarked — a
contradiction. So, n is not marked at moment T, and thus n.succ = (MmO, 1).

Proposition 30: If the C&S in line 2 of the HelpMarked(n, m) routine fails, then m
is already physically deleted at this point.

Proof:

Let us first show that there was a moment of time T befoteQ&& was executed,
when n.succ = (m, 0, 1). HelpMarked can be called from SearchFromei® lor from
HelpFlagged in line 4. If it was called from SearchFrom, thenrbpd3ition 29, when
SearchFrom executed line 4 for the last time, n.succ = (m, @, iL)was called from
HelpFlagged, then by Lemma 9 before HelpFlagged was invoked, n.succ =1(mS$6,
there was a time T before the C&S when n.succ = (m, 0, 1)e $wecC&S fails, n.succ
must have changed and, by Lemma 14, when n’s successor field changechme be
physically deletecn

44

In the next proposition we examine a moment when line 6 in the $&am
routine is executed (i.e. a next_node pointer update is performed)ilMsél\wext node
pointer updates to the C&S’s that perform insertions and the GR& perform physical
deletions and we will use this proposition to prove that no more tha®)p(xt_node
pointer updates can be billed to a successful C&S.

Proposition 31: Suppose SearchFrom executes line 6 at timeel T be the time
when SearchFrom updated its next_node pointer for the last time Béfdet n be the
value of curr_node at'Tm be the value of next_node just beforeahd m be the value
of next_node just after'TThen either m got physically deleted between T dnarTim
got inserted between T and T

Proof:

Let us first show that m is not physically deleted at T. Bekire T curr_node = n
and next_node = m. So, just after T, when next_node was updated fasthemie,
curr_node = n, next_node = m, and n.right = m. Leb@& the time when SearchFrom last
executes line 3 before€ Tto be more precise, it is the moment, when SearchFrom checks
the last condition in line 3 before it proceeds, assuming a showitogvaluation of the
logical expressions). Obviously, T <"T< T. At T" m is marked and either n is
unmarked, or n.right m.

If nis not marked atT, it is not marked at T either, and since n.right=m at T, mis
not physically deleted at T. If n.rigitm at T', then n.right changed between T arid T
Since successor pointers of marked nodes never change, it fthlatvs was unmarked
at T, and since n.right = m at T, m is not physically deleted at T.

So, m was not physically deleted at T. Lets return to titheWe know that m is
marked and either n is unmarked, or n.rigim.

If n.right = m at T, then by Inv 3, n is flagged at'TLet us show that in this case
m will get physically deleted by the time SearchFrom getse 6. By Lemma 14, if n’s
successor field changes, m becomes physically deleted. On the hathér if n's
successor field does not change, then the condition in line 4 wouldubg and
SearchFrom will call HelpMark in line 5, which will physically delete m.

If n.right# m at T', then either m already got physically deleted, or a new gotle
inserted after time T between nodes n and m. If m is still not physicédtedet T, then
it means that there is still at least one such new node betwaerd m, and since'ns

n.right, m will be one of these new nodes. It was inserted into the liseleaetW and T
[|

Now we are ready to define the functi@nwhich maps the set of steps of the entire
execution to itself. We will use this function to define our billing scheme, i.e. if stepe
performed by a process is mappedfbip a C&S C performed by another process, then
the cost of this step is billed to C.

Suppose process P is executing operation S. As we reasoned in thapsedtion,

P may fail some C&S operations, help deletions, and perform other ddireddra work,

which it would not need to do if it was executing S solo. This extnk is caused by the
successful C&S’s of the operations executing concurrently with'&Swant the mapping
B to map each extra step performed by P to a C&S that causetps of operation S

45

will be mapped only to C&S’s performed during the execution of S. Suecare aiming
at the O(n + c(S)) complexity for our data structure opmrat we want to ensure that no
more than c(S) steps are mapped to each of the C&S'’s.

By Proposition 26, our analysis must only account for the C&S’s, ba&kpdimter
traversals, next_node pointer updates in line 6 of the SearchFromercard curr_node
pointer updates in line 8 of the SearchFrom routine. Therefore, e @eonly for these
steps.

Def 6: Let Q be the set of steps in the entire execution E th&@&#s, back_link
pointer traversals, updates to next_node in line 6 of SearchFrom, cesipalaurr_node
in line 8 of SearchFrom. Functighmaps Q to itself. If some operation S performs step s
O Q, B maps this step either to itself, or to a successful C&Sishpart of another
operation as described below.

e C&S’s:
Suppose a C&S C on the successor field of node n was executed.
Our algorithms execute four types of C&S'’s:

1. Insertion C&S (line 11 in Insert)

2. Flagging C&S (line 4 in TryFlag)

3. Marking C&S (line 3 in TryMark)

4. Physical Deletion C&S (line 2 in HelpMarked)

If C is successful, then we map it to itself. If C fails, &nd not of the fourth type,
we map it to the C&S that last modified n.succ. If C of the fotype fails, we map it to
the C&S that physically deleted the node that C was tryindetete. (Note that by
Proposition 30 such a C&S exists).

* Back_link pointer traversals:

A back_link pointer traversal from node n to node m is mapped t€&% that
marked node n.

* Next_node pointer updates in line 6 of the SearchFrom routine:

Suppose just before the update next_node = m, and just after the updat®aex
=m. If mis physically deleted when the update is performed, wethmupdate to the
C&S that performed the physical deletion of m. (Note that elengh this C&S could
be performed by HelpMarked called from this SearchFrom routitiadrb, it is part of
another operation.) Otherwise we map the update to the C&S nbattdd rh
Proposition 31 will ensure that the C&S we map the update to whsmped during the
execution of S.

» Curr_node pointer updates in line 8 of the SearchFrom routine:

Suppose the update sets curr_node pointer to node n. If n was insertée o t
after operation S was invoked, then the update is mapped to the G&Ssdreed n (type
1). Otherwise, the update is mapped to itself.

The functionf3 defines most of the billing scheme. It maps all the extasdken
by operations to the successful C&S’s that caused these stbpsta@en. However, it
does not redistribute the cost of the successful C&S’s themgmtgsen the operations.
In the previous subsection we reasoned that processes help one amatheven if a
C&S C is performed by process P executing operation S, Cheagart of some other
operation S Thus, it would be logical to bill the cost of C t§ &1d not S. The second

46

mapping we use in our analysis — mappjrgtakes care of this issue. It maps the range
of 3 to the set of steps of the solo executions of the operations pedataning E. The
complete billing scheme will be defined by — the composition of and3. Later we
shall prove thay is injective, i.e. no two steps in ranfeére mapped to the same step in
the set of solo executions. We will also show fhataps no more than c(S) steps to each
successful C&S. These two facts together with Proposition 28 will help us prevénkit
the amortized cost of any operation is O(n + c(S)).

The following lemma proves that certain preconditions hold when Searohis
called from the Insert routine in line 19. These preconditions wiil be define mapping
y, and they will also be used later in the analysis.

Lemma 32: Suppose at time T Insert is about to call the SearchFrom routime
19. Let n be the value of prev_node at that moment. Then there exist§ & T during
the execution of Insert such that n is not marked' aafid Insert does not traverse any
back_link pointers and does not call any SearchFrom routines betivaed T.

Proof:

Let T' be the moment when Insert executes line 6 for last time bdfersearch.
Let us examine the moment when Insert executes the nextliee7(. Suppose the
condition in line 7 was true. In this case Jatisfies the conditions for timé 3et by the
lemma, because by the fifth invariant n.mark = 0'gtand Insert does not traverse any
back_link pointers and does not call any SearchFrom routines betWesd T .

Suppose the condition in line 7 is false. Then Insert will exetigdobp in lines
17-18. At the moment when it last executes line 17, prev_node = n and prev_node.mark =
0. This is a valid moment for Tl

Lemma 33 is analogous to Lemma 32, except that it applies tafrynstead of
Insert.

Lemma 33: Suppose at time T TryFlag is about to execute the searcteihli Let
n be the value of prev_node at that moment. Then there existe &'tk T during the
execution of TryFlag such that n is not marked 'ataihd TryFlag does not traverse any
back_link pointers and does not call any SearchFrom routines betiwaed T.

Proof:

Before TryFlag calls SearchFrom in line 11, it has to exebatéoop in lines 9-10.
At the moment when it last executes line 9, prev_node = n and prexnma# = 0. This
is a valid moment for TH

The following proposition will be used to define mappyng

Proposition 34: Suppose operation S performs a curr_node pointer update u in line
8 of a SearchFrom routine it called, which sets a curr_node pamede n. I3 maps u
to itself, then
1. node nis not marked when S is invoked, and
2. there is a curr_node updaté during the solo execution of S, which sets a
curr_node pointer to node n as well.

47

Proof:

We will start by proving the first claim. Let T be the &#iwhen update u occurs in a
SearchFrom routine. Suppose this SearchFrom started from node m.pifowe that
there was a time 'Tduring the execution of S, when m was not marked, then by
Proposition 19, n was not marked dtélther, and thus n was not marked when S is
invoked.

SearchFrom can be called from line 1 in Search, from line lh®rl9 in Insert,
from line 1 of Delete, or from line 11 in TryFlag. If SearchFnas called from line 1 in
Search, from line 1 in Insert, or from line 1 in Delete, thst fftaim holds, because the
head node is always unmarked. If SearchFrom was called frorhdiie Insert or from
line 11 in TryFlag, then Lemma 32 or 33 applies, and thus thecfasth holds in this
case as well.

Now let us prove the second claim. Sificeaps u to itself, n was in the list and, as
we showed, was not marked when S was invoked, i.e. n was a regular node. Therefore, by
Proposition 27, n will be a regular node when the solo execution oftS Sappose the
SearchFrom that set curr_node to n was invoked with the first praknd his is a key
value, which does not change throughout the execution of S, and is&ntieein the solo
execution of S. Therefore, if SearchFrom called by S updatednagle to n in line 8, it
means the condition in line 7 was true and nké&y By invariants 1 and 2, all the regular
and logically deleted nodes of the data structure are arramgeal linked list in a sorted
order. Therefore, since SearchFrom traverses the nodes one Iglloweng the right
pointers, and since n.key k, at some point during the solo execution of S curr_node
pointer will be set to rm

We are now going to define mappipgMappingy is going to operate on the range
of mappingB, applied to the steps of the execution. Recall, that r@hdes only
successful C&S’s and curr_node pointer updates by SearchFrom.

Def 7: Let E be an entire execution. Functiprmaps the range of mappirft)
applied to E, to the set of steps of solo executions of all thatiges in E as described
below.

e C&S’s:

Each successful C&S that is part of operation S is mapped to&tBeoCthe same
type in the solo execution of S.

e Curr_node pointer updates by SearchFrom routines in line 8:

Suppose the update u performed by S sets curr_node pointer to node n. Then u is
mapped to the updaté performed by the solo execution of S that sets curr_node pointer
to n. Since the only curr_node updates in rgdjgafe the updates that are mappedby
to themselves, such aexists by Proposition 34.

In the next four subsections we will show tBadoes not map more than c(S) steps

to any successful C&S performed by operation S. Then we welepthat the amortized
cost of any operation S is O(n + c(S)).

48

3.4.4 Mapping C&S operations.

In this subsection we prove that if a successful C&S is papefation S, no more

than O(c(S)) failed C&S’s can be mapped to itfhyWe start by proving an auxiliary
lemma about the HelpFlagged routine.

Lemma 35: Suppose process P is executing the HelpFlagged(n, m) routine. Then
the following holds
1. When P completes HelpFlagged(n, m), m is physically delétefhct, m is
guaranteed to be physically deleted after the C&S in the Haldd(n, m)
routine called by HelpFlagged is performed.
2. If P tries to mark some nodé during the execution of HelpFlagged(n, m), then
m' gets marked at some time T during the execution, and n is flagged at T.

Proof:

Let us start with the first claim. HelpFlagged calls Helpkéd, which tries to
execute a C&S C to physically delete m. By Lemma 9, at smwim before HelpFlagged
was called, n.succ = (m, 0, 1). If this is still true when €xmscuted, then C succeeds and
m gets physically deleted. Otherwise n.succ was changed, drehbya 14 any change
to n.succ physically deletes m.

Let us now prove the second claim. HelpFlagged can attempt to modds by
calling (possibly, recursively), the TryMark routine in line 3.sFimote that if
HelpFlagged attempts to mark nodé then m will get marked at some time T during
the execution of HelpFlagged, because it is not marked before TryMai&(oalled (line
2 in HelpFlagged), and TryMark(indoes not exit until mgets marked. Second, by the
third invariant, Ms predecessor is flagged at T. If’'snpredecessor is n, then the claim
holds. Otherwise, the claim follows from Lemma 14 and from thetfettHelpFlagged
recursively calls itself only if the node it is trying to mark is flag@ed.

Lemmas 36 and 37 below will help us prove that a failed C&S peeidrny an
execution M of a major routine is mapped®yo a C&S that was performed during M
(Proposition 38), and that one execution of a major routine cannot havehaorene
failed C&S mapped to the same successful C&S (Proposition 39).\Wiénevill use these
facts to prove that if a successful C&S is part of opaneB, no more than O(c(S)) failed
C&S’s can be mapped to it ffy

Lemma 36: Suppose process P is performing an execution M of some major
routine, and it fails a C&S C of the form
C&S(n.succ, (old_right, old_mark, old_flag), (new_right, new_mark, new)flag)
Suppose, C is of type 1, 2, or 3. Then there exist moments of time&Tand T3 during
M, such that at moment T1 n.right = old_right, at moment T2 n.mark = olf{, mnad at
moment T3 n.flag = old_flag. Furthermore, P does not try to perfognC&5’'s on
n.succ between T1 and C, P does not try to perform C&S’s of typeod 32)n n.succ
between T2 or T3 and C, and P does not traverse any back_link pbetigeen T2 and
C.

Proof:

49

Roughly speaking, the reason this lemma holds is that processes ‘thirmdy”
perform the C&S’s. Before P attempts a C&S on n.succ, it makee the old values it
gives to the C&S accurately reflect the values of n.sucddsfiat some time after P last
attempted a C&S. Therefore, the only way P can fail this C&8 another process
concurrent with P did successful C&S on n.succ after P’s keshpt to perform a C&S.
We will prove the lemma separately for each possible type of C.

Case 1:C is of type 1 (insertion).

The C&S is c&s(prev_node.succ, (next_node, 0, 0), (newNode, 0, 0)).

Here, n is the node prev_node was pointing to, when C failed. Let m n@dke
next_node was pointing to when C failed. C is of type one, so it wésrmped by the
Insert routine. Let us examine the flow of execution of that Ingemintil the moment
when it performed C. When Insert last executed line 7, the condition there hadlgebe fa
Therefore, when it executed the previous line (line 6), n.flag =n@,this is a valid
moment for T3. Let us examine the last SearchFrom routinertbeait Icalled before C.
This SearchFrom was called in line 1 or in line 19, and Insendatigerform any C&S’s
on n.succ after that until C. By Proposition 20 there exists a maineng the execution
of that SearchFrom, when n.right = m and SearchFrom does not pargr®&S’s on n
after that moment — this is a valid moment for T1. Now we only havénd a valid
moment for T2.

If the last SearchFrom which Insert called was in line 1In,teace head is always
an unmarked node, there exists a moment during the execution of dhettfSem, when
n.mark = 0 by Proposition 20. Since SearchFrom does not perform @&8® first
three types and does not traverse any back_links, this is a valid moment for T2.

Suppose the last SearchFrom was called in line 19."lbet the value of prev_node
immediately before the execution of line 19. We shall prove tiexetwas a time T
before SearchFrom was called, whenwas not marked, such that Insert does not
perform any C&S’s of types 1-3 on n and does not traverse any bdckdinters
between T and C. It then follows from Proposition 20, that there exists a momenrgretwe
T and the completion of SearchFrom, when n.mark = 0, and that would bikda va
moment for T2. Let The the time when Insert executes line 6 for last time béfhere
search. Let us look at the moment when Insert executes the mexXtiie 7) after T
Suppose the condition in line 7 was true. We will show that inchee T satisfies the
conditions for moment T we outlined above. First, notice that Insest mwetraverse any
back_link pointers betweer &nd C, and by the fifth invariantmark = 0 at T Second,
since the condition in line 7 is true, HelpFlagged in line 8 wilkkecuted. HelpFlagged
may perform several C&S’s of type 3 and 4 &3 successor and the nodes following it
and then a C&S of type 4 ori.By Lemma 35, all the nodes on which HelpFlagged
attempts to perform C&S’s of type 3 get marked whilesrflagged (and not marked),
and therefore none of them is n, because, by Proposition 20, n cannwrgetl before
n'. Thus, HelpFlagged will perform no C&S'’s of types 1-3 on n. The Seanchivhich
is then called in line 19 can only perform C&S'’s of type 4, smés not perform C&S’s
of types 1-3 on n either. Thus) indeed satisfies the necessary conditions for moment T
in the case when the condition in line 7 is true.

Suppose the condition in line 7 is false. Then Insert will exetigdobp in lines
17-18. When it last executes line 17, prev_nodé and prev_node.mark = 0. This is a

50

valid moment for T, because no C&S’s of types 1-3 will be peréal on n and no
back_link pointers will be traversed between this point of time and C.

So, there exists a moment T with the properties outlined above.

Case 2:.C is of type 2 (flagging).

The C&S is c&s(prev_node.succ, (target_node, 0, 0), (target_node, 0, 1)).

C is of type two, so it was performed by the TryFlag routine, and M is an invocation
of a Delete routine. Here, n is the node prev_node was pointing toQvfaled. Let m
be the node target node was pointing to when C failed. Let us exdneinbow of
execution of the TryFlag routine up until the moment when it performed C.

Let us look at the last SearchFrom routine called by M befoferhich can be a
search in line 1 of Delete or in line 11 of TryFlag). That 8&&mom returned nodes n
and m (if a search in line 11 of TryFlag returns del_noterget node, TryFlag exits in
line 13). So, by Proposition 20 there was a moment during the executitmatof
SearchFrom, such that at that moment n.right = m and afterarcl&om does not
perform any C&S’s on n. This is a valid moment for T1. Nowkexamine the moment
T3 when TryFlag checks the condition in line 2 for the last trefore performing C. At
that moment prev_node = n. If n is not flagged dt &&n this is a valid moment for T3.
Suppose it is flagged. T the last time when TryFlag executes line 2 before penfigrm
C, so the condition in line 2 must be false, and thus n.Aghtat T3. At moment T1
n.right = m, so n.right had to change between T1 andim8ediately after that change n
is not flagged and this is a valid moment for T3.

Now we only have to find a valid moment for T2. If the last S&afarom called by
M before C was in line 1 of Delete, then, since the head noderaysaunmarked, there
exists a moment during the execution of that SearchFrom, whermrknam® by
Proposition 20. Since SearchFrom does not perform C&S’s of theHnet types and
does not traverse any back_links, this is a valid moment for T2.

Suppose the last SearchFrom before C was called in line 11 BlagryLet n be
the value of prev_node before the execution of line 11. Before calliagcl8&om,
TryFlag executed the loop in lines 9-10. Let T be the momenn wlexecuted line 9 for
the last time. At that moment was not marked. Then by Proposition 20, there exists a
moment between T and the return of SearchFrom, when n was not mEilseis. a valid
moment for T2.

Case 3:C is of type 3 (marking).

The C&S is c&s(del_node.succ, (next_node, 0, 0), (next_node, 1, 0)).

Here, n is the node del_node was pointing to when C failed. Let m beodlee
next_node was pointing to when C failed. C was performed by théarkyroutine. The
moment when TryMark sets next_node in line 2 for the last timerdeZ, is a valid
moment for T1. Let us examine the moment when TryMark executestlfor the last
time before C. If n is not flagged at that moment, then it isl@ vaoment for T3.
Suppose n is flagged at that moment. Then HelpFlagged will be calieédby the time it
returns, n's successor will be physically deleted (Lemma 35¢refore, a successful
C&S of type four will be performed on n at some point of time difter4 in TryMark is
executed and before HelpFlagged returns in line 5. After that C&Snat flagged, and
this is a valid moment for T3, because P does not perform C&Shedirst three types
on n during the execution of HelpFlagged. Now we only have to findiéh mament for
T2. If TryMark iterates at least once before executing C, tthemoment it executes line

51

6 for the last time before C is a valid moment for T2. Sup@oseperformed during the
first iteration of TryMark. In this case, notice that TryMacan was called from
HelpFlagged, and before that call was made, HelpFlagged chinakedwas not marked
— this is a valid moment for TR

The next lemma is a simpler analogue of Lemma 36 and is codceitte the
C&S'’s of the fourth type.

Lemma 37: Suppose process P is performing an execution M of some major
routine, and it fails a C&S C of type four
C&S(n.succ, (old_right, 0, 1), (new_right, new_mark, new_flag)). There thrists a
time T during M, such that n.succ = (old_right, 0, 1) at T, and P dodsyrtot perform
any C&S’s on n.succ between T and C.

Proof:

C is of type four, so it was performed in the following line of HelpMarked
routine: c&s(prev_node.succ, (del_node, 0, 1), (next_node, 0, 0)).

Let n be the node prev_node was pointing to when C failed. Let m heotlee
del_node was pointing to when C failed. HelpMarked can be calledSearchFrom or
from HelpFlagged.

Suppose HelpMarked was called from SearchFrom. Then by Propositidnt29 a
moment when SearchFrom executed line 4 for the last tifioeebealling HelpMarked,
n.succ = (m, 0, 1), and thus this moment is valid for T.

Suppose HelpMarked was called from HelpFlagged. Notice HelpFlagdied ca
HelpMarked with the same arguments it was called with. Toereby Lemma 9 there
exists a moment "Tduring M, when n.succ = (m, 0, 1), and P performs no C&S’s on n
between Tand the moment it calls HelpFlagged. Since HelpFlagged itsétrpes no
C&S’s on n before C, Tis a valid moment for T

Proposition 38: Suppose process P fails a C&S C on n.succ during the execution M
of some major routine arfg{C) = C. Then Cwas performed during M.

Proof:

Case 1:.Cis of type 1, 2, or 3

In this case Lemma 36 applies. Let T be the earliest of T1,T¥2defined in
Lemma 36. Since C failed, at least one successful C&S had perflemed on n.succ
between T and C. By the definition @f C is the last such C&S, and thus it was
performed between T and C as well. Since both of these two moipelotsg to the
period of execution M, Gvas performed during M.

Case 2:.Cis of type 4

In this case Lemma 37 applies. Since C failed, at least onessfaicC&S had to
be performed on n.succ between T and C. At T n.flag = 1, and the onlis @& can
change flagged successor fields, are the C&S’s of the foyréh Thus, there had to be a
successful C&S of type four performed on n.succ between T and C. Bigfindion of
B, C is the last such C&S, and thus it was performed between T asdwella Since
both of these two moments belong to the period of execution Mag€performed during
M. =

52

Proposition 39: Suppose process P fails a C&S C on n.succ during an execution M
of some major routine arfg{C) = C. Then there are no other C&S’s performed by P that
were mapped to'®y .

Proof:

Suppose there exist two failed C&S’s C1 and C2 performed hyhieh are both

mapped by to the same C&S 'CWe will prove that this is impossible by contradiction.
Let C1 be before C2, and let C2 be of the form
C&S(n.succ, (old_right, old_mark, old_flag), (new_right, new_mark, new_flag)).

Case 1:C1 and C2 are both of types 1-3 (see Figure 18).

In Figures 16-18, circles denote successful C&S’s, crossedscideleote failed

- . .

C (type 1-4) C1 (type 1-3) C2 (type 1-3)

> ~ = >time
T1, T2, T3
occur in this interval

Figure 18: C1 and C2 both of types 1-3.

Let T1, T2, and T3 be the times defined in Lemma 36 for C2. Since bahdCC?2
are of types 1-3, T1, T2, and T3 are between C1 and C2 by Lemma&6.C2 failed,
n.succ had to change between the earliest of these three mamei@2. So there had to
be a successful C&S on n.succ between C1 and C2, and th@g@)emust be between
C1l and C2, bu(C2) = C, which is before C1 — a contradiction.

Case 2:Clis of type 4 and C2 is of type 1, 2, or 3 (see Figure 19).

¢ o .

C' (type 4) C1 (type 4) | C2 (type 1-3)
>
Tl time
Figure 19: C1 is of type 4, C2 is of type 1, 2, or 3.

Let T1 be the time defined in Lemma 36 for C2. Siagel) = C and C1 is of type
4, C is of type 4 as well. Since C2 is of type 1-3, it is mappeithé¢oatest successful
C&S on n.succ before it, and thus there were no successful C&Stsmed on n.succ
between Cand C2. So immediately before C2, n is not marked or flagged, i.e. n.mark =0
= old_mark, n.flag = 0 = old.flag. Also, from Lemma 36 it follows thriment T1 is
between C1 and C2, and therefore n.right = old_right immediately b&@reSo,
immediately before C2, n.succ = (old_right, old_mark, old_flag), and C&t rne
successful — a contradiction.

53

Case 3:C2 is of type 4 (see Figure 20).

¢ o .

C' (type 4) C1 (type 1-4) | C2 (type 4)
>
T time
Figure 20: C2 is or type 4.

Let T be the time defined in Lemma 37 for C2. By Lemma 37, Ttisdsn C1 and
C2. Since C2 fails, there must be a successful C&S on n.succ hetwaead C2. Let us
take the first such C&S'C Immediately before it is performed, n is flagged, because it
was flagged at moment T. Therefore, sin¢estccessfully changes a flagged successor
field, it must be of the fourth type. But then C2 must be mapped tar@l not to C- a
contradictionm

The following proposition will be used to bound the contribution of failed €&S
the amortized cost of a successful C&S.

Proposition 40: If a successful C&S 'As part of an operation S, th@maps no
more than c(S) failed C&S’s to'C

Proof:

Suppose Cwas performed by process Q while it was executing a majoine M.
By Proposition 39 each process P can map at most one faileddd&SWe know that if
a C&S is part of operation S, then it was performed during theuége of S (for
insertions it is obvious, and for deletions it follows from Proposi#&8h Thus, to prove
the proposition, it would be sufficient to prove that if a C&S performed by P is mapped to
C', then P was executing some operation whew&s performed. This follows directly
from Proposition 38a

3.4.5 Mapping back_link pointer traversals

Back_link pointer traversals from node n are mapped to the C&S thiatdna. In
this subsection we will prove that if a marking C&S (typesS3part of an operation S,
then no more than c(S) back_link traversals are mapped tofit Wie start by proving
that back_link chains cannot grow towards the right, i.e. that back_liakseaer set to
marked nodes.

Proposition 41: Back_links cannot be set to marked nodes. l.e. if n2.back_link =
nl, then either nl is not marked, or n1 got marked later than n2.

Proof:

By the third invariant, when n2 got marked, was flagged, and therefore not
marked. So, either nl is not marked, or it was marked later thah n2.

54

Proposition 42: Suppose process P traverses a back_link from node n at time T
during the execution M of a major routine. Then n got marked duringnill P has never
traversed n’s back_link before.

Proof:

Back_link pointers can be traversed in line 18 of the Insert routinendime 10 of
the TryFlag routine.

Suppose the back_link was traversed in line 18 of the Insert routine. [Bi@dsS
was executed, the C&S C that the Insert performed when ieXasuted line 11 failed.
Let N be the value of prev_node when C failed. Since Insert enteredofnénltines 17-
18, i was marked when Insert first executed line 17 after taiin so it is marked at
time T as well. The C&S C is of type 1, so Lemma 36 appligghBt lemma, there was
a time T2 during the execution of Insert, whénmas not marked, and Insert does not
traverse any back_links between T2 and C. This means'thasnmarked between T2
and T, and since node n was reached by following back_links framgot marked after
n', by Proposition 41. On the other hand, n is marked at time T, somagkéd between
T2 and C. First, notice that this means that n was marked durirxéleation of Insert.
Second, this means that Insert never traversed n’s back_link poafitee T, because it
only traversed it once (at time T) between C and T, it did avttse it between T2 and
C by Lemma 36, and it could not traverse it before T2, because n got marked after T2.

The proof for the case when back_link was traversed during the exeaition
TryFlag goes exactly the same way. (The C&S in line 4fisype 2, so Lemma 36
applies)m

The following proposition will be used to bound the contribution of back_link
traversals to the amortized cost of a successful C&S.

Proposition 43: If a successful C&S 'As part of an operation S, th@maps no
more then c(S) back_link pointer traversals to C

Proof:

Suppose Cwas performed by process Q while Q was executing a majonedVi.
From Proposition 42 it follows that any process P can map at amastback link
traversal to G and that P can only map a back_link traversal'td € was executing
some operation when' @as performed. Since' & part of operation S, it was performed
during the execution of S by Proposition 23, and therefore no more thabacfS)link
traversals can be mapped toE

3.4.6 Mapping next_node and curr_node pointers upda tes
In this subsection we prove that if a successful C&S is papefation S, then no

more than c(S) next_node pointer updates and no more than c(S) curr_noe poi
updates are mapped to it. We start by proving this for the next_node pointer updates.

Proposition 44: Suppose process P updates a next_node pointer from node m to
node min line 6 of the SearchFrom routine at timedUring the execution M of a major

routine. If this update is mapped pyo a C&S C, thefd does not map any of M’s earlier
next_node pointer updates to C, and C was performed during M.

55

Proof:

By the definition of3, if m is physically deleted when the update is performed, the
C is the C&S that performed the physical deletion. Otherwisetie C&S that inserted
m'. From Proposition 31 it follows that C was performed between TTgnghere T is
the time when SearchFrom last updated its next_node pointer. It isdbgno see that
both claims of the proposition hoM.

Proposition 45: If a successful C&S 'Gs part of an operation S, th@maps no
more then c¢(S) next_node pointer updates'to C

Proof:

From Proposition 44 it follows that for any process P, at most oRé&afext_node
pointer updates can be mapped to &d that this can happen only if P was executing
some operation when' @as performed. Since’' & part of operation S, it was performed
during the execution of S, and therefore no more than c¢(S) next_node ppuhées can
be mapped to 'Ca

The following proposition proves an important property of the curr_nod#eguoi
updates, which we will use to prove that no more than c(S) curr_noderpgudtges can
be mapped to a single successful C&S.

Proposition 46: Process P cannot set curr_node pointer in line 8 of a SearchFrom
routine to the same node n more than once during a single executmnaMnajor
routine.

Proof:

During the execution of a single SearchFrom routine, the curr_node poiotess
through the list strictly towards the right, because it is aplyated in line 8, and it is set
to a node that was curr_node’s successor at some point. Therefoesth& keys of the
nodes are strictly ordered, the key of curr_node strictly incseas®l thus curr_node
cannot be set to the same node more than once during the executiosiraflea
SearchFrom routine.

If M is an invocation of the Search routine, the proposition holds, becesrch
invokes SearchFrom only once. If M is an invocation of the Insertinyuthen
SearchFrom can be called by M in lines 1 and 19 of the Insatine. If M is an
invocation of the Delete routine, then SearchFrom can be callddl ibylines 1 of the
Delete routine or in line 11 of the TryFlag routine. We wilaenne the case when M is
an invocation of the Insert routine. The proof for the other case is similar.

Suppose two invocations of the SearchFrom routine, SF1 and SF2, called b
Insert routine, entered node n at times T1 and T2 respectivelye vithexr T2 (see Figure
21). Suppose SF1 started from nodeand the first of the two nodes returned by SF1
was n’', and SF2 started from nodg and the first node returned by SF2 wgs As we
reasoned, the key of curr_node strictly increases during exec@ihsand SF2, so
n;.key < n.key< n;".key and nkey < n.key< n)’.key (n and n are different from n
because SF1 and SF2 assigned value n to their curr_node pointers8h Tilerefore,
no.key < n.key< n;'.key. After SF1 returns, Insert assigns prev_nodeg'=amd then
before Insert calls SF2, it somehow changes prev_nodge txacuting a SearchFrom
routine only increases the key of prev_node, so the only way for losdectease the

56

key of prev_node is to traverse a chain of back_links. Therefosena¢ time between
T1 and T2, Insert traversed a chain of the nodgs.m m, following their back _link
pointers, and for some j < k,umkey < n.keys m.key. We will prove that mgot marked
after T1, which will lead us to a contradiction.

Routine M
SF1: SF’| [Traversing back_links: SF2:
n..— ™ > ..{ My .= M—> M1 ... N ...—» n— ._j
time
| I I —>
T1 T2 T2
curr_node =n n,.mark =0 curr_node =n
(SF1) (SF2)

Figure 21: Execution of routine M.

Routine SF1 traversed node n at time T1, and therefore n watethgeo the list
before T1.

Routine SF2 started from node By Lemma 32 there was time T2hen n was
not marked, and Insert does not call any SearchFrom routines andaldesverse any
back_link pointers between Ta@nd the time it calls SF2. Therefore, T1 < ¥2'2. Since
SF2 traversed node n, by Proposition 19, n was not marked or wasthetlist at T2
We know that n was inserted before T1, and therefore'at iB2n the list and unmarked,
i.e. it is a regular node. Hence, n is also a regular node at T1.

Since Insert started to traverse a chain of back_links frgnmaale m was returned
by some invocation SFof the SearchFrom routine as a first parameter. Invocation SF
can be the same as SF1 or a separate invocation called b&®kend SF2. We will
now prove that in both cases nodegot marked after i[

Case 1:SF # SF1.

Then by Lemma 32 there was time Wwhen the node SFstarts from was not
marked, and Insert does not call any SearchFrom routines Imefivesnd the time it
starts SE Therefore, T1 < T Since SF assigned curr_node =;nat some point, it
follows from Proposition 19 that nwas either unmarked or not in the list atSince T1
< T, my got marked after T1.

Case 2:SF = SF1.

We know that n.keg m;.key, so either n = jor SF1 assigns curr_node = n before
it assigns curr_node =imWhen SF1 assigns curr_node = n at T1, n is not marked. Then
it follows from Proposition 19 that at T1;1% either unmarked or not in the list. Thus, in
this case it is also true that ot marked before T1.

So, we proved that pgot marked after T1. It then follows from Proposition 41 that
nodes m, my, ..., m¢ all got marked after T1. Let us examine a moment T3 whegotn
marked. We know that T3 > T1. Remember that at timen®ée n is a regular node, and
Insert does not traverse any back_link pointers betweéraA® the time it calls SF2.

57

Therefore, T2is after the moment Insert traversed a back_link frgnionmy.1, so it is
after time T3, when pgot marked. So, T1 < T3 < TAt T2 n is a regular node, so it is
a regular node at T3 as well. We know thgsrack_link is pointing to nodejm, so by
the third invariant m;.succ = (m 0, 1) immediately before T3. On the other hand
mj+1.key < n.key< my.key, and immediately before T3 nodes r, amd m., are regular
nodes of the list. Also, & m;, because ms marked at T3 and n is not. So, by the second
invariant immediately before T3 node n must be between nogeanchmy., — a
contradiction.

The proof for the case when M is a Delete routine is idengzakpt that Lemma
33 should be used instead of Lemmam2.

Proposition 47: If a successful C&S 'As part of an operation S, th@maps no
more than c(S) curr_node pointer updates'to C

Proof:

From the definition of the mapping functignit follows that process P can map a
curr_node pointer update td Gnly if P was executing some major routine M whén C
was performed. Furthermore, by Proposition 46, M can set curr_node poiliter 6 of
a SearchFrom routine to the same node n at most once durixgdtgien. Since Cis
part of operation S, it was performed during the execution of S,hemefore no more
than c(S) curr_node pointer updates can be mappedm C

3.4.7 Putting everything together

In this final subsection of the chapter we will prove that the apeor cost of each
operation S performed by our data structure is O(n + ¢(S)) ewherthe n is the number
of elements in the dictionary (equal to the number of regular nadée ilist) when S is
invoked, and c(S) is the contention of operation S. We will then givedbeds for the
average cost of an operation in an execution.

Function3 defines the billing scheme, i.e. if steps s a@ndre such tha(s) = s,
then the cost of s is billed t6. $rom the definition op it follows that either s ='sor
is a successful C&S. In the next theorem we prove that amgssial C&S can be billed
for no more than O(c(S)) steps.

Theorem 48: The total number of steps billed Byto a successful C&S that is part
of operation S is O(c(S)).

Proof:

From the definition of, it follows that the steps that can be billed to a successful
C&S are the failed C&S'’s, back_link pointer traversals, updatesxto made in line 6 of
SearchFrom, and updates to curr_node in line 8 of SearchFrom. By Romso40, 43,

45, and 47, there are no more than O(c(S)) such steps billed to each successiul C&S.

The next theorem states the amortized cost of the operations of our data structure

Theorem 49:For any execution E of operations on our data structure, the total cos

of all the steps performed by the processes during E, denoted t(EﬁEs(n(SH c(S))}
SE

58

where the sum is taken over all operations invoked during E, and ri{®) mumber of
elements in the dictionary when operation S is invoked.

Proof:

Let Q be the set of steps in the entire execution E that&®esCback_link pointer
traversals, updates to next_node in line 6 of SearchFrom, or updates taode in line
8 of SearchFrom.

From Proposition 26, it follows that there exists a constant @ such that for any
execution M of a major routine, the actual cost of M, denoted t(M), is less {ftanr 6 +
C + u + U), where b, c, u, and' tare the number of back link traversals, C&S’s,
next_node pointer updates in line 6 of SearchFrom, and curr_node pointessupdate
8 of SearchFrom respectively, performed during M. When we cédcthia cost of an
execution E, we will account only for the steps that belong tQsanhd we will assume
that each such step costgs Cet t denote the cost function calculated this way. We will
prove an upper bound oh &and since t(M) < 1 + b + ¢ + u + § = t(M) for any
execution of a major routine M, that upper bound will apply to t as well.

To prove the bound on the amortized cost of the operations, we will cdnstruc
scheme of billing the cost of steps that are in set Q to thetopes. We will first use
mappingP to bill the cost of individual steps in Q to one another. This wik gis the
amortized cost of each step in Q. Then we will use mapptogoill the amortized costs
of these individual steps to the operations performed during E.

Let s Q be an individual step. For each step @, we define the amortized cost

t'(s) to be the total cost bf the steps mapped to s Py Sincep maps Q to itself, this
will not change the total cost of the steps in Q,Eat’(s) = Zf’(s). By the definition of
$1Q $1Q

B, B maps each step in Q either to itself or to a successful CB&cadst'(s) of each step
s Q is G. Therefore, if 41 rangep), t'(s) = 0, if s[I rangep), and s is not a successful
C&S, thent' (s)= C,, and if s is a successful C&S that is part of operation S,ithen
follows from Theorem 48 that theé (s)O(c(S)).

We will now use mapping to bill the amortized costs of all the steps in rafipe(
(the amortized cost of the rest of the steps is 0) to stepseosolo executions of
operations performed during E. For each operation S executed during defwe the
amortized cost’ (S)o be the sum of the amortized costs of steps in Q that are dntappe
the steps of the solo execution of Sypy.e. t'(S)= > t(s) = D t(S). Since the

i

sdrange(B) Q
y(s)Osolo(S) y(s)Usolo(S)

functiony maps every step in ran@@(to a step of the solo execution of some operation
inE, > t(s) =Y St(S)=>t(s).

§1Q SE <0 SJE
y(s)Osolo(S)

Before proving our bound on the amortized cost of the operation$iometbaty is
injective, i.e. no two steps from ranfig@re mapped to the same step in a solo execution.
Functiony maps successful C&S’s that are part of operation S to thésG&3$he same
type in the solo execution of S. Since no more than one C&S bftgae can be part of
S, no two C&S’s can be mapped to the same C&S step bgt us show thay cannot
map two curr_node updates to the same curr_node update in the salboexddis is

59

true, because if two updates and y are mapped to the same upddtethen it means
that both w and u were performed during the execution of S and they both set curr_node
to the same node, but by Proposition 46 this is not possiblg.iSmjective.

Sincey is injective, it follows from Proposition 28 that for any operatignie
number of steps in rangy(which have their cost assigned ypjo S is O(n(S)), where
n(S) is the number of elements in the dictionary when S is invokesh far any
operation S, there are no more than three successful C&S’srthgiag of it, and
therefore among the steps that have their cost assigned to $yredhan three can be
successful C&S'’s steps (whose amortized dbss O(c(S))), and the rest are curr_node

pointer updates in line 8 of SearchFrom (whose amortizecbst is G). So, t' (S)<
310(c(S)) + G LO(N(S))= O(N(S) + ¢(S)). Since K(E) KE) = > .t'(S) = > t(S), and
SE SIE

t'(S) = O(n(S) + c(S)), it follows that t(E) O[Z (n(S)+ c(S))} |

Since the cost of the entire execution t(E)O{Z (n(S)+ c(S))] the amortized

SIE
cost of an operation S in E, denoted ,(8)O(n + c(S)). The average cost of an operation

2>, (n(S)+c(9))

during E, denotedt.(S), is O|<E where m is the total number of
m

operations performed during E. As we showed atbéginning of the section, one can
also use the following two bounds, that are legisttif convenient:t.(S) = O(max(n) +
max(c)) andt, (S) = O(m).

It is also apparent from our proofs that there rawelarge constant factors in the
complexity of our algorithms.

60

4 Skip Lists

4.1 High-level description

A skip list is a dictionary data structure that stores the nodeseveral levels. The
nodes that are on the same level are connected to one another hioel¢seof a linked
list. Therefore, techniques similar to those described in the prevcioagter can be
applied to maintain the structure of the nodes. There are, however, seveisduesithat
arise for a lock-free skip list implementation. We will dése these issues and outline
the possible approaches to deal with them in the next few subseditoers we will
present lock-free algorithms for the skip list and prove their correctness.

4.1.1 The skip list data structure

A skip list [Pug90] is a dictionary data structure, supporting sesrchgertions,
and deletions. Skip lists are a probabilistic alternative to balanced andjsslirgy trees.
Although the worst-case cost of operations on the skip list is Highexpected cost of
any operation is O(log(n)), where n is the number of elementhda skip-list. The
expectation is taken over the random numbers generated insidechtnalg; there is no
assumption about the distribution of the inputs, except that it isn@ssthat the input
does not depend on the generated random numbers. In other words, the yadversar
constructing a worst-case sequence of operation has no knowledgentiience over
the random numbers generated inside the algorithms. Skip listsbaesnced
probabilistically, and therefore their algorithms are simpled, according to [Pug90],
often faster (within a constant factor) than the algorithmsal@rnative data structures,
such as balanced trees (e.g. AVL trees [AVL62]) or self-admidtees (e.g. splay trees
[ST85]). Skip lists are also space-efficient. In this sectuenwill present skip lists as
they were originally introduced in [Pug90].

When we are searching through a sorted linked list, we may nes@ane every
node of the list before we find the one we are looking for. Now suppese; second
node has a pointer to the node following its successor. If we perfegareh in such a
list, we can use these additional pointers to skip ahead, and susltawe will need to
visit no more tharjn/2] + 1 nodes, where n is the number of keys in the list. Extending

this idea, if we give every-2h node a pointerimodes ahead (Figure 22), we will need to
examine at mostlog, n| nodes during the search. Notice some similarities between this

data structure and a perfectly balanced BST: the node thahd&dsggest number of
pointers is like a root (node D on Figure 22), the nodes that have one pesstare its
children, and so on. The only difference is that if the number of keymifist is not a
power of 2, part of the right “subtree” of the “root” collapses mti@il node. This data
structure could be used for searching, but to perform insertions anidmgl®ne would
need to rebalance the whole list, which would take too much time.

61

h > p
Z > » D >?
dl —T—»A > » C| —» | —>E| —» |

Figure 22: Linked list with additional pointers.

Skip lists exploit the idea of using the extra pointers to “skig’nodes during the
search, but the number of forward pointers of a node is chosen randomly, instead of being
dependent on the node’s position. The probability distribution of the numibenetrd
pointers is designed to approximate the above data structure, i.e. with probabitibgp
has one forward pointer, with a probabiliiphas two, with a probability*it has three,
and so on. Parameter p is usually chosen in the interval (0, ¥2]. Puglstsuggiag p =
Y, unless the variance of the running times is a primary conicewhich case p = %
should be chosen.

Figure 23 shows an example of a skip list. Obviously, some possibigumatibns
of the skip list yield poor execution times (e.g. when all nodes baleone forward
pointer), but Pugh shows that they are very rare: the probabilaysefirch taking more
than k times the expected execution time decreases exponentially with k.

h ™
e g » a
a > B > ——p |
d > A > —+ »C| +—»{D| |—» N

Figure 23: Example of a skip list.

4.1.2 Lock-free skip list design

The skip list design we use is slightly different from the onegirtally introduced
by Pugh. The differences are mostly cosmetic — they do not chiamgeain properties of
the data structure, but they make it easier to reuse our lirdktedlgjorithms from the
previous chapter, changing them as little as possible. Weaw# the discussion on how
the data structure can be tweaked to improve the constant factbesperformance until
the end of this chapter.

Figure 24 shows the same skip list as Figure 23, but with owgrdesiployed. We
replace each node that has k forward pointers with k separate nodes, organinecen a
All the nodes of a tower store the same key and are connecteairitgrs from top to
bottom. The bottom node of a tower is calledat node and it acts as a representative
of the whole tower. Only the root nodes store the elements asdsoeisttethe keys. The
first tower of the skip list is called theead towerand the last one is called tta& tower.
The nodes of these towers have the keys equab e 4o respectively, and they are
not associated with any elements. A tower that has H nodes isaiid to havéeightH.
Horizontally, the nodes of the skip list are arrangelkwels the root nodes are davel
one, the nodes immediately above them are on level two, and so on. Nadessame
level form a singly linked list, sorted accordingly to theiykeFor each node Q the
linked list formed by the nodes of the same level as Q is caledthlistof Q.

62

Head Tail
Tower Tower
H4 » T4
Tower
B
H3 B3 T3
AN Tower
E
\
\ 4
H2 B2 E2 > T2
Tower Tower Tower
‘ A Q/ C D)
\ 4 \ 4
H1 »ALl Bl »C1l D1 El »T1
I\)\ I\)\ I\
\ \ 4 U \ 4 U \ 4 U \ 4 U \ 4 U
NULL

Figure 24: Lock-free skip list design.

Let us now examine the fields of the nodes in detail. We will first describeettis fi
of the usual nodes, and then the fields of the nodes of the head antittveeta (which
are different).

A
Figure

node Q that is not a node of the head or tail tower has the fofdields (see

25):

key, back_link, succ — these are same as in the lock-free lirgstedliQ is a root
node, it also has an element field.

down — a pointer to the node below, i.e. the node that belongs to the same towe
and is one level lower than Q. If Q is a root node, this pointer is null.

tower_root — a pointer to the root of the tower.

The upper-left box of a node in the diagrams contains a name of théengd&)”
on Figure 25), which is only used for convenience and does not represetiarfield.
The keys of the nodes are not shown on the diagrams.

63

_ succ
back_link succ = (flag, mark, right)
A back_link pointer. Q successor field.

oll/

7

down tower_root
A pointer to the node below Q| A pointer to the root
or to null, if Q is a root node. of the tower.

Figure 25: Fields of a node.

Nodes of the head tower do not have element pointers, back_links or tower_root
pointers, but they hawgp pointers, pointing to the nodes above. The top node of the head
tower has its up pointer pointing to itself. Nodes of the tail tas@atain only keys and
nothing else.

The head and tail towers are created when the data structoigalized and they
are not modified after that. These towers have equal heighthwhauld be greater than
the heights of all the other towers of the list. For simplicity,use the same approach as
Pugh and limit the height of the towers in the skip list. We intreduconstantaxLevel
and ensure that the height of all the normal towers is stleg/than maxLevel, and the
height of the head and the tail towers is maxLevel. The vaflueaxLevel should be
chosen so that it does not hamper the performance of the data strictuexample, if N
is the upper bound on the number of elements in the skip list, andgataraeter of the
probability distribution of the heights of the towers (introducechenrevious section),
then, as Pugh shows, choosing maxLevel = L(NJog,,,(N) will not hamper the

performance of the data structure. It is also possible to aetewel dynamically, but
that makes the algorithms more complicated.

4.1.3 Implementation issues

As we pointed out in a previous subsection, each level of a skialidbe viewed
as a linked list. Therefore, we will use the algorithms from ghevious chapter to
implement insertions and deletions of individual nodes. The main chaldmge doing
so is ensuring that all the operations can still work efficiently.

In our implementation, insertions build the towers from bottom to the.egjrst
the root node at level one is inserted, then if the tower must hayte béitwo or greater,
the node at level two is inserted, and so on. The insertions willnbarized at the
moment when the root node is inserted, since after that momeihie skkarches are able
to find the key of that node.

64

Let us consider how to implement deletions. Suppose tower A is Beletpd and
there are several nodes in this tower. Since the root node isergptese of the tower,
and all the searches end at the bottom level, it makes sense te tdma@soment when
the root node of A gets marked as the linearization point for tletéialel At that moment
the root node becomes a logically deleted node in its level-listalé¢esay that at that
moment tower A and all its nodes becosuperfluous Generally speaking, the fact that
node Q is superfluous does not impose any restrictions on Q’s istasisevel-list. I.e.,
applying the definitions introduced in the previous chapter, there campseflaous
regular nodes, superfluous logically deleted nodes, and superfluousablyydeleted
nodes.

It is important to physically delete the nodes after they become superflucassbe
if superfluous nodes are not physically deleted, the searchlesesd to traverse these
nodes, which will result in decreased performance.

Consider two possible options for implementing deletions. One is tb thi&a
deletions from the bottom, i.e. first delete the root node, and ther deébther nodes
of the tower. The other option is to start the deletions fromagteQbviously, if the first
option is used, the data structure may contain superfluous regulararatiesperfluous
logically deleted nodes. Let us illustrate that this can alppdraif the second option is
chosen. Consider the following scenario: process P1 starts anansefta tower of
height H, inserts the nodes at levels 1...H — 1, then startdingsére last node at level
H, but gets delayed before performing the C&S. Before P1 takgsfurther steps,
another process P2 starts deleting this tower, and deletes note®la 1...H — 1.
Finally, P1 resumes its operation and inserts the node at levelhid. nbde is a
superfluous regular node. So, for either implementation of deletionss tan be
superfluous regular nodes and superfluous logically deleted nodes datthstructure.
As we will now show, this leads to a problem with the implementation of searches.

Suppose the searches are implemented in a straightforwardi@ausing the
SearchFrom routine from the previous chapter to move right throughe&list and
going down one level when curr_node.key k < next_node.key. Consider the
configuration shown in Figure 26 (a), where B3 is a superfluagidaenode. Suppose
some process P performs an insertion of a new tower C of heightvéepeB and D
from that configuration (see Figure 26 (b)). Let k be the key of tthaer. Suppose
another process starts a search for k. At some point the sedlrsktwiext node = B3,
and since B3 is a regular node, the search will just move furtBekey< k < D3.key, so
the search will set curr_node = B3, next_node = B3.right = D3, andjthdown, setting
curr_node = B2. B2’s right pointer is set to D2, which has a keyegrédan k, so the
search will go down once again, setting curr_node = B1. The right poinBr is set to
D1, and Bl.key < k < D1.key, therefore the search will return NO_SWER, which
would be incorrect, because the insertion of tower C with key k @etpbefore the
search began.

Consider two possible solutions to this problem. The first is to nifakesearch
follow the back_link pointers if it sees that curr_node is markedsehend is to check if
the node is superfluous before entering it, and if it is, deletauta@orithms make use
of the second idea, because helping the deletions is “useful” foetiexay progress of
the system, and backtracking is not.

65

One last issue with the lock-free skip list implementatiomagntaining a pointer to
the node from which the searches start. Ideally, the searchesl dbegih from the
highest node of the head tower that has a non-null right pointer. Mamngtaanshared
pointer to this node as a part of a lock-free skip list datatsteuts possible, but it makes
the algorithms more complicated. Instead, in our implementationn \ilee search is
initialized, it starts the from the bottom node of the head tovess gip until it finds a
node with a null right pointer, and then begins a normal search fraihmode. Making
searches do this additional work adds only a constant factorit@dise A pointer to the
bottom node of the head tower is calledltead pointer

66

H3 » B3 » D3

‘ l

H2l — A2 || B2 | D2

| | | |

HI —l a1 || B1 | D1
|

(a) Initial configuration: tower B partially deleted.

H4
y

\

H3 » B3 » D3

‘ l

H2| — a2 || B2 | D2

H1 1— [A1 B1 || ci|| 4 D1

| |

(b) Tower C has been inserted.

Figure 26: A problem with searches.

4.2 Algorithms

In this section we present our algorithms. The data structure angonoizere
explained above, so we will not explain it again here.

67

4.2.1 Pseudo code

Figures 27-38 show various routines used by our data structure e$R&jur31, and
33 show the pseudocode for the three major routines: Search_SL, Inseand®L
Delete_SL,; the rest of the figures show auxiliary routines.vBhniables of the Node type
can be either node pointers, or one of the special return values (DAPE_KEY,
NO_SUCH_KEY, NO_SUCH_NODE) used to indicate that the operation failed.

Search_SL (Key k): RNode

1 (curr_node, next_node)SearchToLevel SL(k, 1)
2 if (curr_node.key == k)

3 return curr_node

4 else

5 return NO_SUCH_KEY

Figure 27: The Search_SL routine searches for a root node with the supplied key.

SearchTolLevel_SL (Key k, Level v): (Node, Node)

1 (curr_node, curr_v) EindStart_SL(v)

2 while (curr_v>v) /I search down to levet 1

3 (curr_node, next_nodeBearchRight(k, curr_node)

4 curr_node = curr_node.down

5 curr_v--

6 (curr_node, next_node)SearchRight(k, curr_node) // search on level v
7 return (curr_node, next_node)

Figure 28: The SearchToLevel_SL routine starts from the head tower and sefmctves
consecutive nodes on level v, such that the first has a key less thanldo égaad the second
has a key strictly areater thar

FindStart_SL(v): (Node, Level)

1 curr_node = head

2 curwv=1

3 while ((curr_node.up.right.key =0} || (curr_v < v))
4 curr_node = curr_node.up
5 curr_v++
6 return (curr_node, curr_

Figure 29: The FindStart routine searches the head tower for the lowest node thatgthiets t
tail tower.

68

SearchRight (Key k, Node *curr_node): (Node, Node)

O©CO~NOOTA WN P

10

next_node = curr_node.right
while (next_node.key <= k)
while (next_node.tower_root.mark == 1) // if the tower is superfluous, delete nexd&o
(curr_node, status, resulfjryFlagNode(curr_node, next_node)
if (status == IN) néxt_node’s predecessor curr_node was flagged
HelpFlagged(curr_node, next_node)
next_node = curr_node.right
if (next_node.key <= k)
curr_node = next_node
next_node = curr_node.right

11 return (curr_node, next_node)

Figure 30: The SearchRight routine starts from node curr_node and searches therlavel fo
consecutive nodes such that the first has a key less than or equal to k,sewbtitehas a key
strictly areater than

TryFlagNode (Node *prev_node, Node *target_node):Node, status, result)

OO wWNPE

7
8
9
10
11
12
13
14

loop

if (prev_node.succ == (target_node,)P, 1/ predecessor is already flagged
return (prev_node, IN, false)

result = c& s(prev_node.succ, target_node, 0, 0), (target_node, 0, 1))

if (result == (target_node, 0, 0)) /I c&s was successful
return (prev_node, IN, true)

[* Failure */

if (result == (target_node, 0, 1)) // failure due to flagging
return (prev_node, IN, false)

while (prev_node.mark == 1) I/ gibyy failure due to marking

prev_node = prev_node.back_link
(prev_node, del_nodefsearchRight(target_node.key~prev_node)

if (del_node != target_node) rget_node was deleted from the list
return (prev_node, DELETED, false)
end loop

Figure 31: The TryFlagNode routine attempts to flag the predecessor of taogkt.

69

Insert_SL (Key k, Elem e): RNode

1 (prev_node, next_node)SearchTolLevel SL(k, 1)

2 if (prev_node.key == k)

3 return DUPLICATE_KEY

4 newRNode = new rnode(key = k, elem = e, dewnll, tower_root = self) // create root node

5 newNode = newRNode /I pointer to the nodeectly being insertied into the tower
6 tH=1

7 while ((FlipCoin() == head) && (tH <= maxLele 1)) // determine the desired height of the towe
8 tH++

9 vcurv=1 /I The level at which newNodéd be inserted

10 loop /I Each iteration increases the haifithe new tower by 1
11 (prev_node, result)lasertNode(newNode, prev_node, next_node)

12 if ((result == DUPLICATE_KEY) && (curr_¥= 1))

13 free newNode

14 return DUPLICATE_KEY

15 if (newRNode.mark == 1) /I if the tavieecame superfluous

16 if ((result == newNode) && (newNotle newRNode)) /I'if newNode was inserted, and
17 DeleteNode(prev_node, newNode) /l'it is not a root node, delete it
18 return newRNode

19 curr_v ++

20 if (curr_ v=tH + 1) /I stop buildinge tower

21 return newRNode

22 lastNode = newNode

23 newNode = new node(key = k, down = lasi®ydower_root = newRNode)

24 (prev_node, next_nodepearchTolLevel SL(k, curr_v)

25 end loop

Figure 32: The Insert_SL routine attempts to insert a new tower into the skip lis

InsertNode(Node *newNode, Node *prev_node, Node *re node): (Node, Node)

1 if (prev_node.key == newNode.key)

2 return (prev_node, DUPLICATE_KEY)

3 loop

4 prev_succ = prev_node.succ

5 if (prev_succ.flag == 1) /I if prev_dwis flagged
6 HelpFlagged(prev_node, prev_suglat)i

7 else

8 newNode.succ = (next_node, 0, 0)

9 result = c& s(prev_node.succ, (next_node, 0, 0), (newNode, 0, 0))

10 if (result == (newNode, 0, 0)) SWCCESS

11 return (prev_node, newNode)

12 else Il FAILURE

13 if (result == (*, 0, 1)) // failure due to flagging

14 HelpFlagged(prev_node, result.right)

15 while (prev_node.mark == 1) // possibly a failure due to marking
16 prev_node = prev_node.bhek

17 (prev_node, next_nodepearchRight(hewNode.key, prev_node)
18 if (prev_node.key == newNode.key)

19 return (prev_node, DUPLICATE_KEY)

20 end loop

Figure 33: The InsertNode routine attempts to insert node newNode into thedasN
prev_node and next_node specify the position where InsertNode will attempt to indeodeew

70

Delete_SL(Key k): RNode
(prev_node, del_node)SearchTolLevel_SL(k&-1)
if (del_node.key != k) I/ k is not fodiin the list
return NO_SUCH_KEY
result =DeleteNode(prev_node, del_node)
if (result == NO_SUCH_NODE)
return NO_SUCH_KEY
SearchTolLevel _SL(k, 2) /I Deletes the nodes at the higher levels ofdiagr
return del_node

Figure 34: The Delete_SL routine attempts to delete a tower with the supplied key

O~NO O WN P

DeleteNode(Node *prev_node, Node *del_node): Node
(prev_node, status, resultYsyFlagNode(prev_node, del_node)
if (status == IN)

HelpFlagged(prev_node, del_node)
if (result == false)

return NO_SUCH_NODE
return del_node

OO WNPE

Figure 35: The DeleteNode routine attempts to delete node del_node.

HelpMarked(Node *prev_node,
Node *del_node)
1 next_node = del_node.right
2 c&9S(prev node.suce, (del node, 0, 1), (next _node, 0, 0))

Figure 36: The HelpMarked routine attempts to physically delete the marked nodedel n

HelpFlagged(Node *prev_node, Node *del_node)
1 del_node.back_link = prev_node

2 if (del_node.mark == 0)

3 TryMark(del_node)

4 HelpMarked(prev_node, del_node)

Figure 37: The HelpFlagged routine attempts to mark and physically delete¢bessor of the
flagged node prev_node.

TryMark(Node del_node)

1 repeat

2 next_node = del_node.right

3 result = c& s(del_node.succ, (next_node, 0, 0), (next_node, 1, 0))
4 if (result == (*, 0, 1)) /I failurdue to flagging
5 HelpFlagged(del_node, result.right)
6 until (del_node.mark == 1)

Figure 38: The TryMark routine attempts to mark the node del_node.

The Search_SL routine (Figure 27) calls the SearchTolLevel_Sineaut its first
line to find a root node with key k, and then uses the first of the datonodes returned
to determine if there is such a root node (and hence, a tower) in the list.

The SearchToLevel _SL routine (Figure 28) is used to performeiduetses in the
skip list. This routine takes a key and a level as its argumirgtarts by calling the

71

FindStart routine to locate the lowest node of the head tower, sudhahaode’s right
pointer is pointing to a tail tower (i.e. no other tower in tkip fst, except head and tail,
has nodes that high), and it is of level v or higher. SearchToLdveis&s that node as
the starting point of its search. Then SearchTolLevel SL exeabgtésop in lines 2-6. In
each iteration of the loop, it invokes SearchRight, which moves hgbagh the level-
list, until it finds a node with a key greater than k. SearchRigflorns pointers to two
consecutive nodes curr_node and next_node, that satisfy the following@om=disome
point of time during the execution of SearchRight: curr_node.rightxt nede and
curr_node.keyx k < next_node.key. Then SearchToLevel SL moves into a node below
curr_node (line 4), and enters the next iteration of the loop. It thetdoop when it
reaches level v, and returns its current values of curr_node and next_node in line 7.

The FindStart_SL routine (Figure 29) accepts one parameter —vielietearches
the head tower, starting from the bottom and going up, until it firdsla that is of level
v or higher and that has its right pointer pointing to a node of a head tower.

The SearchRight routine (Figure 30) is somewhat similar t&&aechFrom routine
(see Subsection 3.2.2), which we implemented for our linked lists.rithesathe level-
list looking for two consecutive nodes curr_node and next_node such that curr_yode.ke
< k < next_node.key. The only difference from the SearchFrom routinghais
SearchRight deletes the superfluous nodes along its way (I@gsvBereas SearchFrom
deleted logically deleted nodes. To delete a superfluous node nextSeatehRight
first calls TryFlagNode in line 4 to flag next_node’s predsgceand then, if next_node is
still in the list (line 5), it calls HelpFlagged to physically deleteii=(6).

The TryFlagNode routine (Figure 31) is very similar to TrgFlag routine (see
Subsection 3.2.2) implemented for the linked list, but, unlike TryFlagilagNode
always returns a non-null pointer to a node it was trying ® dls its first parameter.
SearchRight uses this node to continue searching from it after it is done wigtiandel

The Insert_SL routine (Figure 32) attempts to insert a new toteethe skip list. It
accepts two arguments — the key and the element of the new toaélr returns the root
node of the new tower if the insertion is successful. It starts by cabiagisToLevel SL
in line 1 to determine if a tower with key k already exidtsiok, it creates the new root
node (line 4), randomly determines the height of the tower it igggoimsert (lines 6-8),
and enters the loop in lines 10-25. Each complete iteration of that Hoogases the
height of the new tower by one. Insert_SL exits from that lodgeeif it finishes the
construction of the new tower (lines 20-21), or if the construction ofnatoeer gets
interrupted in some way. If the construction gets interrupted before Inseveslinserts
the root node, Insert_SL exits in line 14, reporting an unsuccesseition. If the
construction gets interrupted after the root node is alreadyedsénsert_SL exits in line
18. In the first case the construction gets interrupted by thdiorsef a root node with
key k, and in the second case — by the marking of a root node awhbe Ihsert SL is
building.

The InsertNode routine (Figure 33) is quite similar to the Insmutine (see
Subsection 3.2.2), which we implemented for linked lists. Unlike the Imeeatine,
InsertNode has 3 parameters: a node newNode it is tryinged,ined a couple of nodes
prev_node and next _node that were consecutive at some point of time, such tha
prev_node.keyx newNode.key < next_node.key. l.e. prev_node and next_node provide
InsertNode with (possibly outdated) information on where to insert ne@NAIlso,

72

InsertNode returns two Node type variables when it completedirghevariable is the
last value of its prev_node pointer (in the case of a successtirtiams this is a
predecessor of newNode at the moment when the insertion wasvdjoithe second
variable is either newNode in the case of a successful mseoti DUPLICATE_KEY in
case of an unsuccessful one.

The Delete_SL routine (Figure 34) attempts to delete a toweransupplied key k
from the skip list, and returns the root node of the deleted towersm af a successful
deletion, or NO_SUCH_KEY in case of a failure. It starts bygoming a search (line 1)
to find a root node with key k. If such a node exists, it attempdeltte it by invoking
the DeleteNode routine in line 4, and, if successful, it deletesesitef the nodes of that
tower by performing a search for key k. Since the searchete deiperfluous nodes on
their way, this search deletes all the nodes of del_node’s tower.

The DeleteNode routine (Figure 35) is similar to the Delettine (see Subsection
3.2.2), which we implemented for linked lists. It is supplied with therpaters that
specify the node it has to delete (del_node) and the node that waedecessor
(prev_node) at some point of time. DeleteNode starts by tryonflag del node’s
predecessor by calling the TryFlagNode routine. If TryFladg@Nreports that del_node is
still in the list, DeleteNode physically deletes it byliogl HelpFlagged in line 3. Then, if
the result returned by TryFlagNode was true (success)iuitnge del_node in line 6,
otherwise it returns NO_SUCH_NODE in line 5.

The HelpMarked, HelpFlagged and TryMark routines are exactlsdnge as for
linked lists.

4.3 Correctness

In this section we will give a proof of correctness of our algorithms implengent
the skip list data structure.

4.3.1 Invariants for the levels of the skip list

In this subsection we will show that our skip list maintains the prbpazontal
structure, i.e. that each level of the skip list is a linked Aistdescribed in the previous
section, our data structure uses algorithms very similar tolgbeittms of the previous
chapter to modify individual levels of the skip list. Therefore the invariants and the proof
for the horizontal structure will be very similar to those of the previous chapter.

The definitions of regular, logically deleted, and physicalllet@el nodes for the
skip list are the same as for the linked list (see Def. 2H¢. definition of preinserted
nodes is slightly different, and is stated below (compare with Dé&fom the previous
chapter).

Def 8: A node of the skip list is said to bepeeinsertednode, if it was created, but
has not yet been inserted into the list. More precisely, node n is preinérie referred
to by a newNode or a newRNode pointer in the Insert routine and the C&S in line 9 of the
InsertNode routine called with the first parameter equal tasmbayet been successfully
executed.

73

The next definition formally defines the notion of levels in the sist. Recall that
when the skip list is initialized, the head and tail towers ofttelgaxLevel are created,
and the structure of these towers does not change throughout the execution.

Def 9: Let us number the nodes of the head tower 1...maxLevel from bottom to top.
We say that a node of the head towelongs tdevel v if it is numbered v. For other
nodes of the skip list, we say that a nbeéongs to leve¥, if it is a regular node at some
point during the execution (i.e. it cannot be a preinserted node), and tinshkiecame
a regular node, its predecessor belonged to levieéwel v of the skip list is the set of
nodes that belong to level v.

Note that any node of the list that is not a preinserted nodeawagular node at
some point of time during the execution, because when the node isdnseéotthe list, it
is not marked. Therefore, all non-preinserted nodes of the skip list bel@ogne level.
Also note that Def 9 implies that the level of a node never chaiigeprove that the
levels of the skip list have the proper structure, we prove seweaiants. We prove
that invariants 1 and 3-5 (see the previous chapter) hold for all the nbtee skip list.
We also prove that invariant 2 holds for each level of the skip list:

Inv 2': Invariant 2 holds for the set of nodes at level v (for easlv £ maxLevel),
with the node of the head tower playing the role of the head nodéhendde of the tail
tower playing the role of the tail node.

Note that if Inv 2 holds, then all the regular and logically deleted nodes of \eve
(for each 1< v < maxLevel) form a linked list. We also prove invariants 6 and 7 ngive
below. Inv 6 actually follows from Inv 2, but by proving Inv 6 sepayatek will be able
to reuse some of the proofs from the previous chapter.

Inv 6: For any node n, if n belongs to level v and n is not a node ofithevar,
then node m = n.right also belongs to level v.

Inv 7: A non-null back_link pointer is always pointing to a node with a smalle
key, i.e. if n.back_linkt null, then n.back_link.key < n.key.

It is easy to see that Inv 7 holds for the lock-free linked iigollows from Inv 1,
Inv 4, and Proposition 15). Here it is convenient to prove it as aaiepstatement,
because the searches work differently than in the linked list.

We will now prove the invariants 1,,23-7 always hold. The proof will be very
similar to the proof of the invariants in the previous chapter. Westaitt by proving the
5" invariant, as it is the easiest one. Then we will prove invarigngs 3, 6, and 7 by
induction on the number of modifications performed on our data structurtheby
algorithms. Finally, we will prove Inv 4. Along the way we will proseveral useful
propositions and lemmas.

Theorem 50:Invariant 5 holds for all the nodes of the skip list.
Proof:

74

The invariant obviously holds when the skip list is empty. When a new sode i
created, its successor pointer is set to be unflagged and unmanike8 ifi InsertNode).
The successor pointers of the nodes that are part of therlisintabe modified by one
of the four C&S operations: line 9 in InsertNode, line 4 in TryFlagNdde 2 in
HelpMarked, and line 3 in TryMark. None of them makes the suocdssd both
marked and flagged, and therefore invariant 5 always Hmlds.

Proposition 51: Once a node is marked, its successor field never changes.
Proof:
It is easy to see that none of the C&S’s can change a marked successormointer.

In the next three propositions we prove that SearchRight and SehsueloSL
return consecutive nodes with the correct keys. SearchRight anthdkdele call each
other recursively, so we start by proving some weak postconditions for them together

Proposition 52: If Inv 1 and Inv 7 hold up to time T, then the following
postconditions hold for all SearchRight and TryFlagNode routines that finish before T:
* If SearchRight(k, n) returns (n1, n2), and n.key, then nl.kex k.
* If TryFlagNode(n1, n2) returns (n, status, result), and nl.key < n2.key, then n.key
< n2.key.

Proof:

We prove the proposition by induction on the number of completed invocations of
the SearchRight and TryFlagNode routines. The base case Zafteicompletions) is
trivial. Let us prove the induction step. Suppose at some point of tieneroposition
claim holds for all completed invocations of SearchRight and Trikeldg. Let us take
the invocation | that completes next and prove that the claim holds for it as well.

Case 1:1is an invocation of SearchRight. Let (k, n) be its argument$(al, n2)
be the node pointers it returns. Assume nxkdy Node pointer nl is the last value of
curr_node before the routine returns. If we show that curr_nods.keat any time, then
we prove the proposition.

When the SearchRight routine is invoked, curr_node = n, and s.keyhe value
of curr_node can be modified in line 4 or in line 9. If it is modifietine 4, then it is set
to the value returned by the TryFlagNode routine. Note that binthetion hypothesis
the proposition holds for that invocation of TryFlagNode. Let add n2 be the
arguments of that TryFlagNode. Since line 4 was executed, the lodgi@onn line 2
was true, and therefore &y = next_node.kex k. Also, note that the value of
next_node could be set only in line 1, 7, or 10, and therefore by Inv.keynk n2.key.
Thus, by the induction hypothesis, immediately after curr_node isfiemdn line 4
curr_node.key < rikey < k. If curr_node is modified in line 9, then curr_nade,
because line 9 can only be executed if the condition in line 8 isSoyecurr_node.key
k at any time during the execution of SearchRight.

Case 2:1 is an invocation of TryFlagNode. Let (n1, n2) be its arguments(rand
result) be its return values. Assume nl.key < n2.key. TryFlagNogimseat equal to the
last value of its prev_node pointer. If we show that prev_node.key < n&t ladlytimes,
then we prove the proposition.

75

When the TryFlagNode routine is invoked, prev_node = nl, and nl.key < n2.key.
The value of prev_node can be modified in line 10 or in line 11. Ifritddified in line
10, then by Inv 7, the key of prev_node decreases. If prev_node is modifiee 11,
then it is returned by SearchRight. By the induction hypothesigrtp®sition applies to
this invocation of SearchRight. Before the execution of SearchRigin, node.key <
n2.key, and therefore prev_node.key < n2.kegs Fhus, by the induction hypothesis,
after line 11 is executed, prev_node.keyn2.key —e < n2.key. So, prev_node.key <
n2.key at any time during the execution of TryFlagN@le.

Proposition 53 (Weak postconditions for SearchRight)lf Inv 1 and 7 hold up to
time T, then for all executions of SearchRight(k, n) that finistoie T, the following is
true: if n.key< k, and (n1, n2) is the pair of nodes SearchRight returns, then Elkey
n2.key, and there exists a point of time during the execution, sutlattlihat time
nl.right = n2.

Proof:

Since Inv 1 and 7 hold until SearchRight returns, Proposition 52 appligssto
invocation of SearchRight, and nl.keyk. Since the loop in lines 2-10 exits only when
the condition in line 2 is false, we can conclude that n2.key > k. L&eTthe moment of
time when variable next_node is last assigned a value. That ¢arithe 1, 7, or 10. In
any case, next_node is assigned a value of curr_node.right. AlEb,calrr _node = n1l,
because the value of curr_node can only be changed in line 4 or 9, argddhanged,
next_node is changed as well. So at time T1, n2 = next_node = nMright.

Proposition 54 (Weak postconditions for SearchToLevel SL)If Inv 1 and 7
hold up to time T, then for all executions of SearchTolLevel SL(kat)ftnish before T,
the following is true: if 1< v < maxLevel, and (nl, n2) is the pair of nodes
SearchTolLevel_SL returns, then nl.kek < n2.key, and there exists a point of time
during the execution, such that at that time nl.right = n2.

Proof:

First notice that at any time during the execution of SearcevelLSL after
curr_node is initialized, curr_node.keyk. This is true because right after curr_node is
initialized (line 1), it is one of the nodes of the head tower, anod its key is o.
Subsequently, curr_node can only be modified by executing SearchRilyme i3 or 6,
which, by Proposition 52, will ensure that curr_node.key remains less than or equal to k.

Nodes nl and n2 are equal to the nodes returned by SearchRight in line 6 of
SearchTolLevel_SL. We showed that the node that SearchRightfsiarteas a key less
than or equal to k, and since Inv 1 and 7 hold until that SearchRight cosnpietelaim
of the proposition follows from Proposition 9.

We are going to prove that invariants 1, 2, and 6 always hold by proving that
they are preserved by all the C&S’s performed by our algorithifes start by proving
this for the C&S in the Insert routine.

Proposition 55: The C&S in line 9 of the InsertNode routine preserves invariants 1,

2', 3, 6, if Inv 7 holds until the execution of this C&S.
Proof:

76

The C&S isresult = c&s(prev_node.succ, (next_node, 0, 0), (hewNode, 0, 0)).

A successful execution of this C&S swings the right pointer ef prode from
next_node to newNode.

Let us show that before this C&S is executed, there are no mddes linked to
newNode. InsertNode can only be called from Insert_SL, so newNodereaied in line
4 or in line 23 of Insert_SL. Notice that in each iteration of tdoplin lines 10-25 of
Insert_SL, newNode is re-initialized, so InsertNode cannot bedcalith the same
newNode parameter twice. Also, only InsertNode can insert newiNddethe data
structure, and then it is poised to exit in line 11 without anéurattempts to perform a
C&S. Therefore, before the C&S is executed, newNode is a preidserde, and since
prev_node is a regular node, the successful execution of this C&S mekédtode
regular as well.

The proof that the C&S preserves Inv 1 and 3 goes is exactlyR®position 4,
except that when proving that Inv 1 is preserved, instead of using Riamp&s we use
Proposition 53 if nodes prev_node and next_node were returned by SearchRiiggt
17 of InsertNode, or Proposition 54 if they were returned by Sear@veblSL in line 1
or 24 of Insert_SL. Note that we can use Propositions 53 and 54 becaassuwve that
Inv 1 and 7 hold before the C&S.

Let us prove that Inv 6 is also preserved. Suppose prev_node beldegsl!to.
Then by Def 9 newNode also belongs to level v, and since Inv 6 hateldbke C&S,
next_node also belongs to level v. So, prev_node, newNode, and next_nodengjltbel
the same level, and since after the C&S prev_node.right = newNode and newNode.right =
next_node, Inv 6 holds after the C&S.

Since prev_node, newNode, and next_node all belong to the same level, the proof

that Inv 2 holds is the same as the proof that the Inv 2 holds in Propositibn 4.

As in the previous chapter, here we prove several auxiliary prapesitbncerning
the HelpMarked routine, and then we show that the C&S’s in HelpMasget
TryFlagNode preserve Inv 1,3, and 6.

Proposition 56: If the HelpMarked routine is invoked with parameters prev_node
and del_node, then del_node was marked at some point before this invocation.

Proof:

The HelpMarked routine can be called only from line 4 of the Ha{igfdd routine.
Before HelpFlagged calls HelpMarked, it ensures that del node ikedhaif the
condition in line 2 in HelpFlagged is true, then TryMark(del_node)liedzaand it exits
only after del_node gets markal.

Lemma 57 (Physical deletion): Suppose HelpMarked(prev_node, del _node)
successfully executes a C&S in line 2. Then if Ihlh@d before this C&S, del_node is
physically deleted immediately after the C&S.

Proof:

The proof is the same as the proof of Lemma 6, except that Rrops$1 and 56
should be used instead of Propositions 2 aml 5.

77

Proposition 58: The C&S in line 2 of the HelpMarked routine preserves invariants
1,2, 3, and 6.

Proof:

The C&S isc&s(prev_node.succ, (del_node, 0, 1), (next_node, 0, 0)).

The proof that this C&S performs a physical deletion of del _nodepesgkrves
invariants 1 and 3 is the same as in Proposition 7, except that Rmopb8itand Lemma
57 should be used instead of Proposition 5 and Lemma 6.

By Proposition 56, del_node got marked before HelpMarked was called. dMarke
successor fields do not change, so since del _node.right = next_node imeéhdn df
HelpMarked is executed, del_node.right = next_node immediately béfer€&S as
well. Therefore, since Inv 6 held before the C&S, del _node and prev_nedm dhe
same level. Since the C&S was successful, prev_node.right = del_node thef C&S,
and again, since Inv 6 held before the C&S, prev_node and del _node are omehe sa
level. Therefore all three nodes prev_node, del_node, and next_node are améhe s
level. Since after the C&S prev_node.right = next_node, Inv 6 holds.

Since prev_node, del_node, and next_node all belong to the same level, the proof

that Inv 2 holds is the same as the proof that the Inv 2 holds in Proposiibn 7.

Proposition 59: The C&S in line 4 of the TryFlagNode routine preserves invariants
1, 2, 3, and 6.

Proof:

The C&S isc&s(prev_node.succ, (target_node, 0, 0), (target node, 0, 1)).

A successful execution of this C&S flags the successor diefgtev_node, which

cannot violate invariants 1,23, or 61

As in the previous chapter, we now prove two lemmas, which will help us show that
the C&S in the TryMark routine preserves Inv 1,3 and 6.

Lemma 60 (HelpFlagged is invoked only if a flagged node is detected): Suppose
process P invokes the HelpFlagged routine with parameters prev_noaed=del _node
= m. Then there exists a time T before the invocation when n.succ = (m, 0, 1).

Proof:

HelpFlagged can be called in line 3 of the DeleteNode routine, is @ine 14 of
the InsertNode routine, in line 5 of the TryMark routine, and in6iraé the SearchRight
routine.

Suppose HelpFlagged was called from SearchRight. Then when TryFlagidsde
called in line 4 for the last time, it must have returned statil, so that TryFlagNode
invocation returned from line 3, 6, or 8. If it returned from line 3, thenmoment when
it executed the previous line (line 2) is a valid moment for T&.réturned from line 6 or
8, then the moment just after it last tried to perform a C&#@4 is a valid moment for
T. Similarly, if HelpFlagged was called from DeleteNode, tliea last time when
TryFlagNode, which was called in line 1 of DeleteNode, execued? or line 4, is a
valid time for T.

The proofs for the cases when HelpFlagged is called by InsgetNr TryMark are
the same as in Lemma 9: if HelpFlagged was called fromrtMsée, then the moment
when line 4 in InsertNode was executed for the last timevadid moment for T, and if

78

HelpFlagged was called from TryMark, then the moment when TryMeekuted line 3
for the last time is a valid moment fori.

Lemma 61 (Predecessor is still flagged when a node gets marked): Sughmose
C&S in line 3 of the TryMark routine successfully marks del_nod.\Lbe the first
parameter of the HelpFlagged routine that called this TryMarkmeuifihen starting
from some time before HelpFlagged was invoked, and until the C&SyiNlark is
performed, v.succ = (del_node, 0, 1).

Proof:

The proof is the same as the proof of Lemma 10, except that Prope&l and 56
should be used instead of Propositions 2 and 5, and Lemma 60 should be useadfinstead
Lemma 91

Proposition 62: The C&S in line 3 of the TryMark routine preserves Inv 1,32
and 6.

Proof:

The C&S isresult = c&s(del_node.succ, (next_node, 0, 0), (next_node, 1, 0)).

A successful execution of this C&S marks the successor fiaddlohode. No right
pointers change, so Inv 1 and 6 hold. The proof for Inan@ 3 is the same as the proof
for Inv 2 and 3 in Proposition 1.

Theorem 63:Invariants 1, 2 3, 6, and 7 always hold.

Proof:

Initially the list contains no keys and all the invariants obviouslyd.n@ur
algorithms modify the data structure only by performing C&S af@mns or by setting
back_links in line 1 of HelpFlagged routine. We shall prove that invariarits 3, 6, and
7 always hold by the induction on the number of such modifications. e dase (0O
modifications) is trivial.

Since the keys of the nodes never change, and the back_links of the meaxigd
nodes are always null, the C&S operations cannot violate Inv 7. #dso,Propositions
55, 58, 59, and 62, it follows that the C&S’s cannot violate Inv',13,2and 6 either.
Thus, to prove the theorem, it is sufficient to show that settingabk link in line 1 of
HelpFlagged preserves Inv 1, 3, 6, and 7. Obviously, only Inv 7 can be affected by
such a modification. Suppose HelpFlagged called with paramewysnmde = n and
del_node = m executes line 1. It sets m.back_link = n, and by Lemna $§0me point
before HelpFlagged was invoked, n.succ = (m, 0, 1), and since Inv 1 holdshentil t
modification, n.key < m.keyl

The only invariant we still have to prove is Inv 4. Before we proyvevét prove
several auxiliary claims, as in the previous chapter.

Proposition 64: Once a node is physically deleted, it remains physically etklet
forever.

Proof:

Same as the proof of Proposition 13, except that Proposition 56 should be used
instead of Proposition &

79

Lemma 65: For any node m, after some flagged node n is linked to it, rmesir
have a regular predecessor other than n. When n’s successahfelges, m becomes
physically deleted.

Proof:

Same as the proof of Lemma 14, except that Lemma 57 and Proposisbouid
be used instead of Lemma 6 and Propositiom13.

Proposition 66: Once back_link is set, it never changes.

Proof:

Same as the proof of Proposition 15, except that Lemmas 60 and 65 shosétibe
instead of Lemmas 9 and M.

Theorem 67:Inv 4 always holds.

Proof:

Same as the proof of Theorem 16, except that Propositions 56 and 66 should be
used instead of Propositions 5 and 15, and Lemmas 57 and 61 should be usgaiinstea
Lemmas 6 and 1@

Proposition 68: For any node m of the skip list, if its back_link pointer is not null,
then it is pointing to a node on the same level as m.

Proof:

Back_link pointers can be set only in line 1 of the HelpFlagged routeten =
prev_node, m = del_node when line 1 of HelpFlagged is executed. By Lemrte@0,
was some time when n was m'’s predecessor, and thus by Inv 6, n and m were on the same
level. Since by Proposition 66 back_links never change, m’s back_linkagspointing
to a node on the same level asm.

4.3.2 Critical steps of a node deletion

The definition of the three critical steps of a node deletion was gn the previous
chapter (Def 5). We will prove that in the lock-free skip lisége critical steps are
performed in the same order as in the lock-free linked list.

Proposition 69 (Critical steps of a deletion)The three C&S steps described in
Definition 5 can be successfully performed only once for each partiocode del _node
and only in the order they are listed.

Proof:

The proof goes exactly the same way as the proof of Propositi@xdépt that the
C&S that flags the node’s predecessor is performed by gfdagNode routine in line 4,
not by the TryFlag routine. Also, Propositions 51, 56, and 64 should be usexutlingte
Propositions 2, 5, 13, and Lemmas 57, 61, and 65 should be used instead of Lemmas 6
10, 14m

80

4.3.3 Vertical structure of the skip list

The invariants in the previous subsection were concerned with theortatiz
structure of the skip list. We proved that nodes of the skip lisbrg@nized horizontally
into linked lists. In this subsection we will prove the invariant$ Wid show that the
vertical structure of the list is also proper. We will show tin&t nodes are organized
vertically into towers so that the nodes of any tower are coethéy down pointers into
a linked list from top to bottom and all have the same key.

Def 10: A root nodeis a node that has an element field.

Def 11: Node nbelongs to the towenf a root node rn if n is a regular, logically
deleted, or physically deleted node, and one can get from n to follbwing down
pointers, i.e. there exists a set of nodesm, ..., m such that m1 = n, grF rn, and for
1<i<k-1, mdown = m.,. Thetowerof a root node rn is the set of nodes that belong
to the tower of rn.

Def 12: Theheightof a tower is the number of nodes in the tower.

Def 13: A tower is calledsuperfluousif its root node is marked. A node is
superfluousf it belongs to a superfluous tower.

Note that there can be superfluous regular nodes, superfluous logietdhed
nodes and superfluous physically deleted nodes. Also, since the nodesgeéver
unmarked, once a node becomes superfluous, it remains superfluous forever.

The nodes of the skip list are created by the Insert_SL routirewMWnow show
that each invocation of that routine constructs a separate tower.

Proposition 70: Suppose rn is a root node. Let ISL be the invocation of the
Insert_SL routine that created rn. Then the following is always true:

» Each node that ISL created either belongs to rn’s tower or is preinserted.
* All the nodes of rn’s tower were created by ISL.

Proof:

Down pointers of nodes are set when the nodes are created (lieel 28 of the
Insert_SL routine) and never change after that. At the tilmenwhe nodes are created,
their down pointers are always set to point either to null (formodes), or to the nodes
that were created by the same invocation of the Insert_SL roulimerefore, by
induction on the number of nodes inserted by a particular Insert_Stheatlodes that
were created by the same invocation of Insert_SL belong toowér or are preinserted.
Since the nodes can be created only by the Insert_SL routine, and a node cannot belong to
more than one tower, the second claim of the proposition follows from thaafirst.

Proposition 71: All the nodes of one tower have the same key and their tower_root
pointers are set to the root node of that tower. l.e. if node n belorigs tower of root
node rn, then n.key = rn.key, n.tower_root = rn.

Proof:

By Proposition 70, all the nodes of rn’s tower are created bygaime invocation of
the Insert_SL routine. Thus, when they are created (in line 4 fonool, in line 23 for
the rest of the nodes), their key is same as rn’s key andalaair_root pointer is set to
rn. Neither keys nor tower_root pointers ever change, so the proposition alwaysholds.

81

To prove that every tower of the skip list has the proper structwegrove the
following two invariants. These invariants do not apply to preiadarbdes, nodes of the
head tower, or nodes of the tail tower.

Inv 8: Node n is a root node if and only if it belongs to level 1. Forraryroot
node n, if n belongs to level j of the skip list, then node n.down belongs to level j — 1.
Inv 9: Each node of the skip list belongs to some tower, and nodes of each tower
form a linked list. l.e. for any node n of the skip list the following holds:
1. Node n belongs to some tower.
2. n.down = null if and only if n is a root node.
3. If n.down# null, then the node n.down belongs to the same tower as n.
4. If n.down# null, then there is no other regular, logically deleted, or phisica
deleted node m in the skip list such that n.down = m.down.

To prove Inv 8 we need to show that the insertions build the towers pyrdmeri
the bottom to the top, inserting exactly one node on each level untittingylete or get
interrupted. We start by proving several auxiliary propositions & ghbsection. Then
we prove some postconditions for the SearchRight and SearchTolLewaufiies in
Subsection 4.3.4. We use these postconditions to prove the required propetiies of
InsertNode and Insert_SL routines in Subsection 4.3.5, and finally we prev@ in
Subsection 4.3.6. As we then show, Inv 9 follows easily from Inv 8.

The following lemma shows that the routines that are meagdmte on the single
level of the skip list indeed do so.

Lemma 72: Let R be an invocation of SearchRight, InsertNode, DeleteNode,
TryFlagNode, HelpMarked, HelpFlagged, or TryMark. If the node pangiven to
routine R as parameters point to nodes on some level v, then atidae that R accesses
during its execution belong to level v. Note that this implies tirmhbdes R returns also
belong to level v.

Proof:

The only way routines SearchRight, InsertNode, DeleteNode, TryBtigN
HelpMarked, HelpFlagged, and TryMark access the nodes of the skgbisfollowing
either right pointers or back_link pointers of the nodes they alreagypgwnters to. By
Inv 6, following a right pointer leads to a node of the same levelPi®yposition 68,
following back_link also leads to a node of the same level. Therefbtiee modes that R
accesses during its execution belong to levl v.

The following proposition shows that the SearchTolevel SL routine netur
pointers to nodes on the correct level.

Proposition 73: If Inv 8 holds up to time T then the following is true. Let Sd&
an invocation of the SearchToLevel_SL(k, v) routine that finishesdédéioe T. If 1< v
< maxLevel, then the nodes that STL returns belong to level v.

Proof:

82

Let (n, v1) be the values of curr_node and curr_v immediately &fierexecutes
the FindStart_SL routine in line 1. Since the levels of the skipafis defined by the
nodes of the head tower, it is easy to see that node n belongs toulkevel Also, curr_v
> v (see the loop condition in line 3 of FindStart_SL). By Inv 8, evene line 4 of
SearchTolLevel SL is executed, the level of the node that curr poodes to decreases
by one. By Lemma 72 the level of curr_node does not change in line 3;tstirea the
loop in lines 2-5 iterates, curr_v is decreased by one and the lewalrroinode is
decreased by one. Therefore, when the loop exits, curr_node beldagsltourr_v = v,
and thus the nodes that SearchTolLevel SL returns also belong to mvel v.

The following two technical lemmas are concerned with the dethilse execution
of the InsertNode and Insert_SL routines.

Lemma 74: If an InsertNode called with parameter newNode = n fails tertins
node n into the skip list, then it returns DUPLICATE_KEY.

Proof:

InsertNode can return in line 11 only if it executes the C&Snm 9 successfully.
Successful execution of this C&S inserts n into the level-Ist, thus, into the skip list.
Thus, if InsertNode fails to insert node n into the list, it canetdrn in line 11.
Therefore, it will return in line 2 or 19, so it will return DUPLICATE_KBN .

Lemma 75: If Insert_SL fails to insert the root node newRNode into theifiskits
in line 14 during the first iteration of the loop in lines 10-25.

Proof:

Insert_SL attempts to insert the node newRNode into the lisalbggInsertNode
in line 11 during the first iteration of the loop in lines 10-25. If INdede routine fails to
perform the insertion, then by Lemma 74, it returns DUPLICATE_KS&i¥ce during the
first iteration curr_v =1, Insert_SL will exit in line 1M.

The following lemma shows that a tower always has a root node.

Lemma 76: If there are any nodes in the tower of a root node rn, then rn is a regular
node, a logically deleted node, or a physically deleted node (i.e. not a preimsetts.

Proof:

Suppose rn’s tower is not empty. Let us examine the invocation IStheof
Insert_SL routine that created rn. By Lemma 75, if it failed to insert rnitécei line 14
without creating any more nodes. But that means that theneoamedes in rn’s tower,
because, by Proposition 70, only invocation ISL can create such noddise amdly node
that it did create is rn, which is either preinserted or nortemtist any given point of
time — a contradictiors

The following lemma shows that no critical steps of a non-root ndd&atecan be

made until that node becomes superfluous. For non-root nodes, becoming superfluous can
be considered the first deletion step, before flagging of the predecessor.

83

Lemma 77:1f Inv 8 holds up to time T, then for any node n that is not a root node,
if the first critical step of n’s deletion was performedsaine time T1 before T, then n
became superfluous before T1.

Proof:

In order for the first critical step of the deletion of node rbéoperformed, n’s
predecessor must be flagged by the C&S in line 4 of the Tgielde routine. Therefore
the TryFlagNode routine must be called with the second argument target_node = n.

TryFlagNode can be called by SearchRight in line 4 or bytBkde in line 1. If it
was called by SearchRight, then the proposition holds, because next_nodedotvie
marked (line 3), and therefore, since tower_root points to the '‘®owa@ot node by
Proposition 71, next_node is superfluous.

Suppose it was called by DeleteNode in line 1. DeleteNode, in tamnbe& called
from line 17 of Insert_SL, or from line 4 of Delete_SL. Suppose iteadled from line
17 of Insert_SL. Let n be the value of newNode and rn be the valwewdtNode just
before DeleteNode was called. Node rn is a root node of the volweh this invocation
of Insert_SL builds. Since the last InsertNode returned resu(tirenl6), n was inserted
into the list (i.e. it is not a preinserted node), and thus, by Ptaposi0, n belongs to
rn’s tower. Node rn is marked (line 15), so n is a superfluous node.

Finally, suppose DeleteNode was called from line 4 of Delete_i&te $ve assume
that Inv 8 holds, the nodes prev_node and del node that were returned by
SearchTolLevel_SL in line 1 belong to level 1. Therefore, by Inv 8del =node is a root
node, and we assumed that it is #Dt.

Proposition 78: If Inv 8 holds up to time T, then for any node n, if n is not
superfluous at T, then n is not marked.

Proof:

If n is a root node, then the proposition follows directly from thendein of a
superfluous node. If n is not a root node, then the proposition follows from Lemma 77.

4.3.4 The SearchRight and SearchToHeight_SL routine s

In this subsection we prove several properties and postconditions dor th
SearchRight and SearchTolLevel SL routines. We start by provirg simple
propositions about marked nodes.

Proposition 79:If n1 and n2 are both marked nodes, and nl.right = n2, then nl1 was
marked before n2.

Proof:

(Analogue of Proposition 18.) Since marked pointers never change, nkrght
when nl got marked. By Inv 3, at that time n2 was not marked, so n1lavksdbefore
n2.m

Proposition 80: Back_links cannot be set to marked nodes. l.e. if n2.back_link =
nl, then either nl is not marked, or n1 got marked later than n2.

Proof:

(Analogue of Proposition 41). By Inv 3, when n2 got markedyad flagged, and
therefore not marked

84

In the previous chapter, when we explored the behaviour of the searcloesed
by the lock-free list in Proposition 19, we proved that if a seartdr®a node n, which is
unmarked at some time T, then all the nodes the search subsequeseitges are also
unmarked at T. That important property helped us to prove the cosgaheur linked
list algorithms. We will prove a similar property for the skib, but the searches here are
more complicated: the SearchRight routine may update its localpuoaieer curr_node
by executing the TryFlagNode routine in line 4. TryFlagNodeimeutn turn, may call
another SearchRight in line 11 to update its pointer prev_node. Ther@fooemplete
sequence of the nodes traversed during a search must include radddeetraversed by
the SearchRight and TryFlagNode routines invoked during the exeaititve search.
The following definitions formally define suchode sequencefor the SearchRight,
TryFlagNode, and SearchTolLevel_SL routines.

Def 14: Suppose R is an execution of the SearchRight or the TryFlagidatiee
by process P. Let us record the values of curr_node (focl8ight) and prev_node (for
TryFlagNode) pointers of all the SearchRight and TryFlagNodenesitcalled by P
during R. The resulting sequence of nodes is calledda-sequence of, Benoted N(R)
={ny, ..., n}. For 1<i<s, let T be the time when a curr_node or prev_node pointer gets
set to n Note that times {Tare increasing with i. Sequence{T.., T¢ is called atime
trace of Rand is denoted T(R).

Def 15: Thenode-sequence of a SearchToLevel_SL rousirtbe concatenation of
the node sequences of the SearchRight routines it calls, concdtendke order the
SearchRight routines are invoked. Tin@e trace of a SearchTolLevel $hutine is a
similar concatenation of the time traces of the SearchRight routinelsit cal

In the following two lemmas we prove a couple of weak claims abheutodes that
are adjacent in the node sequence of a search.

Lemma 81: Suppose R is an execution of the SearchRight, TryFlagNode, or

SearchTolLevel SL routine by process P. Let the node-sequencbeoNIR) = {n, mny,

} and the time trace of R be T(R) = {T..., T¢s. Then for 1< i < s, one of the

following transitions from py to n took place at timeT

SearchRight assigned a new valu®rcurr_node in line 4.

SearchRight assigned a new valu®rcurr_node in line 9.

A new SearchRight routine was invoked with curr_nodge = n

TryFlagNode assigned a new valy&rmprev_node in line 10.

TryFlagNode assigned a new valy#&rprev_node in line 11.

A new TryFlagNode routine was invoked with prev_node = n

Furthermore the following is true for for i > 1:

e If a transition of type 1, 5, or 6 took place, thersrm.;.

e If a transition of type 3 took place, and R is an execution ofcBBaght or
TryFlagNode, then in= n.;. If R is an execution of SearchToLevel SL, then
either n=n.4, or n = n.;.down.

e If atype 2 transition took place, thepkey > n;.key.

« If atype 4 transition took place, thepkey < n;.key.

ouhwNE

85

Proof:

A value can be assigned to a curr_node pointer in SearchRight dmnp w
SearchRight executes line 7 or 10, or when it is invoked. Similarlyalue can be
assigned to a prev_node pointer in TryFlagNode only when TryFlagdlcetites line
10 or 11, or when it is invoked.

If a transition of type 1 took place, then atclirr_node was assigned a valye=n
new_curr_node, which was returned by TryFlagNode in line 4. Immédibtfore
TryFlagNode returned, its prev_node pointer was pointing to the nadeturned. Thus
n = n.a. Similarly, if a transition of type 5 took place at The value assigned to
prev_node was the same value curr_node had before SearchRight returnsal nand
ni.1 in this case as well.

If a transition of type 6 took place at Then, since i > 1, TryFlagNode was called
from SearchRight. SearchRight can call TryFlagNode only from Ti, and it initializes
prev_node to the value of its curr_node pointer,;som;.

Suppose a transition of type 3 took place. If R is an execution élagiMode or
SearchRight, then SearchRight can be called only from line 11 &layode, and it
initializes curr_node to the value of its prev_node pointer; san. If R is an execution
of SearchTolLevel SL, SearchRight can also be called from line 8ner6 of
SearchTolLevel_SL, in which case ns the node returned by the previous SearchRight
called by SearchToLevel SL, and=n.;.down.

If a transition of type 2 took place, then atSearchRight assigned a value=n
next_node to curr_node in line 9. Let T be the last time befovéh&n next_node was
assigned a value. At that time SearchFrom was executiad Jior 7, or 10. In any case,
T > T4, because every time SearchRight updates its curr_node pointaitidizing it
after the invocation or explicitly in line 4, or 9), it then updatesnext_node pointer
before it makes the next update to curr_node. Since T, >clirr_node =in at T, and
therefore next_node s.pright at T. Thus, by Inv 1, next_node.key 3.key at T, and
since at Tn; = next_node, and next_node does not change between T;,amdkely >
ni.1.key.

If a transition of type 4 took place, then atTryFlagNode assigned a valug=n
prev_node.back_link to prev_node in line 11. Immediately before this linexeasited,
prev_node =inn. Thus by Inv 7, nkey < n;.key.m

Making a transition of type two is the only way a search can nrowe & node with
a smaller key to a node with a bigger key. In the following lemmarove a useful fact
about the transitions of this type.

Lemma 82: Suppose R is an execution of the SearchRight or the TryFlagNode
routine by process P. Let the node sequence N(R) hayn..., n} and the time trace
T(R) be {Ty, ..., Tg. If for some i, such that 2 i < s, the transition from;a to n was of
type two (i.e. SearchRight assigned valuéorcurr_node in line 9 at;)I then there is a
time T, such that i < T < T; when node nhas been inserted into the list, is not
superfluous, and;q.right = n.

Proof:

Since transition from i to n is of type 2, SearchRight assigned a new vajue n
next_node to curr_node in line 9 at Tet T be the last time before; hen this

86

SearchRight executed line 3, and let T be the last moment befevBen next _node
variable was assigned a value. As we showed in the previous piapositery time
SearchRight updates its curr_node pointer, it then updates its next_no&e pefate it
makes the next update to curr_node, spIT. Also, SearchRight does not update its
next_node pointer betweendnd T, so T <T. Therefore, [, <T<T <T,.

At time T SearchRight was executing line 1, or 7, or 10, and thus next=node
curr_node.right at T. This value of next_node is assigned to curr_nogeatiéxt_node
=n at T, and therefore 1s inserted at T. Also, since < T, curr_node =5 at T. So, n
= next_node = curr_node.right #right at T.

At time T the loop condition in line 3 was false, so at tirme Aext_node was
pointing at a node that was not superfluous. Since next_node does not chaadeeits
between Tand T, when next_node =;nnode nis not superfluous at T. Since T T
node Rnis not superfluous at T eithda.

The following proposition is an analogue of Proposition 19 for skip lists.

Proposition 83 (SearchRight and TryFlagNode property):If Inv 8 holds up to
time U, then the following is true. Suppose R is an execution ofdheclsRight or the
TryFlagNode routine by process P. Let the node sequence N(R),bg, {n., n} and the
time trace T(R) be {7, ..., Ts. Suppose some nodg from the node sequence is not a
marked node at some tim¢ £ T;. Then for any nodejwhere j[<i<s, if Ty < U, then
either n.key< n.key and pwas not marked at'Tor n was not a superfluous node &t T

Proof:

The claim clearly holds when i = j. Suppose the claim holds for ngdes, n..

We will prove that if T < U, then the claim holds for nodg a&s well.

Let us examine momeni,Twhen the curr_node or prev_node pointer gets st to n

By Lemma 81, one of the following transitions took place:

At Ty SearchRight assigned a new valygéoncurr_node in line 4.

At T¢ SearchRight assigned a new valyéoncurr_node in line 9.

At Tx a new SearchRight routine was invoked, with curr_node =n

At T¢ TryFlagNode assigned a new valygmprev_node in line 10.

At Ty TryFlagNode assigned a new valygmprev_node in line 11.

At Ty a new TryFlagNode routine was invoked, with prev_nodg =n
If case 1, 3, 5, or 6 applies, then by Lemma &% n.1, and the property holds for
nk. So, the only interesting cases are case 2 and case 4.

Suppose the™ case applies. Then by Lemma 82, there exists moment T, stich tha
Twa < T < Tk, and R is not superfluous at T. Since T %12 T; =2 T}, the claim holds for
Nk in this case.

Suppose the ™ case applies. Then at TrryFlagNode assigned a valug n
prev_node.back_link to prev_node in line 11. Immediately befgrerév_node = yy,
prev_node.back_link =xnand therefore yn.back link = p. We know that the claim
holds for m.1, so at time T nc.; either was not a superfluous node, or was not a marked
node. By Proposition 78, nodes that are not superfluous are not marked v&msmot a
marked node at;T Since at T nx.1..back_link = R, it follows from Proposition 80 thakn
could not get marked beforg 1) and thereforeywas not marked at;'T Thus, if n.key<
nj.key, the desired property holds fatr n

ouhwnNE

87

Suppose pkey > n.key. Let us prove that in this case eithgismot yet inserted at
T, or one of the nodes,n.., n is equal to p By Lemma 82, jn1.key > n.key, so
nw.1.key > n.key. Therefore, there has to be an m such that j < krl and p.key >
nm-1.key. Let us take the biggest such m. Then the keys of the nodes eqtlence g,

..., N are non-increasing. So, by Lemma 81, for any h such that g k, leither R =
Nh-1, Or & transition of type 4 from,ato n, took place at J, and prev_node was assigned
value ry in line 10 of TryFlagNode, in which caseg a n.;.back_link. So, nodexnwvas
reached from nodemnby following back _link pointers. It then follows from Proposition
80, that pwas not marked whenygot marked.

Since m.key > nn.1.key, the transition from#; to n, was of type 2, and thus, by
Lemma 82, there exists a time T such that € T < T, and R, is not superfluous at T.
Then by Proposition 78,nis not marked at T (see Figure 39). Singavas not marked
when n, got marked, pnis not marked at T either. Now notice that singekay > n.key
> n.key, there must exist somée,rauch that j < i< m and ry.key= n..key > ny.i.key.

Let us show that eithern= ny, or nc has not been inserted into the list at $ince
n.key > ny.1.key, the transition fromgn; to ny was of type 2, and thus, by Lemma 82,
there exists time Twhen node g is inserted into the list, not superfluous, apd mght
= ny . Then, by Proposition 78,,nis a regular node at {see Figure 39). If = m, then
T = T'. Otherwise m< m and then T< Ty £ Th.1 < T. So, T< T, and since jnis not
marked at T, nis not marked at Teither. If iy is not yet inserted into the list at timg T
then it was not inserted af € T; < Tyy.1 < T, and then the proposition holds. Suppase n
is inserted at T Then, since it is not marked, it is a regular nod€.at T

Execution k
Type 2: Type 2: Non-increasing keys:
Npy-1 — N Nm-1— I'h ... >
.~ R
Nv-1.KEY = My ey > Nyy.KeY
time
I I I I I >
T/ T' Ty T Tm

n.mark =0 Nm.mark =0 Nm-mark =0

Nmz1.right = Ny,

Figure 39: Execution R.

Case 1:Suppose Q.1 is a regular or a logically deleted node atThen by Inv 1
and 3, since h.key > n.key > ny.1.key, either g = ny, or rx is between g.; and Ry in
the linked list formed by regular and logically deleted nodéB.&bince Ry-;.right = ny
at T, it must be the case that = n.. The claim holds for R, because hx k, so it also
holds for n.

Case 2:Suppose Q.1 is a physically deleted node dt Tet us examine the moment
of time T' < T, immediately before fi; got marked. Note that the claim holds f@y.1

88

SO Nny-1 Is not a marked node at'.Tand thus T > T;'. Since marked pointers do not
change, p.1.right = ny at T'. If ng is not yet inserted into the list at’' . Tthen the
proposition holds, because' B T;'. If n, was inserted before'T then, since it is not
marked at T> T, it is not marked at Teither, and thusyris a regular node at'TSince
Ny and Ry.1 are also regular nodes dt, by the same logic as in case 4, An,, and the
claim holds for p.m

The following proposition states the postconditions of the SearchRigimeolitis
an extension of Proposition 53.

Proposition 84 (SearchRight postconditions)Suppose Inv 8 holds up to time U.
Suppose an execution of SearchRight(k, n) completes before time U, ana kkeet
(nl, n2) be the pair of nodes which this SearchRight returns. Theifoltbeing
statements are true:

¢ nl.key< k <n2.key.
» There exists a time T1 during the execution of SearchRight when nl.right = n2.
* For any time T before or when SearchRight is invoked, ihat time n is not a
marked node, then
1. There exists a point of time T2 between T and the moment gt
returns, when nl.right = n2 and nl.mark = 0.
2. If in addition n1.key > n.key, then nl is not a superfluous node at T2.

Proof:

In Proposition 53 we proved that nl.keyk < n2.key, and that there exists a
moment of time T1 during the execution of SearchRight, such that at T1 nl.right = n2.

Suppose n is not marked at time T before or when SearchRigivolsed. Let us
show that there exists a point of time T2 between T and the mavhent SearchRight
returns, when nl.right = n2 and nl.mark = 0. If n1 is not marked at morbgetitéh we
are done with the proof. Suppose nl got marked at some tim@&1I. Since curr_node =
n when SearchRight is invoked and curr_node = nl just before Search®ighsy it
follows from Proposition 78 and 83 that n1 was not marked at T. Theré@ferd < T1.
Since successor fields of marked nodes do not change, and we know tihat atl
nl.right = n2, we can conclude that at timenI.right = n2 as well, so just before T
nl.mark = 0 and nl.right = n2. This is a valid moment for T2. If in aodil.key >
n.key, then nl is not superfluous at T2 by Propositiom83.

In the following proposition we prove some weak postconditions for the
SearchTolLevel_SL routine. It is an extension of Proposition 54. wieprove Inv 8 and
9 we will prove stronger postconditions for the SearchToLevel SL routine.

Proposition 85 (SearchToLevel_SL weak postconditions)f Inv 8 holds up to
time U, then the following is true. Suppose an execution STL of the
SearchTolLevel_SL(k, v) completes before time U, agdvk maxLevel. Let (n1, n2) be
the pair of nodes STL returns. Then the following statements are true:

* nl.key<k <n2.key.
* Nodes nl and n2 belong to level v.

89

* There exists a time T1 during the execution STL, such titaaatime nl.right =
n2.

« If nl.key = k, then there exists a point of time T2 during STL whers mbt a
superfluous node.

Proof:

In Proposition 54 we proved that nl.keyk < n2.key, and that there exists a
moment of time T1 during the execution STL when nl.right = n2. Also,rbgyoBition
73 nodes nl1 and n2 belong to level v.

Suppose nl.key = k. Let W be the tower that nl1 belongs to. Let SR bestlod
the SearchRight routines called by STL that has a node that bairigwer W in its
node sequence. This node cannot be the first node in SR’s sequeraeesebié it was,
then the previously called SearchRight routine would have a node thatdbedhgin its
node sequence as well. Therefore there had to be a transtiomfzr 0 W to n O W
made by SR. Since.n# n;, this must be a transition of type 2 or 4. Note that it cannot be
a transition of type 4, because then by Lemma; 8Xkey > n.key = k, but all the nodes in
the node sequence have keys less than k, because searches do ot ees with
keys greater than the key they are looking for. Thereforeditdvde a transition of type
2, and thus by Lemma 82, there was a moment T2 betwgeand T (i.e. during the
execution STL), when;was not a superfluous node. Singamd nl both belong to the
same tower W, n1 was not superfluous at that moment aither.

4.3.5 The Insert_Node and Insert_SL routines

In this subsection we will prove two important properties of therinsede and
Insert_SL routines, which will help us prove Inv 8 and 9. We start byinmg a lemma
which shows that the nodes that are traversed during an insertion fheee keys that
are smaller or equal to k.

Lemma 86: Suppose ISL is an execution of the Insert_SL(k, e) routine. If
prev_node = n at some point of time during the execution of Insek, 81 ¢r during the
execution of one of the InsertNode routines called during ISL, then rekdy
Furthermore, if n.key = k, then n was returned by a search for key k.

Proof:

Let my, ..., ns be the sequence values of the prev_node pointers during the execution
of Insert_SL(k, e) and all the InsertNode routines called bytirSk(k, €). We prove by
induction that nkey< k.

Base case: The valug was returned by the SearchTolLevel _SL(k, 1) routine in line
1 of Insert_SL(k, e). It follows from Proposition 54 thatkey < k, so the base case
holds.

Induction step: Suppose.key < k. Let us prove thatin.key < k. There can be
several cases:

1. The value i was returned by the SearchTolLevel SL(k, curr_v) routine in line
24 of Insert_SL(k, e).

2. The value m; was returned by the InsertNode(newNode, prev_node, next_node)
routine in line 11 of Insert_SL(k, e).

3. The value i is the initial value of one of the InsertNode routines called from
Insert_SL(k, e).

90

4. The value i, is the result of the back_link traversal in line 16 of an thkmte
called by Insert_SL(k, e).
5. The value f; was returned by the SearchRight(newNode.key, prev_node) routine
in line 17 of an InsertNode called by Insert_SL(k, e).
If case 1 applies, then.nkey< k by Proposition 54. If case 2 applies, thea was
the predecessor of newNode just after it was inserted. Sindéauevkey = k, pi.key <
k by Inv 1. If case 3 applies, thenin= n, because when InsertNode is invoked, its
prev_node pointer is initialized to the value of the prev_node pointer ohseet ISL
routine. By the induction hypothesis the lemma holds {olf case 4 applies, then.n=
ni.back_link, so pi.key < n.key< k by Inv 7. If case 5 applies, thepirwas returned by
the SearchRight(nk) routine, so by induction hypothesis and Proposition 53kay <
K.®

The following proposition shows that each InsertNode routine caltech f
Insert_SL, successfully inserts a node into the skip list, urhessbt node of the tower
that Insert_SL is constructing gets deleted.

Proposition 87 (InsertNode postconditions)if Inv 8 holds up to time U, then the
following is true. Suppose the Insert_SL(k, e) routine is beirguwed, and it calls the
InsertNode routine in line 11, when curr_v > 1. If this InsertNode cosgpletfore U,
then either it successfully inserts newNode into the liel aeturns newNode, or
newRNode gets physically deleted before InsertNode returns, aedNode returns
DUPLICATE_KEY.

Proof:

Since curr_v > 1, Insert_SL performed at least one complet¢iaterof the loop in
lines 10-25, and therefore, by Lemma 75, newRNode was inserted intsttls®e lat the
moment when InsertNode returns, newRNode is a regular, a lggidalkted, or a
physically deleted node. If the InsertNode routine called inlihénserts newNode into
the list, then it returns newNode in line 11. Suppose this InsertNadetdainsert
newNode into the list. Then by Lemma 74, InsertNode returns DUPLECKEY. Let
us examine the flow of the execution of this InsertNode routine.

Let m be the value of prev_node immediately before InsertNode eetuFfrom
Lemma 72 and Proposition 85 it follows that m belongs to level currgainA from
Lemma 72 and Proposition 85, it follows that this invocation of the IrfSkenmoutine did
not insert any nodes on level curr_v or above, so m was createdhserted by a
different invocation of Insert_SL.

We will show that at some time T after newRNode was indemteis not a
superfluous node. Since InsertNode returned result = DUPLICATE, KEexited in
line 2 or 19, so the condition in line 1 or 18 was true, and m.key drsdftNode exited
in line 2, then the value of prev_node = m was returned by Searel@loISL in line 24
of the Insert_SL routine which called InsertNode. Then by PropnsBb m is not
superfluous at some moment during the execution of SearchToLeveln<hia is a
valid moment for T.

Suppose InsertNode exited in line 19. Létbe the value of prev_node before it
executed the last SearchRight in line 17. Let us show thkéyrx k and there exists a
time T during the execution of InsertNode, whehvwmas not marked.

91

By Lemma 86 mkey< k, and the equality is possible only if mas returned by
one of the searches. If'tkey = k and mwas returned by a search, then InsertNode
would have exited earlier (in line 2 or 19), without performing andbarch. So, hkey
<k.

Let us examine the time when InsertNode executed line 5 foaghérhe. If at that
time condition in line 5 was true, then this a valid moment fob&cause at that time
prev_node = mis flagged, and thus not marked. If the condition in line 5 was false,
InsertNode executed line 15 at least once before it performearéhsén this case the
moment when it executed line 15 for the last time is a valid moment.for T

So, m is not marked at some timée @uring the execution of InsertNode, and
m'.key < k = m.key, and since the SearchRight that returnedrtecsfaom node m by
Proposition 84 there was a moment afterwihen m was not superfluous, and that is a
valid moment for T.

So, there was a time T after newRNode was inserted, when motvassuperfluous
node. Let rm be the root of m’s tower (m is not preinserted, ls@longs to some tower).
Since m was created by a different invocation of Insert_SL, ropdgition 70 rm#
newRNode. Since m is not superfluous at T, rm is not marked af Telma 76 rm is
not a preinserted, so it is a regular node at T. By Inv 8 all roosrweleng to level 1, so
both newRNode and rm belong to level 1. Node rm is a regular node at T, and newRNode
is regular, logically deleted, or physically deleted aN®des newRNode and m have the
same key k and belong to the same level, so it follows from Inv 1 and 2 that newRNode is
physically deleted at ™

Proposition 88: Suppose Inv 8 holds up to time U. If the moment immediately after
Insert_SL executes line 22 is before U, then at that momentoldstNelongs to level
curr_v—1.

Proof:

Let us prove this by induction on the number of times a given inoocatf
Insert_SL has executed line 22. When it executes this line fdirsheéime, curr_v = 2
and newNode = newRNode. Since Insert_SL did not exit in line 14, bymbaeifb
newNode = newRNode was successfully inserted at level hédynsertNode routine
called in line 11.

Let us prove the induction step. Suppose after Insert_SL executezllwm¢imes,
the claim holds. Let us prove that it holds after it executesaR for the (v + 1)-th time.
Let us examine the flow of execution of Insert_SL from the iinexecuted line 22 for
the v-th time until it executed line 22 for the (v + 1)-th time.

After Insert_SL executed line 22 for the v-th time, curr_v = W.+Thus, by
Proposition 73, the nodes returned by the search in line 24 belong tw level If the
InsertNode routine called in line 11 did not insert newNode, then, tyoBition 87,
newRNode is marked after InsertNode returns, and thus InsertitSlirebne 18 before
it reaches line 22. We assumed that it reaches line 22, stNodersuccessfully inserted
newNode. By Lemma 72 newNode gets inserted at level v + 1. Theerafter line 22 is
executed for the (v + 1)-th time, lastNode belongs to level v+ 1.

92

4.3.6 Proving invariants for the towers of the skip list

In this subsection we will prove Inv 8 and Inv 9, using the clainosqat in the
previous subsection. We start by proving Inv 8.

Theorem 89:Inv 8 always holds.

Proof:

We know that the nodes do not change levels, root hodes cannot become non-root
nodes, and down pointers never change, thus, to prove that Inv 8 always hdds, it i
sufficient to prove that the C&S C in line 9 of InsertNode pneese Inv 8. (Obviously,
the invariant holds when the list is empty.)

Suppose Inv 8 holds until the C&S C in line 9 of InsertNode is execlgeds
prove that it holds after it is executed as well.

The C&S isresult = c&s(prev_node.succ, (next_node, 0, 0), (hewNode, 0, 0)).

The InsertNode routine is called only from Insert_SL. Suppose itcaléed from
the v-th iteration of the loop 10-25. From Lemma 72 and Proposition 73 it fotloat
prev_node and next_node belong to level v, and thus newNode gets insertebhatiieve
v = 1, then newNode = newRNode is a root node and the invariant is pcedéwe 1,
then newNode was created in line 23, so it is not a root node. The domter pafi
newNode was set to lastNode, and by Proposition 88 lastNode beldegslte — 1, so
the invariant is preserved in this case as \mell.

Theorem 90:Inv 9 always holds.
Proof:
Invariant 9 consists of four claims. We are going to prove those claims one by one.

1. Node n is not preinserted, so it belongs to some level v of thdigkilf v = 1,
then by Inv 8, v is a root node, and thus it belongs to its own tower. 1f,\tfren
by Inv 8, if we start from node n and follow the down pointers, we geitito a
node of level 1 after v — 1 traversals. By Inv 8 this is a root node, and by Def 11, n
belongs to its tower.

2. Root nodes are created only in line 4 of the Insert_SL routine apdhexr down
pointer initialized to null. By the first claim we alreadyoped, all other nodes
belong to some tower, so it follows from Def 11 that their down pairdannot
be null.

3. Node n is not preinserted, so it belongs to some level v of the skifhien by
Inv 8 node n.down belongs to level v — 1, and therefore it is not prethsstter.

Then it follows from Def 11 that nodes n and n.down belong to the same tower.

4. Suppose such a node m exists. Since m.down = n.down, and m is not patinsert
m belongs to the same tower as n. From Inv 8 it also followsritatid n belong
to the same level. But nodes of the same tower are creatbd bgrhe invocation
of Insert_SL, which inserts no more than one node on each level — a contradiction.
[|

4.3.7 A stronger SearchTolLevel_SL postcondition

In this subsection we will prove a stronger postcondition for the Beakevel SL
routine than the one given in Proposition 85. We will show that theofitste two nodes
returned by an execution STL of the SearchTolLevel SL routine isnkeoh at some

93

time during STL. We will use this postcondition to prove the correstna our
algorithms. We start by proving a few technical lemmas.

The following lemma shows that when a process is building a tawdzletes the
preceding superfluous nodes under certain conditions. Specificalyprifcess inserts a
new node n on level v, then it deletes any superfluous node m such Hrat ine
during the insertion of n, all the nodes on level v with keys betwekeymrand n.key are
superfluous. The reason for this is that unless m gets physideléted, the node
sequence of one of the searches performed before n gets inset@dmbaisn some node
m' such that ris superfluous throughout the execution of that search asdower is
between m’s tower and n’s tower. However, that is not possibleys®easearch cannot
enter a superfluous tower by following a right pointer (by Len@8), and since there are
no non-superfluous nodes of the appropriate level betweésntower and n’s tower, a
search won’t be able to entef’sntower by following a back_link either.

Lemma 91 (deleting superfluous nodes)Suppose nodes rnl and rn2 are root
nodes, such that k1 = rnl.key < rn2.key = k2. Suppose the heights of the dbwreks
and rn2 are at least v, and v > 1. Let T1 be the time whemode on the (v — 1)-th level
of rn2’s tower got inserted, and T2 be the time when the node on thewethof rn2’s
tower got inserted. Suppose node nl belongs to level v of rnl’s totmeall. If rnl is
a marked node at T1, and in the interval between T1 and T2, all the ndégslonwith
keys strictly between k1 and k2 are superfluous, then n1 will be &pltysleleted node
at time T2.

Proof:

Since rnl is a marked node at T1, nl is superfluous in the intervalebgtween
T1land T2.

Let n2 be the node on the v-th level of rn2’s tower. Let us examinad¢decessor
m of node n2 immediately after n2 gets inserted at time T2. Tirss be a regular node
with a key less than k2. Suppose node nl is not physically deletedeat 2. We show
that this leads us to a contradiction.

Since nl is not physically deleted at T2, then either m = n1, or m.key > nlkdey =
So, if m# nl, then the key of m is strictly between k1 and k2, and therefotbeb
hypothesis of the proposition, m is superfluous between T1 and T2. iiInthen m is
superfluous between T1 and T2 as well, because rnl is a marked node at T1.

So in any case, k& m.key < k2, and m is superfluous between T1 and T2. Since m
Is n2’s predecessor at time T2 when n2 got inserted, m was ektoyrene of the search
routines executed by the process doing the insertion of rn2’s toweedrefT1 and T2
(SearchToLevel _SL in line 24 of Insert_SL or SearchRight inlihef InsertNode). Let
us examine the first moment between T1 and T2 when that seadshartransition into
some node hof the tower m belongs to. By Lemma 81, this transition must bgoef2
or 4. From Lemma 82 it follows that it could not be a transition of 8pbecause m (and
thus, m) was superfluous at T1, before the search started. Let us shatwcthad not be
a transition of type 4 either.

Suppose it was a transition of type 4 (following a back_link). Letxanine the
transitions before it, and let us take the last transition of2y(plee search had to make at
least one transition of type 2, because it starts from a note betd tower with keyws;
and it can enter a node with a bigger key from a node with desrkal/ only by making

94

a transition of type 2). Suppose that was a transition into a nédsade n¥ is on level

v or higher (because that search did not examine the nodes lowésvbban). By Inv 8
and 9 there exists a nodé'nof the same tower as’'mwhich belongs to level v. By
Lemma 82 node th(and hence node'lt) was not superfluous at some moment between
T1land T2.

Node mi was reached from node''nby following back_links and down pointers
(since there were no transitions of type 2), and thtiskey = ni’.key > ni.key = m.key
> k1. Also, since the search was for key k2, and it was eithea@t8S®@Level SL, or a
SearchRight that, by lemma 86, started from a node with a keyotesqual to Kk, it
follows from Propositions 53 and 54, that'tkey = ni'.key < k2. The key of fi.key
cannot be k2, because then the search, wouldn’'t have leaved the towéraatim¥
once it entered it. So, 'thkey is strictly less than k2. Therefore, nod&’ rwas not
superfluous at some time between T1 and T2, belongs to level v, anckepsiaictly
between k1 and k2, but this contradicts the proposition hypotiesis.

Lemma 92 (Inserting into a superfluous tower): After a tower becomes
superfluous, at most one more node can be inserted into it.

Proof:

By Proposition 70, only one invocation of Insert_ SL can insert nodes into a
particular tower. After Insert_SL inserts a node into a slymar$ tower, it will then exit
in line 18 without inserting any more nodms.

In the previous lemma we showed that at most one node can ge¢dnsed a
superfluous tower. The following lemma shows that there are rlo lodcs pointing to
such nodes.

Lemma 93: If node n gets inserted after the tower it belongs to becomes
superfluous, there can never be a node that has a back_link pointing to n.

Proof:

First notice that in order to set a back_link to n, a HelpFlaggedheowith the first
argument n must be called, which can happen only if there wasaahRight or
TryFlagNode routine execution which had n in its node sequencd. I8 SearchRight
or TryFlagNode routine execution has n in its node sequence, no node willahave
back_link set to n.

Suppose some processes perform SearchRight or TryFlagNode exethiét have
n in their node sequences. Let us take the SearchRight or Tryfelaghlutine execution
R that first made a transition into n. Let T be the time when that transition wigs ma

From Lemma 92 it follows that there is never a node with a down pquaieting
to n. So, R could not enter n by following a down pointer. Notice thaiuRl not enter n
by following a back_link either, because if there is a back_lihkose, then there was a
SearchRight or TryFlagNode routine execution that made a transitmm earlier, and
we assumed R is the first such execution. So, R entered n bwifall a right pointer.
Then by Lemma 82, there was a moment when n was already djsartd not
superfluous, but n was inserted into a superfluous tower — a contradiction.

95

In Proposition 80 we showed that back_links cannot be set to marked riauies. |
algorithms did not allow back_links to be set to superfluous nodes,ditiveould be
easy to show that all the nodes in the node sequence of the execltioof $he
SearchTolLevel SL routine are unmarked at some point of time duribg THEn the
desired SearchTolLevel SL postcondition (the first of the two nodesheel by STL is
unmarked at some time during STL) would follow. However, in our datectate
back_links can be set to superfluous nodes. Yet, we can still provelesiesd
postcondition. Note that when the SearchRight routine called by STarmed at least
one transition of type 2 or 4 on its level, then the first of e nodes it returns is
unmarked at some time during its execution. (This follows from Lar@fhand the fact
that if TryFlagNode starts to traverse a back_link chain (lin#8)9it traverses the chain
until it reaches an unmarked node at the end.)

When we prove the SearchTolLevel SL postconditions, we will showiftsatL
enters a node n2 that was marked before STL started, then at sonef pione before,
STL traversed a back link from node n to node m, which was set mafteecame
superfluous. The following lemma will help us prove that the right point n2 is
pointing to a node with a key less or equal to n.key, and thereforen8Kés a transition
of type 2 or 4, leaving node n2 (thus the node STL eventually retuntg imarked at
some point of time during STL).

Lemma 94: Suppose nodes n and m belong to levely n.back_link = m and m is
superfluous. Let T1 be the time when m became superfluous arl et the time when
node n.down was inserted. Then either=TT2, or for any time T such that ELT < T2,
there exists a node q on level v — 1 such that m.key < g.key < n.keyiamaserted and
not superfluous at T.

Proof:

Suppose T1 < T2 and there exists a time T such thatT% T2, and at T there is
no node g that satisfies the properties described in the lemma.

Let n' be the first node that is inserted into the list after time T such that

« m.key< n".key< n.key,
e n" belongs to level v, and
* n" is not superfluous when it gets inserted.

If there is no such node, then |ét A null. Otherwise, let T be the time when'n
gets inserted. Let'Tbe the time, when nodé A n’.down got inserted. Note that » T
and T' > T'. Let T3 be the time when node n gets inserted. We will prowentige m
becomes physically deleted before time T3, which will lead us to a contradiction.

Case 1:Suppose T> T3 or i = null. Then at any time between T2 and T3 all the
nodes on level v with keys strictly between m.key and n.key wperffuous, because
there are no such nodes at tim& T2, and no new ones get inserted at level v until T3.
The root node of node m gets marked at time<TT2, so by Lemma 91, m gets
physically deleted before time T3.

Case 2:Suppose T < T3. Node fi is not superfluous at time'Twhen it gets
inserted, so nodé€ s inserted and not superfluous from tinead until time T. Node
n' belongs to level v — 1, so time T cannot be in the interval betweamdTT'. So, since
T">T, T >T as well. Then at any time betwe€nand T' all the nodes on level v with

96

keys strictly between m.key and n.key are superfluous, because there ach nodes at
time T < T, and no new ones get inserted at level v uritil TThe root node of node m
gets marked at time T4 T < T, so by Lemma 91, m gets physically deleted before time
T". Since T < T3, m gets physically deleted before T3.

So, m gets physically deleted before T3. Note that node n is unmarked at timenli8 whe
gets inserted, so by Proposition 80, n’s back_link cannot point to m — a contradiction.

Proposition 95(the first node returned by SearchRight in SearchToLevels 8bti
marked): Let STL be an execution of the SearchToLevel SL(k, vingwnd suppose 1
< v < maxLevel. Let (n1, n2) be the pair of nodes returned by ecuérn of one of the
SearchRight routines called directly by STL. Then there egigieint of time T during
the execution of STL, when nl is not a marked node.

Proof:

Let k1 = nl.key, k2 = n2.key, and let vl be the level of n1 and n2. Sugpose t
proposition does not hold. Then n1 was a marked node at timbeh execution STL(K,

v) was started. Let us examine the node sequence of STL. st 8 execution of the
SearchRight routine we are interested in, and let n be thedidst in the node sequence
of SR. Note that if there are any other nodes in the node sequeB&e tfen it means
that SR performed a transition of type 2 or 4 from n. If it wasaasition of type 2
(traversing a right pointer), then from Lemma 82 and Proposition ##atvs that nl
was not marked, at some point during the execution of SR — a contradittit was a
transition of type 4 (a back link traversal), then the process tealeaschain of
back_links (lines 9-10 in TryFlagNode) until it ended up in an unmarked nod&gain,
by Proposition 83, n1 was not marked at some point during the execution efaSR
contradiction. So, SR does not make transitions of type 2 or 4 framdnthus the first
node it returns when it finishes is the same node it starts from, i.e. n = nl.

Node n = nl is marked at When STL is started. Let T1 < Be the time when nl
got marked. By Proposition 84, at some time during SR (afjar2Zl= nl.right, so at T1
nl.right = n2 as well. Therefore, it follows from Inv 1 and 2 thafl Jatthere were no
unmarked nodes at level v1 with keys strictly between k1 and k2 (see Figure 40).

Let m1 be the first node in the node sequence of STL that belongs to the same tower
as nl. Since SR starts at n1, the SearchRight routine calletLbyght before SR, had a
node of the same tower as nl as the last node in its node sequeatcgedrchFrom was
executed on level vl + 1, and therefore node m1 belongs to lexalivz 1.

Let us examine the last transition of type 2 in the node sequé#n8@&L made
before node m1l (there must be at least one transition of typel@ loyaSTL, because if
there was none, nl is a node of the head tower, and thus cannot be marked). Tha
transition was made on level v2 or higher. Let m2 be the nodeahgtion was made
into. By Lemma 82, m2 is in the list and not superfluous (and thus, bgpg$#iop 78, not
marked) at some time T2 >.TAlso, note that m2.key m1l.key = nl.key = k1, because
no right pointer traversals are made after time T2. The iggisabnly possible if m2 is a
node of the same tower as m1 and nl, in which case nl is not supetdndubus not
marked) at T2, because m2 is not superfluous at T2 — a contradiction. So, the inequality
strict: m2.key > k1.

97

transition

of type 2
yp —
S) m2 is not
level v a2|| |e<0l marked aT2
Tower with
key k1 Transitions leading

from m2 to m:

level v2 |m1

Tower with
key k2

level vl |nl » N2
nl gets marked a1l < T'

Figure 40: Execution STL.

Since node m2 is the last node before ml in the node sequence of $Tlasha
entered by following a right pointer, the keys of the nodes in theesee between m2
and ml are in non-increasing order. Let S be the part of the node seqie8¢L
starting from node m2 and ending in node m1.

Let S, = {node q | ki< g.key< k2 and q is superfluous at T1}. Let; S {node q |
k1l < g.key< k2 and g.down was not yet inserted at T1}. We will show that thes¢ ex
two nodes, ql and g2 in S such thatlg|5,, g2 0 S and gl.back_link = g2, and we
will apply Lemma 94 to these nodes to prove the proposition.

Let us first show that all the nodes in S either belong,torSo S, Suppose some
node g belongs to S. Since all the keys in S are in non-increadey Qikeys m2.key<
k < k2. Also, g.key= k1, so ki< g.key< k2. Node g is on level v2 vl + 1 or higher,
therefore, by Inv 9, there exists a nod®fthe same tower as q, that belongs to level v1.
As we proved earlier, at time T1 there were no unmarked nodegeatvle with keys
between k1 and k2, thereforeig either marked, or not yet inserted at T1.' lisghot yet
inserted at T1, then q and g.down are not yet inserted at T1[1.&,glf ' is marked at
T1, then ¢is superfluous at T1, and thus q is superfluous at T1, LeSg. So, all the
nodes in S either belong t@ 6r to S,

Note that since k1 < m2.key < k2 and m2 is not superfluous at timeTI2 2]
Sni. On the other hand, ml.key = k1, and m1 was marked at T1, §63gp1Node m2 is
the first node in sequence S, and node m1l is the last in S, theleforenais to be two

98

nodes gl and g2 in S such that gl belongs,tog3 belongs to s5 and STL makes a
transition from gl to g2. Note that STL enters all the nodes in &oexa2 either by
following back_links or by following down pointers. STL could not makeaasition
from g1 into g2 by following a down pointer, sinceld5,;, 920 S, and thus g1 and g2
must belong to different towers. Therefore, STL made a transitom gl into g2 by
following a back_link, so gl.back_link = g2.

Let v be the level of the nodes g1 and g2. Since q1] §v= v2. Since ql1 S,
and 920 S;p, node gl.down was not inserted at T1 and node g2 was superfluous at T1. It
follows from Lemma 94 that at time T1 there was a node g al kev 1, such that
g2.key < g < gl.key and g was inserted and not superfluous at T1. Stn@xwvl + 1,
there exists a nodé qt level vl that belongs to the same tower as ¢, armgigserted
and not superfluous at T1. So, by Proposition 78s @ regular node at T1. Recall that
the keys of the nodes that belong tp &hd S, are between k1 and k2. Since g2.key <
q.key < gl.key, k1 <'ckey < k2. But we proved earlier that there can be no regular
nodes with keys strictly between k1 and k2 at level v1 at time T1 — a contradiction.

We now use Proposition 95 to prove SearchTolLevel SL postconditions.

Proposition 96 (SearchTolLevel SL property and postconditions)Let STL be
an execution of the SearchToLevel_SL(k, v) routine, and suppsse<imaxLevel. Let
(n1, n2) be the pair of nodes returned by STL or by an execution of oftee of
SearchRight routines called directly from STL. Then the following statenaeattrue:

* nlkey<k<n2key

e If (n1, n2) are returned by STL, then n1 and n2 belong to level v.

e There exists a point of time T during the execution STL suchah#tat time
nl.right = n2 and nl is not marked.

* If nl.key =k, then there exists a timeduring STL when nl is not superfluous.

Proof:

Suppose (n1, n2) were returned by an execution of one of the SearcliRigigs
called directly from STL. Let SR be that execution. By Promosi84 applied to SR,
nl.key< k < n2.key, and there exists some time T1 during SR, when nl.right ©n
the other hand, by Proposition 95, there exists time T2 during thev@#n nl is not
marked. If n1 is not marked at T1, then T1 is a valid moment for T.r@gelet T3 be
the moment immediately before n1 got marked. Since nl is marked buifnot at T2,
T2 < T3 < T1, and thus T3 belongs to the interval of time when the execsTL is
performed. Marked pointers do not change, and nl.right = n2 at Teféleem1.right =
n2 at T3.

If (n1, n2) are returned by STL, then they were returned byaiteSearchRight
routine called directly from STL, so the first and the thirdnetaof the proposition hold
for (n1, n2). Additionally, by Proposition 85, n1 and n2 belong to level v.

The fourth claim was proved in Proposition B5.

99

4.3.8 Linearization points and correctness

Our skip list data structure allows three types of dictionagraipns: searches,
insertions, and deletions, which are executed by invoking the majores@earch_SL,
Insert_SL, and Delete_SL respectively.

In this subsection we assign linearization points to each operatioprevel that
they are implemented correctly. We say that the set of éimeegits currently stored in the
dictionary is the set of the elements of the regular nodes ondeeeMWe show that this
set is modified only at the linearization points of the inserteatsdeletions according to
the specifications of these operations. We also prove that if antiopecampletes, it
returns a correct result, according to its linearization point.

We start by assigning linearization points to the searches.

Theorem 97 (Search_SL correctness)if an execution of the Search_SL(k)
routine returns NO_SUCH_KEY, then we can choose a linearization point, at wéieh th
was no regular root node with key k in the data structuren lfexecution of the
Search_SL(k) routine returns a pointer to a node, then this is a raatthedkey of this
node is k, and for this execution we can choose a linearization poivitjcit this node
was a regular node.

Proof:

Let STL be the execution of the SearchToLevel SL(k, 1) routinérpeed in the
first line of the Search_SL routine. Let (n1, n2) be the pair of nademed by STL. By
Proposition 96, n1 and n2 belong to level 1, n1kdy< n2.key, and at some point of
time T during the STL nl.right = n2 and nl is unmarked. We lineariz&e¢hech_SL
routine at T. At that moment nl is a regular node, becausendgtisarked (and it is
obviously not a preinserted node). Also, n1 and n2 are root nodes, becauseahgydel
level 1.

Case 1:Suppose the Search_SL execution returns in line 3. Then it returns a pointer
to nl1 and nl.key = k (line 2). As we showed, nl is a regular root ndoke latg¢arization
point of STL.

Case 2:Suppose the Search_SL execution returns NO_SUCH_KEY in line 5. Then
nl.key# k. At the linearization point n1 and n2 are two consecutive nodes irsttloeé
regular and logically deleted nodes of the first level, and nl.kky<<n2.key, which
means that there is no regular root node with key k in the data structure, by Imv 1, 2.

Note that if an execution of the Search_SL(k) routine is noniteted, we do not
linearize it.

To prove the correctness of the Insert_SL routine we first ptiogefollowing
lemma about the nodes that are traversed by the first Insertidatiee executed by
Insert_SL.

Lemma 98: Suppose ISL is some execution of the Insert_SL routine. Let iNebe
first execution of the InsertNode routine called by ISL (when_eusr 1). Then at any
time during IN, IN’s prev_node pointer points to a node that was regutmme moment
during ISL.

Proof:

100

Let us prove this by induction on the number of times prev_node ehatsgvalue.
When IN is invoked, prev_node is pointing to a node returned by the Seamstel o&L
routine in line 1 of ISL. So, by Proposition 96, there was a timmmgluhe execution of
ISL, when this node was not marked.

The prev_node pointer can change its value in lines 16 and 17 of InsertNibde.
changes its value in line 16, then the claim of the lemma holdthéonew value of
prev_node by Proposition 80 and the induction hypothesis. If it chasgeslue in line
17, then the claim holds for the new value of prev_node by Proposition 84 antionduc
hypothesisl

In the following theorem we assign linearization points to exausitof the
Insert_SL routine. We will linearize successful insertionth@tmoment when they insert
the root node. We will linearize unsuccessful insertions at the mtowteen there is a
regular root node in the list that contains the key they airggtty insert. We also define
a mapping that will help us to prove that an element can be itsettethe dictionary
only by executing an appropriate insertion.

Theorem 99: (Insert_SL correctness)if an execution ISL of the Insert_SL(k, e)
routine returns DUPLICATE_KEY (indicating an unsuccessful insertitrgn for this
execution we can choose a linearization point at which there veggikar root node with
key k in the data structure. If ISL returns a pointer to a nodecétidg a successful
insertion), then this is a root node with key k, and for this executiosanechoose a
linearization point, at which this node gets inserted.

Furthermore, there exists a mappigg of all regular, logically deleted and
physically deleted root nodes of the data structure to succéssful_SL executions and
non-terminated Insert_SL executions such that

1. Yisinjective.

2. For any successful execution ISL of the Insert_SL routine, I8 if and only
if ISL returns rn.

3. At anytime T, if a root node rn is regular, logically tkde or physically deleted
at T, theny(rn) is linearized when rn got inserted.

Proof:

We choose the linearization point depending on how the Insert_SL routine runs.

Case 1:Suppose ISL returns DUPLICATE_KEY in line 3. Let (n1, n2) be the p
of nodes SearchToLevel_SL returns in line 1. By Proposition 96 and Inv 8,aniobt
node, and there exists a moment during the execution of SearchTdikewval line 1,
when nl is unmarked. We linearize ISL at that point of time. At ni@ment, nl is a
regular root node, and nl.key =k (line 2).

Case 2:Suppose ISL returns DUPLICATE_KEY in line 14. This means that eur
= 1, and the InsertNode routine called in line 11, returned DUPLICKHY.
InsertNode can return DUPLICATE_KEY only in line 2 or in line 15t hée the value
of prev_node before line 2 or 19 was executed. Then n.key = newNodekki@ye 1 or
18 respectively). By Lemma 98 there was a time T during theuége ISL, when n was
in the list and not marked. We linearize ISL at that time.hat moment n is a regular
root node (it belongs to level 1 by Lemma 72), and n.key = k.

101

Case 3:Suppose ISL returns newRNode in line 18 or 21. Since ISL did noihexit
line 14, by Lemma 75 it inserted newRNode into the list. That happehed the first
InsertNode routine called by ISL successfully executed th8 @&line 9. We linearize
ISL at that moment of time.

Case 4:Suppose the execution ISL is non-terminated. If the first Insertkndme
called by ISL successfully performed a C&S in line 9, thenliwearize ISL at the
moment when that C&S was performed. This is non-ambiguous, because once
InsertNode performs a successful C&S in line 9, it is poiseeturn in line 11, so for
each execution of Insert_SL, there is at most one successhilpé&ormed by the first
InsertNode routine Insert_SL calls. If ISL has not called any InsddNoutines, or if the
first InsertNode routine called by ISL has not performed a sst@eC&S in line 9, we
do not linearize ISL.

Finally, let us show that there exists a mappingf the insertions of regular,
logically deleted, and physically deleted root nodes to succeastiinon-terminated
Insert_SL executions, which has the properties described in the prapasitorder for a
new root node rn to be added to the data structure, a preinserted rsideerareated by
the execution of the Insert_SL routine, and then the C&S in line 9 dirshénsertNode
routine, called by that execution must be successfully perforbe¢dis definaep so that
it maps each root node rn to the Insert_SL execution that succegsftibrmed that
C&S. If Insert_SL executiog(rn) successfully performs the C&S in line 9 of the first
InsertNode routine it calls, then it cannot return in lines 3 or 14frarglit is poised to
return rn in line 18 or 21, so at any point of time this Insert_Skc@bion is either
successful or non-terminated.

For each execution of Insert_SL, there is at most one succ€gsfuperformed by
the first InsertNode routine Insert_SL calls s injective (property 1 proved).

If ISL is a successful execution of the Insert_SL routine, and ISL retuytisen, as
we have shown above, the first InsertNode routine called by ISL ssfatlg performed
the C&S in line 9 that inserted rn, and thus ISW&n). On the other hand, if ISL is
successful and ISL #(rn), then by the definition af, the first InsertNode routine called
by ISL performed a successful C&S that inserted rn, and therefore the nettiens is rn
(property 2 proved).

Finally, if at time T, node n is regular, logically delét or physically deleted, then
Y(rn) is defined, and by property 2, execution ISIpén) returns rn. From the way we
assign linearization points to the executions of the Insert_SL reuttrfellows that ISL
is linearized at the moment when the first InsertNode routinealled successfully
performed a C&S in line 9, inserting rn (property 3 provid).

Before we prove that the Delete SL routine correctly implesneieletion, we
prove two lemmas about the TryFlagNode and HelpFlagged routines.

Lemma 100 (TryFlagNode invariant): Suppose TryFlagNode(n, m) is called and
n.key < k. Then at any time during its execution, prev_node.key < m.keprged inode
=m.

Proof:

The value of target node never changes, so target node = m throughout the
execution. Notice that TryFlagNode can be called only from lid the SearchRight

102

routine, or line 1 of the DeleteNode routine. In the first cade]ldws from Inv 1 that
n.key < m.key, because there was a time during the execution chBagrt when n =
curr_node.right = next_node = m. Suppose TryFlagNode was called frddelgieNode
routine. DeleteNode can be called from line 4 of the Delete_SLneyutr from line 17
of the Insert_SL routine. In the first case, by Proposition 96, thasgea time during the
execution of SearchToHeight_SL in line 1 of the Delete_SL routinen whigght = m, so
n.key < m.key. In the second case, since the last InsertNodatecdny Insert_SL,
returned newNode (line 16), that InsertNode inserted newNode intstthey Lemma
74. At the moment immediately after InsertNode performed a ssitteC&S in line 9,
n.right = m, and therefore n.key < m.key.

So, at the beginning of the execution of TryFlagNode, prev_node.key < mitiesy.
value of prev_node can be changed only in line 10 or 11. In thedsstit follows from
Inv 7 that the key of prev_node decreases, and in the second caseopeekey<
target.node.key € < m.key, by Proposition 84, so prev_node.key is always strictly less
than m.keym

Lemma 101: If the HelpFlagged(n, m) routine is called, then by the time i
completes, node m is physically deleted.

Proof:

HelpFlagged calls HelpMarked, which tries to execute a C&& fghysically delete
m. By Lemma 60, at some point before HelpFlagged was called, n.succ = (m, 0, %). If thi
is still true when C is executed, then C succeeds and m getisglhydeleted. Otherwise
n.succ was changed, and any change to n.succ physically deletes m, by é2mma

In the following theorem we assign linearization points to exasusitof the
Delete_SL routine. We will linearize each unsuccessful deletimorae moment when
no regular root node has the key it searches for. We will lirea@&h successful
deletion at the moment when a (regular) root node with the keyaitlees for gets
marked. Our algorithms are designed in such a way that aodetétsome root node rn
reports success only if it performs the first criticalpsté rn’s deletion (flagging rn’s
predecessor). A successful deletion does not necessarily perfi@nsetond step
(marking) itself, another process may do it. We also define @pimg that will help us
prove that an element can be deleted from the dictionary only by executingreprighe
deletion. This is the last theorem we need to prove the correctness of our imatement

Theorem 102 (Delete_SL correctness)f an execution DSL of the Delete SL(k)
routine returns NO_SUCH_KEY (indicating an unsuccessful deletion), fitrerthis
execution we can choose a linearization point, at which there wesgatar root node
with key k in the data structure. If DSL returns a pointer to aen@addicating a
successful deletion), then this is a root node with key k, and ®rme#acution we can
choose a linearization point, at which this node became marked.

Furthermore, at any point of time, there exists a mappioball marked root nodes
to the successful and non-terminated Delete_SL executions such that

1. oisinjective
2. For any successful execution DSL of the Delete_SL routink,=D&(rn) if and
only if the node DSL returns is rn.

103

3. Atanytime T, if a root node rn is marked, tltgm) is linearized at the moment
when rn got marked.

Proof:

We choose the linearization point for DSL depending on how it runs.

Case 1:Suppose DSL returns in line 3. This is a case when DSL couldnaba fi
node with key k in the list. Let n1 and n2 be the values of prev_node and del_node
SearchTolLevel SL returns in line 1. By Proposition 96, n1 and n2 beloryeb 1,
nl.key< k — & < n2.key (i.e. nl.key < k n2.key), and at some time T during the
execution of SearchToLevel SL, nl.right = n2 and nl.mark = 0. We kec@6L at T.
Since n2.key k (line 2), it follows that nl.key < k < n2.key. At the linearizationnpoi
node nl is unmarked, thus nl is a regular root node of the list, ardhdimight = n2, n2
is either a regular or a logically deleted root node. Since the union of regdlgacally
deleted root nodes is a sorted linked list, and since at theiziaan point the value k is
between the keys of the two consecutive nodes of this list, weoretude that there is
no regular root node with key k in our data structure at the lzegann point of the
deletion.

Case 2:Suppose DSL returns NO_SUCH_KEY in line 6. This is a case whén DS
found a node with the required key, but still failed to delete it, anohust linearize DSL
at a moment when there was no regular root node with key k in thesttlacture. Since
DSL returned in line 6, the DeleteNode routine, which it calledine 4, returned
NO_SUCH_NODE. Let n1 and n2 be the values of prev_node and del_node returned by
the search in line 1 of DSL. By Proposition 96, n1 and n2 belong to leaablat some
time T during the execution of SearchToLevel SL, nl.right = n2 and nl is unmarked.
Since DSL did not exit in line 3, n2.key = k. At timénll is a regular root node, so n2 =
nl.right is either a regular or a logically deleted root néde will prove that there was a
point of time T during execution DSL when n2 is a logically delehode. We will
linearize DSL at that moment, and then we will prove that shasvialid linearization, i.e.
that at this moment there is no regular root node with key k in our data structure.

If n2 was a logically deleted node dt then T is a valid moment for T. Suppose n2
is a regular node at .TSince DeleteNode returned NO_SUCH_NODE, it exited in line 5.
This means that the TryFlagNode routine called from line 1 of DeleteNadaedtresult
= false. Let us examine that invocation of TryFlagNode. Sinedurned result = false, it
could return only in line 3, 8, or 13. Also notice that it has second paatagget _node
=n2.

Case 2(a): TryFlagNode returns in line 13. This is a case whegets2deleted
before TryFlagNode can flag its predecessor. The probkisame as the proof of Case
2(a) in Theorem 22, except that we use Proposition 84 and Lemma 16adircf
Proposition 20 and Lemma 21. Briefly, let (n3, n4) be the two nodes réthynne last
SearchRight, which TryFlagNode called in line 11. At some pointvad T during the
execution of SearchRight, n3 was not marked and n3.right = n4. Since nJikdkey<
n4.key and n4¢ n2, node n2 is physically deleted dt. Bince at Tn2 was a regular
node, there was some moment T during the execution DSL, when n2 wgEaly
deleted node.

Case 2(b): TryFlagNode returns in line 3 or 8. This is the wdm® some other
process Q flags the predecessor of n2. Q is also executintgte [8d (k) routine and
will report success (or die before finishing its deletion). DBfisures that all critical

104

steps of the deletion are performed and reports failure. The probisofase goes the
same way as the proof of Subcase 2 in Theorem 22, except thetewroposition 69
instead of Proposition 17. Briefly, before DeleteNode returns, lis ¢¢elpFlagged,
which, by Lemma 101, does not exit until n2 is marked (and phlstaeted). Since at
T' n2 was a regular node, there was a moment T during the executiowl2s n2 was
a logically deleted node.

So in either of the above cases, there is a time T duringvidteh n2 is a logically
deleted node, and n2.key =k, so by Inv 1 and 2 there are no regular root rtbde=y\k
in the list, and thus we can choose T as the linearization point for DSL.

Case 3:Suppose DSL returns del_node in line 8. This is the case of a gutcess
deletion, and it must be linearized at the moment when del_node gadn&ikce DSL
returned in line 8, the DeleteNode routine called in line 4 did notrre
NO_SUCH_NODE, so the TryFlagNode routine called from line 1 ofetelode
returned result = true. Let n1 be the node that TryFlagNode eetuand let n2 =
del_node. Again, the proof of correctness in this case is the same as the preef ;haCa
Theorem 22, except that we use Proposition 69 instead of Proposition ily; biee
TryFlagNode returned result = true, it successfully flagdesd gredecessor of n2. By
Proposition 69, n2 was not marked at that moment, but before DeleteiNsthed the
execution of HelpFlagged in line 3, by Lemma 101, n2 = del_node will geteah. We
linearize DSL at the moment when it gets marked.

Case 4:Suppose the execution DSL is non-terminated. Suppose DSL has already
called the DeleteNode routine in line 4, which in turn called ByRode in line 1, and
that TryFlagNode routine performed a successful C&S in line #n2ée the value of
target_node immediately before that C&S. If n2 is currently markteh) we linearize
DSL at time T when n2 got marked. By Proposition 69, marking of a rsoperiormed
after flagging of the node’s predecessor, so T is after 8&tted. Therefore, T is a valid
linearization point. In any other case we do not yet linearize DSL.

Finally, let us show that there exists a mappmn@f all marked root nodes to
successful and non-terminated executions of the Delete SL routihes) Wwas the
properties described in the proposition. By Proposition 69, before a nodeagkesimts
predecessor gets flagged. Nodes can only be flagged in the Trgéagbutine, which
can only be called from the DeleteNode routine and the SearchRight routine.

Note that if SearchRight calls TryFlagNode(nl, n2) and n2 iso&a mode, then
n2.mark = n2.tower_root.mark = 1 (line 3), and thus by Proposition 69 the prentecks
n2 is already flagged, so TryFlagNode(nl, n2) will exit in lineithout flagging any
root nodes. The DeleteNode routine can be called only by Delete_Bieid and by
Insert_SL in line 17. Notice that Insert_SL cannot call DeleteNmda root node, since
line 16 requires that newNodenewRNode. Thus, of all the routines, only Delete_SL
can flag a predecessor of a root node. Let us defise that it maps a marked root node
rn to the execution of the Delete_SL routine that flagged rn’slegessor, i.e the
Delete_SL execution that performed the first critical stepafdeletion. If a Delete_SL
executiono(rn) flags rn’s predecessor, then it is poised to return node rnar8liso at
any point of time this execution is either successful or non-terminated.

Each Delete_SL invocation flag at most one node on the first Bvelis injective
(property 1 proved).

105

If DSL is a successful execution of the Delete_SL routine, arld retsirns a root
node rn, then, as we have showed in Case 3 above, DSL has flagged rn’s predecessor, and
thus DSL =ao(rn). On the other hand, if DSL is successful and DSi(r9, then by the
definition of o, the TryFlagNode routine called by the DeleteNode that wiedchy
DSL has flagged rn’s predecessor by performing a successfuliCés 4. Since that
C&S has flagged rn’s predecessor, TryFlagNode’s local vartabyet node is equal to
rn immediately before the C&S. By Lemma 100, target_node nevagehkats value, so
when TryFlagNode was called by DeleteNode, target node = rn, tlamsl the
DeleteNode’s local variable del_node = rn. Then DSL'’s locabkber del_node = rn as
well. Therefore the node returned by DSL in line 8 is rn (property 2 proved).

Finally, if at time T node rn is marked, theiirn) is defined, and by property 2,
execution DSL =o(rn) returns rn. From the way we assign linearization pointheo
executions of the Delete SL routines, it follows that DSL isalized at the moment
when rn got marked (property 3 proves).

It follows from Theorems 97, 99, and 102, that our data structure cegrrectl
implements the three dictionary operations. The set of the elemaméntly stored in the
dictionary is the set of the elements of the regular root nodesrofiata structure. An
element of a root node rn is added to the dictionary at the moment tivaensertion
Y(rn) is linearized, and is removed from the dictionary at the momkeah the deletion
o(rn) is linearized.

4.3.9 The heights of the towers

In this subsection we discuss the heights of the towers in ouligkiata structure.
We show that unless an insertion of the tower is interrupted blgtiote the chance that
the tower reaches a given height is the same as in a sequential skip list.

Def 16: We say that the towerisisertion is finishedwhen the Insert_SL routine
that inserted its root node returns.

Def 17: A tower isunder constructionif its insertion has inserted a root node, but
has not finished yet.

Def 18: Let W be a tower in the skip list. Tipdtential heightof W is the value of
the tH variable in the Insert_SL routine invocation that insertesl Mt node after it
executed line 7 for the last time.

Def 19: Let W be a tower in the skip list, whose insertion is finished.s@jethat
W is full, if its height is equal to its potential height. We say thatctiestruction of W
wasinterruptedif these heights are different.

In the following proposition we explain how a tower’'s constructi@mn e
interrupted.

Proposition 103:If the construction of tower W was interrupted, then its height H
is less than its potential height,thnd W’s root node got marked before W'’s insertion
was finished.

Proof:

106

Let ISL be the invocation of the Insert_SL routine that credtedlet us first show
that H cannot be greater than thsert_SL adds nodes to the tower it is constructing by
calling InsertNode in line 11. If H >'Hthen ISL executed line 11 at leastH1 times,
So it executed line 19 at least tines. But after ISL executed line 19 for theth time,
curr_v =H + 1, so ISL was poised to exit in line 21 before it could exdosertNode
again — a contradiction. So,+H'. Since W’s construction was interruptedzHH’, and
thus H < H.

Now let us show that if W’s construction was interrupted, then \36$ mode got
marked before ISL completed. We proved that H'<gd ISL did not return in line 21.
Also, ISL could not return in line 14, because it did insert W’s root ,nade thus, by
Lemma 74, InsertNode did not return DUPLICATE_KEY in the firstation of the loop
in lines 10-25 (when curr_v = 1). Therefore, ISL returned in line 18, whigdmmthat
W’s root node got marked during ISL (line 1i).

Note that it follows from the proposition above that the height tofager is never
greater than its potential height.

It is easy to see that the probability distribution of the poteh&mhts of the full
towers is the same in our data structure as in the sequeanignientation. The
probability is taken over all the possible executions, given the plartisequence of
operations each process performs and the schedule (which spédfiesiéer in which
processes take steps). We allowealversaryto choose the schedule and sequence of the
operations for each process. In the next few paragraphs we diseyssssible types of
adversary.

The adversary is the agent that chooses which operations the psocésthe
system should perform, and in which order the processes of the sgkesteps. When
the algorithms executed by the processes in the systedet@mninistic, the state of the
system at any given time can be predicted, given the operations execthedbocesses
and the order in which the processes took steps, and therefore theree@son for the
adversary to make decisions based on the state of the system dunhtigne.
Conversely, if the algorithms are non-deterministic, the sihténe system cannot be
predicted in such a way. For non-deterministic algorithms thexesaveral types of
adversaries: theblivious adversary, who produces a sequence of operations and a
schedule that is independent of the behaviour of the random variakhes system, and
adaptiveadversaries of various strengths, who have some kind of knowledge about the
values of the random variables.

The algorithms for the lock-free linked list, presented in the pusvchapter were
deterministic. Therefore, the type of the adversary was wapte The algorithms
presented in this chapter, however, are non-deterministic, becauseights lué the
towers in the skip list depend upon a randomized routine FlipCoin().

Consider a strong type of adaptive adversary, who knows the heights tofvers.
Such adversary will be able to delete all the tall towersha list, hampering the
performance of the data structure. For example, if the advedséetes all the towers of
height two or greater, the performance of the skip list will Noe better than the
performance of the linked list.

Here, we examine a weaker type of adaptive adversary. Oursadyspecifies the
programfor each process, and the schedule for the processes. The programcdss

107

can call the major routines of our data structure (Search_Sirt I8, Delete_SL), and
the Wait operation, and make decisions based on the outcome of thes®mpef@he
Wait operation just makes a process pass its turn to take a Bhepkchedule is the
ordering in which the processes take their steps. Thus, the agvéesarno direct
knowledge, nor direct control over the randomized parameters of thetdatture (the
heights of the towers). (However, as we will see later, the adveimastitt influence the
probability distribution of the heights of the towers indirectly Imaraging the process
schedule.) This model of the adversary is quite realistic for many apmhsati

The following invariants set the conditions on the heights of the soiwesur data
structure.

Inv 10: Let p be the probability with which FlipCoin() routine returnsdtie For
each possible choice of programs and schedules by the adversarytowachhas
potential height H with probability $1 — p)p 1 for 1< H < maxLevel — 1, and height
maxLevel — 1 with probability FF-ve' ~

Inv 11: At any time, the number of towers that are not full and edswain at least
one node that is not physically deleted, is not greater than tlentuaantention (i.e. the
number of operations that are currently running).

These invariants give us a good insight into the structure of our lock-freesskip li
Inv 10 and 11 hold, then potential heights of the towers are distributed probabiisisca
in the sequential skip list described by Pugh [Pug90], and the nwhit@wvers, which
contain some nodes that are not physically deleted, and also hghe diferent from
their potential height is not greater than the current contentioMh€ proof of the
invariants is given below.

Theorem 104:Inv 10 holds.

Proof:

From the definition of the potential height, it follows that a towas a potential
height H, if and only if the there were H independent invocations oflip€oin()
routine, and either the first H — 1 invocations returned “head”, andasite(H-th)
invocation returned “tail”, or all H invocations returned “head” and khaxLevel. The
probability that the routine returns “head” is p, and the probabiiayit returns “tail” is
1 —p, so the proposition holds.

Lemma 105: Suppose W is a tower with a root node rn, and rn.key = k. If the
execution STL of the SearchToLevel(k, 2) routine is startedina T, and rn is
physically deleted at T, then by the time STL completeghalhodes of W that were in
the list at T will be physically deleted.

Proof:

Suppose some node n belongs to level v of the tower W at time E.1f then n =
rn, and the lemma holds. Suppose, v > 1. Let us take the execution SR5eathbRight
routine called by STL on level v. Suppose SR returns a pair of nodesnZhlBy
Proposition 96, nl.keg k < n2.key, and there exists some time T1 during SR, when
nl.right = n2 and nl is not marked. At time T1 nl is a regular node, soefthas a
regular or a logically deleted node. By Inv 1 and 2 there are ndaregr logically

108

deleted nodes with keys between nl.key and n2.key on level v at T1. Thesaiose
n.key = k and nl.keg k < n2.key, and n is inserted into the list at T < T1, eitheran is
physically deleted node at T1 (in which case the lemma holds), or n = n1.

Suppose n = nl. Let us examine the node sequence of STL, and let tine tiulst
transition that entered the tower W. That transition could not bepef 4y because the
keys of all the nodes in STL’s node sequence are not greater than k, so it had tgpée of ty
2. Then by Lemma 82, node n was not a superfluous node at some momaniSdi;
but n's root node rn was a physically deleted node, when STL waedstar a
contradictionm

Lemma 106: Suppose nl and n2 are nodes on the same level of the skip list, and
nl.key < n2.key. Then if the execution DN of the DeleteNode(nl, n2) roigine
performed, n2 will be physically deleted by the time DN completes.

Proof:

The proof is somewhat similar to the proof of correctness of the Delete_$terout

DN calls TryFlagNode(n1, n2) in line 1. Suppose TryFlagNode resiatgs = IN.

This means that TryFlagNode returned in line 3, 6, or 8, and the pssdeacd# n2 was
flagged. Then DN will call HelpFlagged in line 3. By Lemma 101, thalpHagged
routine will not exit until n2 will get physically deleted.

Suppose TryFlagNode returns status = DELETED. Then TryFlagNodaedtur
line 13. Let us examine the SearchRight routine, which TryFlagNdéel da line 11
before it returned. Let nbe the value of prev_node before SearchRight was executed,
and (n3, n4) be the pair of node returned by SearchRight. Since nl.key < h2rkeya
100 applies, and nkey < n2.key. Also, nlwas not marked at time T, when
TryFlagNode executed line 9 for the last time. Then by Propns$4, n3.mark = 0 and
n3.right = n4 at some time' B T. Also, n3.key < n2.ke¥ n4.key, and since rd n2
(line 12), node n2 is physically deleted &t dnd thus it is physically deleted when DN
completesm

Proposition 107: If a tower W with a root node rn is not full, then either its
insertion Y(rn), or its deletiono(rn) has not yet completed, or all of its nodes are
physically deleted.

Proof:

Suppose a tower W is not full. Then either its insertion is nothiegisyet, or its
construction was interrupted. If W’s insertion is not finished, ttp¢m) has not yet
completed and the proposition holds.

Suppose W’s construction was interrupted. Then by Proposition 103, W’sanser
was finished after its root rn got marked. Let us examineetezutiono(rn) of the
Delete_SL routine. If it is not completed yet, the proposition holds. Sapyos) has
completed. Let T be the moment whe(nn) finishes executing the DeleteNode routine in
line 4. Root node rn is physically deleted at T. Sio¢m) is a successful deletion,
DeleteNode returns del_node = rn, and thi(ra) calls the SearchToLevel _SL routine in
line 7. Let T be the time when this SearchTolLevel SL routine completes. Bynkkem
105, all the nodes of the tower W that were in the list at tinwailTbe physically deleted
at T. So, when the deletiom(rn) completes, all the nodes of W that were in the list at T,

109

are physically deleted. If the insertigiirn) does not insert any other nodes in W after T,
then the proposition holds.

By Lemma 92, the executiap(rn) of the Insert_SL routine can insert at most one
node in W after T. Suppose it inserts node n. Insert_SL inserts nodeslling the
InsertNode routine. After the InsertNode routine that inserted n ebesplit returns
result = n = newNode and prev_node pointing to the node, which was decpssor,
when n was inserted. So, prev_node.key < newNode.key. Then, igfajereturns, it
calls the DeleteNode routine in line 17. Since prev_node.key < newNggdeykeemma
106, this DeleteNode routine will physically delete node n = newNbldes, when the
insertiony(rn) completes, all the nodes of tower W are physically d&leted no nodes
will be inserted in W after tham

Theorem 108:Invariant 11 always holds.
Proof:
Follows from Proposition 10

So, Inv 10 and 11 hold, and thus the potential heights of the towers ateutkstri
probabilistically as in a sequential skip list, and the number oérgwwvhich contain
some nodes that are not physically deleted, and also have heigrtentlifrom their
potential heights is not greater than the current contention C.irEh@rfpulse might be
to conclude that the probabilistic distribution of the heights dfliC towers in our skip
list is same as in the sequential skip list. In that cag®uld be easy to prove that the
searches in our skip list that do not call TryFlagNode, takegQ{) + C) time on
average, where n is the number of the keys in the list. Howevenrfar strategies of the
adversary

1. The event that a tower is full at a given time T is not indepericten the event
that a tower has a certain potential height H.

2. The event that a tower is superfluous at a given time T isxdependent from
the event that a tower has a certain potential height H.

We show why these two statements are true in the next fagnaghs. Note that if
they are true, it follows that the heights of the full towtbiegt are not superfluous are not
distributed the same as the heights of the towers in a sequekmpidist, and therefore it
is not clear whether the average running time achieved is O(log(n) + C).

Let us first show that the first statement is true. Suppose fomer W has a
potential height H. Let us take moment T not long after the IrSkentoutine that created
the tower was invoked. If H is small, then it is more likelyt th& insertion would finish
by time T, than if H were large. Thus, the event that W isdull’ is not independent
from the event that W has a certain potential height H. For anothempée, suppose the
deletion of W is started soon after the insertion is started. ithemore likely for a
tower of large height to become interrupted than for a tower ofadl sieight, and thus
again, the event that W is full is dependent upon the height of W. tNateor this
example we can take any time T after the insertion exits.

In general, the event that W is superfluous at T is also dependenthgppotential
height of W. Suppose a deletion of W is performed by the same pfedass performs
the insertion of W right after it finishes the insertion. Consadéme T shortly after the
insertion has begun. It is more likely that the deletion of Whleggin at time T if W has

110

small potential height. So the event that W is superfluous at depgendent on the
potential height of W.

Thus, we cannot assume that the probability distribution of the pothetglits of
the full towers that contain non-physically deleted nodes is the santhe probability
distribution of the potential heights of all the towers. The exdigrdnce between these
two distributions is something that can be explored in future work. Henyvtehe intuition
is that the difference should not be large, and the performanice séarches in our lock-
free skip list is not hampered considerably because of this difference.

4.4 Lock-Freedom and performance

In this section we will prove that our data structure is {vek. Then we will
describe several ways to improve the performance and spaceeneguis of our data
structure by constant factors.

4.4.1 Lock-freedom

We will prove the lock-freedom property of our data structur@roying that after
some process takes a finite number of steps, a successful I&fe werformed on the
data structure (by this process or by another one). Since eacHiampeeqjuires a
constant number of successful C&S’s to complete, this impliesfieeklom. We start by
proving several technical lemmas.

Lemma 109: Suppose process P is executing a SearchRight routine SR. Then afte
P performs some finite number of steps, P will complete SR, or P will cajirdafNode
routine in line 4, or there will be a successful C&S performed by some process.

Proof:

If SR enters the loop 3-7, it calls TryFlagNode. If it does nogrethis loop, then
each iteration of the loop in lines 2-10 costs O(1), and in eachiatefees 9 and 10 are
executed. Note that each time SR executes line 9, it makassition of type 2. If no
successful C&S’s are performed, no new nodes get inserted inistftamtl therefore SR
can execute line 2 only a finite number of times, if it does abtTeyFlagNode. Thus,
after a finite number of steps, the number of steps P will caen @&, or call a
TryFlagNode routine in line 4, or there will be a successful @&B8ormed on the data
structurem

Lemma 110: Suppose process P is executing a TryFlagNode routine TFN. Then
after P performs some finite number of steps, P will corapldEN, or P will call a
SearchRight routine in line 11, or there will be a successful g&¥ormed by some
process.

Proof:

If no C&S’s are performed, no new nodes get inserted into thealisttherefore
completing the loop in lines 9-10 takes finite time. All the otheed in TFEN are
executed at most once during the single iteration of the loop 4rtidexecuting any of
the lines except line 11, where SearchRight is called, takEsti@(e. Therefore, if no
successful C&S’s are performed, after a finite humber gfssi will either complete
TFN, or call a SearchRight routine in line M.

111

Lemma 111: Suppose process P is executing the HelpFlagged, TryMark, or
HelpMarked routine R. Then after P performs some finite numbdeps$,seither P will
complete R, or there will be a successful C&S performed by some process.

Proof:

HelpMarked takes O(1) steps to complete. After O(1) steps, lagipéd either
completes or calls TryMark, and after O(1) steps TryMark eitbenpletes one iteration
of the loop 1-6, or calls HelpFlagged.

Let us show that if an invocation of TryMark completes two itenatof the loop in
lines 1-6 without calling HelpFlagged, then a successful C&S wafrped on
del_node.succ during the execution of those two iterations. If no C&Ss performed,
then after the first iteration completed, del_node was not flaggesl 4) and was not
marked (line 6). When the second iteration started, next_node was set to del_node.right i
line 2. So unless another process performs a C&S on del_node.succ, theitseaton
will perform a successful C&S on del_node.succ when it executes line 3.

So, if there are no successful C&S’s, TryMark cannot complete rtil@n one
iteration of the loop in lines 1-6 without calling HelpFlagged. At given time there can
be no more flagged nodes than deletions in progress, and thus if no succ&ss are
performed, TryMark can call HelpFlagged, and then recursivel¥f,itsely a finite
number of times.

Thus, after P performs a finite number of steps, either P wiliptete R, or there
will be a successful C&S performen.

Lemma 112: Suppose at time T process P is executing a SearchRight or
TryFlagNode routine R. Then after P performs some finite nuisteps, either P will
complete R, or there will be a successful C&S performed by some process.

Proof:

Case 1:Suppose R is the TryFlagNode routine. By Lemma 110, after R naakes
finite number of steps, it will either complete, or start an ette@c SR of the SearchRight
routine in line 11. Note that SR will start from a node that wasaukedl (line 9) at some
time T1 > T. By Lemma 109, it will take SR a finite numbest&ps to complete or call
another TryFlagNode.

Case 1(a): Suppose SR completes. Let (n1, n2) be the nodes it r8inges.it
started from a node that was unmarked at T1 > T, by Propositiohe34, éxists some
time T1 after T, when nl.right = n2 and nl is not marked. Then R enters the next
iteration of the loop 1-14. If it then exits in line 2, or successfegcutes the C&S in
line 4, the proposition holds. If it fails the C&S, then there w&38&& performed on
nl.succ after T1> T, and the proposition also holds.

Case 1(b): Suppose SR calls another TryFlagNode routine. Let nl dvel th2
arguments with which it calls that TryFlagNode. By Proposition 83, n1 was notadretrke
T1 > T. Also, there was some time' LT during the execution SR when nl.right = n2.
Since marked successor pointers do not change, there was some2tiafierTT and
before SR TryFlagNode, when nl.right = n2 and nl is not marked. Thémelsame
argument as in the previous case, either there will be a C&6rmpexd on nl.succ (in
which case the proposition holds), or TryFlagNode will exit in |Be Suppose
TryFlagNode exits in line 3. Then SR will proceed and calpbHelgged(nl, n2) in line
6. Then by Lemma 111, after a finite number of steps, either assiat C&S will be

112

performed (in which case the proposition holds), or HelpFlagged willplsten By
Lemma 101, HelpFlagged does not return until it marks and physts#yes n2, and n2
was not physically deleted at T2, thus a successful C&S will be perforneed aft- T.

Case 2:Suppose R is the SearchRight routine. By Lemma 109, after R raakes
finite number of steps, it will either complete, or call theFlagNode routine in line 4.
As we just proved, after a finite number of steps, either thiEldgiNode will complete,
or there will be a successful C&S on the data structure (ifattexr case the proposition
holds). Suppose TryFlagNode completes. We will again let SearchiRighantil it calls
another TryFlagNode. Suppose this TryFlagNode routine has argumieatsl n2. Node
n2 is not physically deleted at T. If TryFlagNode returns statl¥, then HelpFlagged
will be executed, and by Lemma 101 it will not return until n2 igspfally deleted, so a
successful C&S will be performed after T. If TryFlagNoé¢eurns status = DELETED,
then n2 already got physically deleted (for a proof see Case 2(a) in Th&0z2e.m

Lemma 113:Suppose at time T process P is executing a SearchToLevel_SL routine
STL. Then after a finite number of steps, either P will comp&fe, or a successful
C&S will be performed by some process.

Proof:

The execution of the first line in STL takes finite time, hseathe height of the
head tower is finite. Since curr_v is finite after FindStart r8turns, the number of
iterations of the loop 2-5 that can be performed is also finite.,Tihdsllows from
Lemma 112, that after a finite number of steps, either P withplete STL, or a
successful C&S will be performes.

Proposition 114: Suppose at time T process P is executing a Search_SL routine.
Then after a finite number of steps, either P will completecBe&L, or a successful
C&S will be performed by some process.

Proof:

Follows from Lemma 113

Lemma 115: Suppose at time T process P is executing an InsertNode roNtine |
Then after P performs a finite number of steps, eitherllittaimplete IN, or a successful
C&S will be performed by some process.

Proof:

First note that by Lemmas 111 and 112, after a finite number of Hiepsll either
perform two full iterations of the loop in lines 3-20 (unless iumed earlier), or a
successful C&S will be performed. Also note that if a conditiomi@ b is true in one of
the iterations, then IN will call HelpFlagged, which will ensphgysical deletion of the
prev_node’s successor (by Lemma 101), so a successful C&S will be performed.

Suppose the condition in line 5 is always false. Léb@’the moment when line 15
is executed for the last time during the first iterationth#stt time nl1= prev_node is not
marked. Let (n1, n2) be the pair of nodes returned by SearchRight ib7limethe first
iteration. By Proposition 84, there is some timie>TT, when nl.right = n2 and nl is not
marked. Let us now examine the second iteration. By our assumptiocgritigion in
line 5 is always false, so nl is not flagged when line 5 is es@ciliberefore, either IN

113

will successfully perform the C&S in line 9, or another prowefigperform a successful
C&S on nl.succ after'Tm

Lemma 116: Suppose at time T process P is executing an DeleteNode rBiNine
Then after P performs a finite number of steps, either itosithplete DN, or at least one
successful C&S will be performed by some process.

Proof:

Follows from Lemmas 111 and 1.

Proposition 117: Suppose at time T process P is executing an Insert_SL routine
ISL. Then after P performs a finite number of steps, eitheillitemplete ISL, or at least
one successful C&S will be performed by some process.

Proof:

First note that by Lemmas 111, 112, 113, 115, and 116, after a finite number of
steps, ISL will either complete one full iteration of the looplires 10-25 (unless it
returns earlier), or a successful C&S will be performed. Haltkteration of the loop 10-

25, inserts a new node into the skip list by performing a C&S. Thespitoposition
holds.m

Proposition 118: Suppose at time T process P is executing a Delete SL routine
DSL. Then after P performs a finite number of steps, eith&illicomplete DSL, or at
least one successful C&S will be performed by some process.

Proof:

Follows from Lemmas 111, 112, 113, and 6.

Theorem 119:Our skip-list data structure is lock-free.

Proof:

It follows from Propositions 114, 117, 118, that after a finite number pf sté
some process, either that process completes its operation, orcessfut C&S is
performed on a node of the data structure. Any successful C&S isf @ar insertion or a
deletion operation, and for any operation there is a finite number @&ss that are
part of it (for the search this number is 0, for the insertiontofver of height H it is H,
and for the deletion of a tower of height H it is 3H). The hsigsit the towers are
bounded by the constant maxLevel, so after a finite number of stegmmaf process,
some operation will complete, and thus our data structure is loclsifree.

4.4.2 Fine tuning performance and space requirement s

There are a few ways to improve the performance of operatiang skip list by a
constant factor. In our implementation, when an insertion is construatitayver, it
performs a separate search (line 24 in Insert_SL) eachttimeeds to insert a new node
into that tower. However, this is not necessary: if an inseranrémembers the node
pairs returned by the SearchRight routines called from tls¢ 8earchTolLevel SL
routine ISL executes (line 1 in Insert_SL), ISL can use thesles to insert new nodes
into the higher levels of the tower it constructs.

Similarly, a deletion does not need to perform a complete searegh 7l in
Delete_SL) to delete the rest of the nodes of a tower affetates the tower’s root node.

114

Instead, it can remember the node pair at the top of the todeletes and start a search
from the first node of the pair after it deletes the root nodgidfchange to the deletions
is implemented, the cleanups performed by the insertions whefirideyut that the root
node of the tower they are constructing is marked (lines 16-17 irt_|8¢¢ should be
modified as well. An insertion should delete all of the nodes in thertavot only the
one it just inserted. (This slightly increases the constastora of the cost of the
insertions that have to cleanup, but we likely win more by decigg#séncost of all of the
deletions.)

For more space efficiency, we can use the same constructlugas/Pug90] (see
Subsection 4.1.1) for our skip lists. Recall that Pugh used single nididemwitiple
forward pointers to represent a tower. The reason that we uddéfér@nt design was
only to make the presentation of our algorithms easier. (In pkntjido avoid modifying
the syntax of our linked list algorithms much.) Employing Pughsgiefor our data
structure would be a very easy change, and it would result inex bptce efficiency,
because there will be no down (or up) pointers and each tower wouldskpne copy
of its key.

115

5 Memory Management

Developing a correct and efficient memory management scli&nmeportant to
make a data structure practical. Developing such a scheme for a locktfiestrdcture is
often quite a challenging task. The difficulty lies in determirhogy and when memory
that was once occupied by parts of the data structure (e.g. obddmked list), can be
freed and reused, so that the processes that might stdcbsesing those parts are able to
complete their operations correctly.

With our data structure, we cannot simply free the nodes at theemavhen they
get physically deleted, because other processes mighbestithversing them. In fact, a
delayed process might have its local pointer set to a physidaleted node for an
arbitrarily long time. We start by describing severabktxg approaches that could be
used to perform memory management for our data structure. Allroftibge their flaws,
which we also discuss. At the end we give an outline of a new ngemanagement
scheme we currently investigate.

5.1 Existing approaches

5.1.1 Reference counting

The first approach that can be used isré#ference countingnethod. The method
was used by Valois for his lock-fee linked list structurg\Mal95]. It contained a few
mistakes, which were later corrected by Michael and ScoM80p]. With this method,
each node includes a reference counter that reflects the totaenohreferences to this
node from the data structure and from the processes operating datahstructure. A
node is freed if and only if its reference counter reaches izerdhere are no references
to a node either from the data structure or the processes. When &s rfoeled, the
reference counters of all the nodes it has pointers to are siedr@ghich can trigger the
freeing of some of these nodes). The implementation uses fourrbasies to operate
on the nodes: SafeRead, Release, New, and Reclaim. SafeReed Is/uke processes
instead of a simple read. Given a pointer to node n, it increasesfersnce counter and
returns n. Release is called when a process finishes opevatimgode. Called on node
n, it decreases n’'s reference counter and determines if n ceebtehd reused safely. If
so, then Release calls Reclaim on n, which adds n to the hsddek available for reuse.
New() allocates a node from the list of nodes available for yeusializes its fields, and
returns a pointer to it.

The method can be applied to any acyclic data structure. \Gimilénked list and
skip list data structures are not strictly acyclic becauséhefback link pointers, it
follows from Propositions 18 and 41 for linked lists and Propositions 79 anat 8&ip
lists that there are no cycles among the physically deleted netiech is enough for the
method to work.

The method has two flaws. First, SafeRead and Release havedleldeeach time
a process updates its pointers, moving through the list. These routen&3&$ss to
update the reference counters of the nodes, and therefore, dadimgftten considerably
slows down the execution. For example, Harris [HarO1] reportedveda¥an of his
algorithms by a factor of 10 to 15 where this method was used, cetnpathe case
where no memory management was enabled and deleted nodes weresadt e

116

second flaw of this method is that if a delayed process mairdaiosal pointer set to
some deleted node n for a long time, while other processes continperfaym
operations, the system might run out of memory even if the total numhleéements in
the dictionary is O(1). The reason is that the nodes that cagabbed from n always
have a reference counter greater than zero, so there canabeitearily many deleted
nodes that cannot be reused.

5.1.2 Garbage collectors

Another approach is to use a sepagdebage collectgre.g. [HM91, Gre99]. A
major problem with this approach is the existing garbage colgettat we are aware of,
are either not lock-free (and thus their failure can prevent mesefom making
progress or can cause a system to run out of memory), or requita specating system
support. The method also has the same vulnerability as the refecemteng method: a
long delay of a single process might cause the system to run out of memory.

5.1.3 Deferred freeing

The third approach is to use tlueferred freeingmethod. This method was
introduced by Harris in [Har01]. Each process maintains a local timestamgp tpalated
each time a process starts a new operation. Each node of tisealigimented with an
additional field, through which it can be linked onto a to-be-freed Vigten it is
physically deleted. There are two to-be-freed lists per psodée old list and the new
list. The old list also contains a timestamp, which is moremntethan the time of physical
deletion of any node in that old list. When the timestamp of an silédbdicomes smaller
than the timestamps of all the processes in the system, theinddasold list are freed,
and all the nodes of the respective new list are moved into that old list.

The main vulnerability of the method is that if some process P matesomplete
any operations, while other processes do, the system might run manuodry, because
P’s timestamp will never get updated, and therefore the oldolidtse other processes
will not get freed, while the contents of the new lists will keep increasiagn

5.2 The new approach

We also outline another approach for memory management, although wadtave
yet completed our research on it. The system maintains adstpaeeie consisting of the
nodes that are deleted, but not yet reused. As in the deferegtgfreethod, each node is
augmented with a field, through which it can be linked onto the qust€Also, the
successor fields of the nodes are augmented with tags thiacesmented each time a
node is reused. Tags allow the processes to determine if a nodeusad after they
entered it. Incorporating tags into the successor pointers helps ltovittedhe ABA
problem.

After a process logically deletes a node, it enqueues itéd#ierphysical deletion.
When a process needs to perform an insertion, it starts by chetkirgnode at the
beginning of the queue has been physically deleted or not (for node rarthoe done by
checking if n.back_link.right equals n). If it was not, the process aiggpthe deletion.
Then it increments the tag of that node (by performing a C&8@successor pointer),
and dequeues it. After a successful dequeue the process incremeetastg bf the node
again (no need to perform a C&S this time) to prevent otheepses who might think

117

the node is still in the queue from modifying the node’s succeisddr The process then
uses this node for the insertion.

While processes traverse the linked list data structure, thetagse¢o check if the
nodes they are traversing were reused. This is done as follows. 8ypposss P moves
from node nl into node n2 (either by following a right pointer or a bad¥. [From
Propositions 18 and 41 it follows that if n2 is in the queue of nhodesgadtibe reused,
then nl is also in that queue and ahead of n2, i.e. if n2 was reuseas ndused as well,
and therefore, nl's tag changed. So, every time P moves into a newtrederds its
tag value, and then verifies the tag value of the node itgtidtds not changed. If it did,
P restarts its operation, otherwise it continues. Since P Btarisa head node, which is
never deleted or reused, it will always have valid tag values of the nodesréésave

We make tags big enough so that the full wraparound of a nodelghiéeysome
process maintains a pointer to that node is practically imposBibdé. _link pointers are
also augmented with tags, and processes use C&S’s (not simple writes) to memify t

If we ensure that the queue always has sufficiently many nodeéur estimate is
2p for the linked lists, where p is the number of processes), theenahtestarts will be
small compared to the number of successful operations, and thezachaast of any
operation on the linked list will still be O(n + ¢(S)). Below is a sketch of the proof.

Suppose P restarts operation S at time T2 because of the reamaeohode n it
was traversing. Let T1 be the time when P last (re)st&teefore T2. It is easy to show
that n was not marked at T1. Let N be the number of nodes in the gienen was
added to it. Since node n was reused, all N nodes ahead of iteussziras well. Then
there were at least N — p successful insertions performeceéetivl and T2. Let us
distribute the cost of the restart of S between these inserfiers result, each insertion
will be billed for O(n + ¢(S)/(N — p). It is easy to shdvat one process does not bill the
same insertion twice for the restart, and therefore them® imore than p operations
billing any insertion for a restart. So, if we make N — p >hp, total cost billed to any
insertion by the restarts is O(n + ¢(S)).

Applying this method to our skip lists is a bit more complicatedalee of the
down pointers: if n1l.down = n2, we cannot guarantee that n1 will be ahedifthe
shared queue. One of the solutions to this problem is to use the queaeate op whole
towers instead of operating on the individual nodes. With this solutetags of all the
nodes in a tower are the same. Each tower contains the maxpossible number
(maxLevel) of nodes, but the nodes that are too high (higher thanigig bka tower
during that particular reuse) are not linked into their respetdvel-lists. This way every
tower can be reused as a tower of any legal height.

118

6 Conclusion

We presented new algorithms implementing a lock-free linkécitid a lock-free
skip list. We proved their correctness and lock-freedom.

For the linked list algorithms, we proved that the amortized etogctime of an
operation S is O(n(S) + ¢(S)), where n(S) is the number afegits in the list when S
starts, and c(S) is the contention of S. This is better than tf@mance of any of the
previously published algorithms for a lock-free linked list. Our prdaiwsed that the
contention overhead (i.e. the difference between the amortized afosts operation
executing solo, and an operation executing in the presence of a contention) i% O(c(S)

To perform our analysis, we used a complicated scheme of billing part aishef
each operation to the successful C&S’s that were performed bwtiomesr that are
running concurrently. The technique of analyzing lock-free data gtasgctn this way is
unique in the area. We believe that this technique may not only helyzaraher
complicated lock-free data structure, but may also inspire otheanehes to create new
efficient lock-free data structures, as our design was driven by this taehniq

Our lock-free linked list algorithms will most likely perform dbecompared to
Harris’s [HarO1] and Michael's [Mic02-1] algorithms when execuon fairly large lists
in the presence of high contention, so that the C&S’s performed bgrdoesses fail
often and the cost of recovery from such failures is high.

Our implementation of the lock-free skip lists uses our linked difggsrithms (with
some slight modifications) to perform the operations on the individuelsl®f the skip
list. It is not hard to see that the amortized cost of the opesaiin our lock-free skip list
is Q(log(n(S)) + c¢(S)) and O(M(S)), where m(S) is total numbesparations invoked
before S was called. Although the scenarios in which the anwbdiaz= of the operations
is significantly different from O(log(n) + c(S)) are fgirexotic, and probably are not
likely to occur in a real system, performing a stricalgsis is a much harder problem
than with the linked list due to the following two reasons:

1. The searches performed by an operation S can traversecthéirides of nodes
that were marked by deletions that completed before S was invoketkfdre,
the approach to the analysis which we used for the linked list doegveous
good results for the skip list.

2. Itis hard to capture the exact difference between the probability diginitthe
heights of the towers in our skip list versus the sequential skigur intuition is
that this difference does not significantly hamper the perforenahthe searches,
but proving this is a separate problem, which might be addressed in future work.

We believe that our work on lock-free skip-lists, apart from gatesg the first
lock-free implementation of this data structure that does not usersaliv®nstructions,
provides good insight into the problems faced when designing such stidatare. One
such problem is dealing with a tower whose deletion starts bé$aresertion is finished.
Another problem is making sure that the probability distribution ofhisights of the
towers in a lock-free skip list is close to what it is ipeguential skip list. We have some
ideas on how to improve on the data structure. Perhaps the most pgoofitniem is to
make the deletions help the insertions before they delete the tower.

It is worth noting that our design of linked lists and skip listevedl more than
standard dictionary operations to be implemented. For example, opebsieteGE,

119

discussed by Harris [Har01] can be easily implemented for oar daictures without
any changes to the other operations. The operation DeleteGE(tgsdafal returns the
smallest key that is greater than or equal to k. This operatianotaeasily be

implemented with Harris’s design, because when a node gets megeid,s algorithm

has no control over that node’s predecessor. With our algorithms, howesgroblem

does not exist because of flags. For example, for skip listsoff@sation could be as
shown in Figure 41.

DeleteGE_SL(Key k): RNode

1 (prev_node, del_node)SearchTolLevel SL(k& 1)

2 loop

3 result DeleteNode(prev_node, del_node)

4 if (result == del_node)

5 SearchTolLevel_SL(del_node.key, 2) /I Deletes the nodes at higher levels of the tower
6 return del_node

7 (prev_node, del_nodefearchRight(k £, prev_node)

8 end loop

Figure 41: Possible implementation of.DeleteGE_SL

Future work on our linked list and skip list data structures migtiude the
improvement of the skip lists algorithms and the further developmetiteomemory
management scheme outlined in Section 5.2.

120

References

[AVL62]

[Gre99]

[Har01]

[Her91]

[Hero3]

[HMO1]

[HW90]

[1BM83]

[SMKKBOO]

[Mic02-1]

[Mic02-2]

G. M. Adel'son-Vel'skiy, Ye. M. Landis, "An Algorithm for the
Organization of Information,Deklady Akademii Nauk USSRIoscow,
Vol. 16, No. 2, 1962, pp. 263-266.

M Greenwald. Non-blocking synchronization and system deBigD.
thesis Stanford University, 1999. Technical Report STAN-CS-TR-99-
1624.

Timothy L. Harris. A pragmatic implementation of non-blogklmked-
lists. Proceedings of the ¥5International Symposium on Distributed
Computing 2001, pp.300-314.

Maurice Herlihy. Wait-free synchronizatiolACM Transactions on
Programming Languages and SysteWsl. 13, No. 1, 1991, pp.124-149.

Maurice Herlihy. A methodology for implementing highly corrent data
objects. ACM Transactions on Programming Languages and Systems
Vol. 15, No.5, 1993, pp. 745-770.

Maurice P. Herlihy and J. Eliot B. Moss. Lock-free gaaollection for
multiprocessors.Proceedings of the 'S annual ACM Symposium on
Parallel Algorithms and Architecturepp. 229-236, 1991.

Maurice Herlihy, Jeanette Wing. Linearizability: arectness condition
for concurrent objectsACM Transactions on Programming Languages
and Systemd/ol. 12, No. 3, 1990, pp. 463-492.

IBM System/370 Extended architecture, Principles of opamatiBM
Publication No. SA22-7085, 1983.

lon Stoica, Robert Morris, David Karger, M. Frans KaahoHari
Balakrishnan. Chord: A scalable peer-to-peer lookup service fanétte
applications. Proceedings of the 2001 Conference on Applications,
Technologies, Architectures, and Protocols for Computer
Communicationspp. 149-160.

Maged M. Michael. High performance dynamic lock-free habhes and
list-based setsProceedings of the ¥4annual ACM Symposium on
Parallel Algorithms and Architecture002, pp.73-82.

Maged M. Michael. Safe memory reclamation for Dynanack-free

objects using atomic reads and writ€®soceedings of the 21Annual
Symposium on Principles of Distributed Comput2@02.

121

[MS95] Maged M. Michael and Michael L. Scott. Correction of a megm
management method for lock-free data structures. Technical Report 599,
Computer Science Department, University of Rochester, 1995.

[Pug90] William Pugh. Skip lists: a probabilistic alternative balanced trees.
Communications of ACM/ol. 33, No. 6, June 1990, pp. 668-676.

[SS03] Ori Shalev and Nir Shavit. Split-ordered lists: lock-fe@éensible hash
tables. Proceedings of the 5 ACM Symposium on Principles of
Distributed Computing2003, pp. 102-111.

[ST85] Daniel D. Sleator , Robert E. Tarjan, Self-adjusting lirssarch trees,
Journal of the ACMVol. 32, No.3, July 1985, pp.652-686.

[Tre86] R. Kent Treiber. Systems programming: Coping with Raisih.
Research report RJ 5118, IBM Almaden Research Center, 1986.

[Val95] John D. Valois. Lock-free linked lists using compare-and-swap.

Proceedings of the fuacMm Symposium on Principles of Distributed
Computing 1995, pp. 214-222.

122

