
 Design Guidelines for the Lab Component
of Objects-First CS1

Hamzeh Roumani

Department of Computer Science
York University

Toronto, Ontario, Canada
roumani@cs.yorku.ca

Abstract
We adopt the view that CS1 labs are not programming
assignments, and that they should not be used for grading
students or assessing their level of understanding. Instead,
we think of them as teaching instruments that complement
lectures by teaching the same material but in an exploratory
fashion. But for labs to play this pedagogical role, certain
conditions must be met in terms of how they are written
and the complexity they expose. In this paper we present
guidelines for designing the labs and for the Java packages
that must accompany them, with special emphasis on soft-
ware engineering. Our own experience with implementing
these guidelines, together with a few samples, is included.

1 Introduction
Labs have long been associated with CS1 but there doesn't
seem to be a consensus as to their format or to the
pedagogical role they play. Historically (as the name
implies) they were meant to be done in the laboratory, but
with the increase in enrolments and the inability of
institutions to cope, take-home labs became common. This
shift, from an environment where time and collaboration
were fully controlled, to one with no controls at all, has
naturally led departments to reduce the weight associated
with labs from 20-30% of the overall course grade to less
than 10%, and this has, in turn, led economically-minded
students not to do labs. In fact, this lack of control has led
some departments, esp. those offering distance education,
to drop labs altogether. It is also not clear whether labs
should be viewed as evaluation tools [2] (like assignment
projects but controlled) or teaching instruments [5] (like
lectures but explorative).

It is our belief that, if properly designed, labs constitute an
integral component of CS1 and that, in fact, the knowledge
they impart cannot be conveyed as effectively in lecture.
Many students approach CS1 the same way they approach,
say, Math1 or Physics1: "as long as we understand the
concepts presented in lecture and read the corresponding
chapter in the text, we are doing fine". It takes 4-5 weeks
before these students sit at a computer, but by then, it is too
late. Labs enable us to create early rapport between student
and computer; thereby exploiting the fact that CS is the
only science whose ontological reality is so readily
accessible. On the conceptual level, labs are unique in that
they can uncover misconceptions and cognitive models the
student comes to CS1 with. As argued in [5], labs adopt a
constructivist approach that enables student to confront any
mental models they have, and build new ones. Moreover
(and this is based on informal surveys we conducted over
two years), it seems that the younger generation finds the
Labs' explorative approach more appealing than the
analytic one often adopted in lecture ("because it is fun to
recognize patterns in repeated observations, but it is boring
to learn and apply an abstract concept").

In this paper, we present a summary of our experience with
labs after designing, implementing, and refining them for
three years (since our CS1 switched to Java). Section 2
presents a number of design principles that can be viewed
as guidelines for designing labs so that they fulfill their
pedagogical role and complement lectures. One of the
principles calls for a specialized set of library classes, and
these are discussed in section 3. Section 4 implements the
principles by specifying the structure of each lab, while
section 5 provides concrete samples from selected labs.

Our work is restricted to introductory courses adopting the
Objects-First approach. Using the classification scheme of
the latest Computing Curriculum report, CC2001 [3], this
would be CS101O (the first in the new three-course
sequence) or to the traditional CS111O (the first of two
introductory courses).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIGCSE'02, February 27– March 3, 2002, Covington, Kentucky, USA.
Copyright 2002 ACM 1-25113-473-8/02/0002...$5.00.

2 Design Principles
• Labs are not to be thought of as evaluation tools.

Students should see them as educational instruments
that complement the coverage in lecture and in the
textbook. To that end, students must be allowed to
discuss the tasks among each other and/or seek help
from the TA, and instructors are encouraged to draw
examples from the Labs in their lectures and answer
lab-related questions. Nevertheless, some mechanism
must be in place to entice students to do the labs within
their scheduled weeks (and to check off the names of
those who did).

• The Labs must be portable and self-paced. Students

can do them in a campus lab or on any home PC that
can run the Java SDK. This implies that all needed
Java packages installed on the Departmental system
must be available for download (perhaps as one jar
file). A generous time limit must be allotted for the
completion of a lab; one that leaves ample time for
students to consult the textbook or seek help, and that
allows advanced students to ponder about the posed
ideas and complete the optional tasks.

• Labs must be explorative in nature. Unlike lectures,

which typically follow an analytic approach, labs must
develop skills and processes for discovering behaviors.
While designing labs, it is helpful to think of Computer
Science as a natural Science and to think of labs as its
phenomenology, or, to let the name "Lab" live on,
experiments. Once students achieve a high comfort
level with experimenting, they should never have to
ask: "Can you assign an int to a float?" but rather,
will find it more natural to write a tiny program to
check. They also will fully relate to black-box testing,
software specification, and software validation.

• Labs on object-based programming must be set in an

abstraction that is credible and consistent. Labs in the
first part of the course concentrate on class usage
(write a main method that uses a given API) while the
remaining ones cover writing classes. It is critical that
these earlier labs are not viewed as inferior to the later
ones, and hence, they must not explain things by "as
we shall see later when we look under the hood".
Instead, they should be viewed as teaching how to
confront complexity by extracting facts that are
implementation-independent. It has been widely
recognized [1,7] that without a clear separation
between user and implementer, the student does not
benefit from abstraction (as a tool to learn
programming), and does not see abstraction as a tool
(for dealing with complexity in general). But for
abstraction (the cover story as [1] puts it) to work, we
must adopt standard models for presenting classes and

for visualizing their instances. Implementing and
enforcing these models can be achieved at various
levels, but no matter how implemented or enforced,
some sort of a plausible mental picture must emerge
(or else there are too many holes in the story). We
achieved this, as shown below, by providing a cleanly
designed set of inter-related classes.

• Only one method (main) should appear in the class
that the student writes in an object-based lab. A
typical object-based lab involves writing a main
method that uses existing classes to perform input,
validate, compute, and then output. But even in simple
programs, a task may need to be repeated (e.g. output
two numbers with a thousand separator) and one is
tempted to place the task's code in a (static) method
so that main can re-use it. Such an approach, which
traces the historical evolution of procedural abstrac-
tion, teaches bad habits (state is held only by the caller;
methods have no side effects; the returns of a method
is determined solely by its parameters) and prevents
the picture of an object as an intelligent agent with
state, from emerging. We therefore must design these
labs so this situation does not arise, or so that it is
handled without adding static methods to the class.

3 The Supplied Packages
We have found that supplying our own set of classes
(bundled in one jar file as two packages) allows us to
control the degree of complexity students see, and the level
of consistency in naming and documenting. For example,
by consistently naming accessors and mutators (using get
and set), students can easily discern the object's attributes
and determine which, among them, are read-only. And by
ensuring that all classes have toString, equals, and
clone methods, students feel confident of their early
observations. We adopted javadoc-style API throughout.
The minimum needed features are:

• Simple I/O: This can be text (i.e. console) based or

GUI. For the former, the class should provide static
methods for reading and writing primitive types and
strings. For the latter, Swing's modal dialogs can be
wrapped in static methods overloaded for every type.
See [4] for a survey of I/O packages and for a concrete
implementation of a simple GUI I/O.

• File/URL I/O: Two classes (one for reading and one
for writing) are needed. The constructor takes the file
name (or the URL in case of reading) as parameter and
there are (non-static) methods for reading / writing.

• Assertion services: The objective here is to expose
CS1 students to design-by-contract constructs [6],
which provide a unique view of programs as a collec-

tion of contracts rather than a continuum of statements.
How the assertion is expressed (as a simple boolean or
a predicate), how is it enforced (not at all or via an
exception), and the types of supported assertions (pre,
post, invariants, etc.) can vary significantly (and so
will the complexity). We have chosen (what we see
as) a middle ground: the method:
static void assert(boolean, String)

terminates the program (by throwing an exception) if
the boolean is false, and displays the passed string
along with a stack trace. This can be used to express
preconditions, checks, and loop invariants; and can be
adapted for post-conditions; but admittedly, is limited
to boolean conditions and does not get automatically
incorporated into the API documentation. A number
of more elaborate approaches are available [9,10] (see
[10] for a survey of published work) but it remains to
be seen whether the degree of formality they require is
suitable for CS1.

• A number of cleanly designed classes that contain
static and not-static fields and methods, overloaded
features, composition, and inheritance. A number of
deliberate (but clearly documented) S/E violations can
be incorporated (a public field that should be private,
an accessor returning an object instead of its clone, a
mutator setting a field without validation, etc.).

4 Implementation
We assigned 8 labs per term (4 months), with one week to
complete each. This is the most we could in a term because
at least four additional weeks are needed for supplementary
material (such as Unix, tools; and writing assignment
reports) and for two assignment projects (these are
individual pieces of work that are completely separate from
the labs).

Each lab is self-contained, depending only on preceding
ones, and introducing any new materials it needs via
explorations. This relieved us from having to maintain
precise synchronization with lecture, which is difficult in
large, multi-section courses. The first 4 labs are object-
based; the remaining 4 are object-oriented. Each lab has
three sections all focusing on one topic:

• Explorative tasks: Each task asks the student to look

for some feature in a given API, write a code fragment
that uses (or implements) the feature, add debugging
I/O, and then predict the output and verify by actually
running the fragment. This way, students learn by
observing and, in addition, get into the habit of testing
incrementally as they program. The tasks alternate
between ones that introduce new topics by asking the
student to do something and observe, and ones that

probe and challenge the student's mental framework by
asking for an explanation.

• Exercises: These are similar to the explorative tasks
but involve less handholding. Rather than pinpointing
the needed method, for example, the student has to
search for it. Furthermore, exercises in the object-
based labs are drawn from a different set of classes in
order to ensure that students are able to read and
comprehend an API regardless of context. For
example, if strings and file I/O were visited in the
explorative part, the exercises would look at String-
Tokenizer and Random.

• Checking: This task involves solving a specific

problem. In the object-based labs, the student is asked
to write a main method that accomplishes a stated task
and generates output having a given format (a few
sample runs of the sought program are given). In the
object-oriented labs, the student is asked to implement
a class given its API. When done, the student runs the
eCheck program [8], or brings the program to a TA.
Checking examines three aspects:
 The program's output must meet the specification

in terms of format and layout.
 The program generates the correct output for a

number of test cases.
 The source file conforms to a given style code

(mainly naming convention, indentation, and the
placement of braces).

If the program did not pass a test, the student is shown
why and is asked to investigate and then re-check. The
process can be repeated as many times as needed until
the lab is successfully checked.

5 Examples
The explorative section is obviously the heart of the lab and
one that must be designed with utmost sensitivity to the
(average) student background. In Lab 1, for example, we
assume no previous exposure to classes and features, and
hence, the pace is slow, terminology is defined whenever
used, and the scope is limited to the edit-compile-run cycle,
the main method, anatomy of an API, static features,
primitive types, operators, and expressions. All examples
are done "on the fly" so that we can postpone the intro-
duction of local variables to the next lab (see Figure.1). The
exercises in Lab 1 examine static features in other classes;
e.g. given a string constant like "123", write a program to
multiply it by 2. Students are directed to look for the
static parseInt method in the Integer class.

Using the terminology of CC2201, this labs covers topics
in the following units: PF1, PL4, PL6, and SE2.

A second example is provided in Figure.2, where the
explorations of Lab 2 are shown. Here, the setting is that
of a software project (to convert temperatures) and the
student is guided through the various phases of the
development process. The material covered here includes
the software development process; declaration of local
variables; assignment and casting; testing; and round-off
errors. The units covered are the same as Lab 1 plus SP5.

An example of the checking section is shown in Figure 3
for Lab 2. Recall that at this stage, students know about
primitive types, arithmetic and boolean operators, mixed-
type expressions and casting. They have also been fully
exposed to static features, both in the supplied packages
and in the standard base libraries; and in particular, the
Math class. They don't know about selection but can still
do input validation by using the assert method. Note
that we place strong emphasis on formatting even though it
may be argued that getting the answer right is good enough
at this stage. We do so for two reasons: (1) it is important
at this early stage that students relate to the notion of pro-
gram correctness relative to specification rather than some
subjective measure, and (2) we facilitate automated lab
checking via eCheck [8] by eliminating the so-called
"output variability" problem that usually complicates auto-
mated checkers.

Figure 2. Explorations in Lab 2

 Read a temperature in Fahrenheit, validate (using
assertion), convert to Celsius, and then output with
some formatting.

 Observe that this cannot be done without local
variables.

 Declare local variables and assign meaningful names
to them.

 Try assigning values of one type to variables of
another; casting.

 Test your program using correct and incorrect inputs,
boundary cases.

 Think about responsibility (whose fault is it?) when
an error occurs.

 Add statements to convert back to Fahrenheit and
compare with original input. How is that different
from black-box testing? Why does the self-test
sometimes fail?

Figure 1. Explorations in Lab 1

 Look at the API of the supplied packages and get
acquainted with its three-frame structure and
navigation. Identify the field, constructor, and
method groups.

 Observe naming styles; e.g. class names start with a
capital, constructors have the same name as the class,
finals are capitalized, etc.

 Observe constructor overloading and identify
signatures.

 Notice the two qualifiers besides each field and
method: static or not, and type.

 Invoke static methods for I/O and access static
fields.

 Use the static assert method to validate input (and
try various boolean operators).

 Perform "on-the-fly" arithmetic computation using
constants and arithmetic operators.

 Access static fields in Math and invoke some of its
methods. Read the API of ceil, floor, rint,
and round and come up write a program to expose
their similarities and differences.

Figure 3. Checking in Lab 2

Write a program that reads the altitude of a satellite (in
km) as an int and outputs its orbital period in hour,
min, sec. Use assertion to terminate the program (and
print an appropriate error message) if the entered
altitude is not positive. Otherwise, output the sought
period with layout and format precisely as shown in the
following two sample runs:

Enter the satellite altitude in km

1000

Orbital period:

1 hr, 45 min, and 5.7 sec.

Enter the satellite altitude in km

35800

Orbital period:

23 hr, 56 min, and 29.0 sec.

The following formula computes the period P (in sec)
in terms of the altitude A (in km), where K = 0.00995 is
the Kepler constant and R = 6378 is the Earth radius in
km: P = K (A + R) 3/2

6 Conclusions
We have presented a number of guidelines for the design of
CS1 labs and the Java packages that must accompany them.
We hope these strategies will be helpful to those seeking to
incorporate labs as teaching instruments in their first-year
courses. Implementing these strategies will probably vary
somewhat from one institution to the next based on the pro-
gram (CS, CE, Information Tech, or mixed), which affects
the choice of application areas, and more importantly, on
whether the two or the three-semester implementation [3]
of CS1/CS2 is in place. Our own experience is based on
two courses (CS111O and CS112O), but if the three-course
sequence (CS101O, CS102O, CS103O) is used, which is
expected to become standard over the coming years, then
we would make all labs in CS101O object-based. This
means students will see inheritance, method overriding, and
polymorphism for a full semester without ever writing a
class that extends another. (This is to be contrasted with
the current CS111O/112O in which inheritance usage and
implementation are in back-to-back lectures; inhibiting any
abstract model from forming.) In that case, all labs in
CS102O would be object-oriented.

References
[1] Bucci, P., Long, T., Weide, B., Do we really teach

abstraction. Proceedings of ACM SIGCSE 2001.
[2] Chamillard, A., Joiner, J., Using lab practica to

evaluate programming ability. Proceedings of ACM
SIGCSE 2001.

[3] IEEE-CS/ACM Joint Task Force Computing Curricula
2001, Computer Science, Steelman Draft. Available
WWW: http://www.computer.org/education/cc2001/
steelman/cc2001. The final report is expected later
this year.

[4] Koffman, E., Wolz, U., A simple Java package for
GUI-like interactivity. Proceedings of ACM SIGCSE
2001.

[5] Lischner, R., Explorations: structured labs for first-
time programmers. Proceedings of ACM SIGCSE
2001.

[6] Meyer, B., Object-oriented software construction.
second edition, Prentice Hall PTR, Upper Saddle
River, NJ (1997).

[7] Long, T., Weide, B., Bucci, P., Cielint view first: An
exodus from implementation-biased teaching.
Proceedings of ACM SIGCSE 1999.

[8] Roumani, H., eCheck, to be published.
[9] Sitaraman, M., Weide, B., eds., Component-based

software using RESOLVE. ACM Software Eng. Notes,
Vol. 19, No. 4, 1994, pp. 21-67

[10] Turner, J., Zachary, J., Javiva: a tool for visualizing….
Proceedings of ACM SIGCSE 2001.

