
Practice What You Preach:
Full Separation of Concerns in CS1/CS2

Hamzeh Roumani
Department of Computer Science and Engineering

York University
Toronto, Ontario, M3J 1P3, Canada

roumani@cs.yorku.ca

ABSTRACT
We argue that the failure to separate the concerns in CS1 is the
leading cause of difficulty in teaching OOP in the first year. We
show how the concerns can be detangled and present a detailed
reorganization of contents for CS1/CS2 with CS1 exposing only
the client view. We also report on our experience with this new
pedagogy after three years of implementation at our institution.

Categories and Subject Descriptors
K.3.2 [Computer and Information Science Education]: Com-
puter science education, Curriculum, Information Systems edu-
cation.

General Terms
Design, Experimentation, Languages, Theory.

Keywords
Separation of concerns, component-based architecture client-
view, encapsulation, API, object-based programming.

1. INTRODUCTION
Even though it has been over five years since many institutions
moved their CS1 from Pascal (or a similar procedural language) to
OOP, there is still a great deal of dissatisfaction with the move
and with the high dropout rates that ensued. Generally speaking,
students are finding OOP very complex and instructors are not
pleased with the level of understanding attained at the end of CS2.
The problem has undoubtedly several causes (rooted in the
students, the instructors, the pedagogy, and OOP itself) but we
believe that the main one stems from abandoning a long held
principle in computer science: separation of concerns [3].

We discuss this principle in Section 2 and show that ignoring it
does indeed make OOP overly complex. We therefore propose
that the contents of CS1/CS2 be re-organized along the concern
boundary, and we do so in sections 3 (for CS1) and 4 (for CS2).

We also report in these two sections on our experience with this
pedagogy after implementing it at our institution.

This work was motivated by an earlier one [7], in which we
alluded to the need for separating the concerns, and by the works
of others [1,6], which ultimately lead to the same conclusion. The
works of [4,5,9] call for a “components-first” pedagogy, which is
somewhat similar to ours in premise, but different in the details.
Specifically, our approach does not require any special framework
or material to be acquired (we rely on the standard Java library);
does not require a special specification language (we rely on the
conventional, albeit less formal, Java API); and does not mix up
the concerns in the same course (we spend the entire CS1 in the
client view).

2. SEPARATION OF CONCERNS
Whether appearing as part of information hiding, as an outcome
of encapsulation, or as a general abstraction tool, the main idea
behind the separation of concerns principle is the recognition of
two distinct roles: the client whose concern is the what, and the
implementer whose concern is the how. The two concerns are
disjoint except at the interface where some information (the API)
is shared on a need-to-know basis.

As a pedagogy, this principle enables us to divide the space of
knowledge into two regions with no dependency in between. Any
concept in one region can be learned without knowing any of the
concepts in the other region. Hence, by staging the topics so that
the learning path does not cross regions, complexity is reduced.

Computer science educators preach this separation in courses on
software design and software engineering, and they structure the
curriculum around it in courses like networking and organization,
but they take a cavalier attitude toward it in CS1/CS2. In fact,
most CS1 textbooks serve to (unintentionally) blur the distinction
between the client and the implementer concerns in the mind of
the reader: they define formal parameters and arguments in the
same sentence, cover this and new in the same section, and
discuss super and polymorphism in the same chapter and often
in an interleaved manner. A typical CS1 student is thus expected
to learn these concepts (and similar concern-crossing ones such as
arrays and collections) together—often in the same lecture. This
learning path makes OOP overly complex and the end result is
either high attrition rates or students who capture only the
mechanism, i.e. the causal linkage between language constructs
and behavior.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIGCSE'06, March 1–5, 2006, Houston, Texas, USA.
Copyright 2006 ACM 1-59593-259-3/06/0003...$5.00.

Moreover, these textbooks start by teaching the student how to
write a class, not one with only a main method, but a full-blown
instantiable class. Doing so from the very outset creates the
impression that the implementer’s role is superior to that of the
client; and that in order to use something, one must first learn how
it works. In our view, this will lead to students who will always be
bottom-up thinkers, and who will likely tend to subordinate
correctness, testing, and contracts to implementation.

The perceived complexity of OOP is often blamed on the objects-
first pedagogy [2] but we see it as an entanglement along an
orthogonal dimension: the concern. As such, we see no difference
between introducing objects late or early (vis-à-vis complexity) as
long as we use objects in one course and implement them in
another. It may seem bizarre that a mere reordering of topics can
reduce complexity but this is because very few people can shift
abstraction levels, especially in CS1. Metaphorically speaking, we
are trying to teach students about cars through a series of lectures
each of which covers a single subject. In the lecture on steering,
we talk about turn signals and the circuit connecting them to the
flashing lights; about the steering wheel and how it causes the
power steering fluid to amplify the torque before applying it on
the axle. There is nothing inherently complex about any of these
topics but if you have to think about spark plugs every time you
accelerate, learning how to drive becomes complex. Detangling
the concerns was not crucial in the Pascal days because the overall
framework was simpler and amounts, in this metaphor, to
replacing the car with a bike. In a bicycle, the absence of an
encapsulating hood and the simplicity of what is “under the hood”
make it reasonable to talk about pedaling and the rotation of the
chain in the same sentence.

3. CS1: THE CLIENT VIEW
In CS1 we adopt the client view throughout. This means we only
write main programs that use existing components. The main
program consists of a main method and nothing else. In
particular, it is essential that it does not contain other static
methods (or else it degenerates into a procedural program). The
size of the main method ranges from a few lines of code near the
beginning of the course to about 40 near the end, i.e. the entire
main class fits on one printed page. The main method can declare
variables of any type (but not arrays); instantiate component
classes and use their fields and methods; and employ control
structures (selection, loops, and exception handling). The
components can be selected from the standard library of the
language or from any other source that provides an API.

3.1 CS1 Topics
We cover the topics shown in Figure 1 with each taking about a
week. We use Java and adopt an objects-first paradigm with
objects introduced fairly early (static features in Week 3 and non-
static ones in Week 4). The topics may look like the ones found in
most textbooks but they are not: they capture only the client’s
perspective. The topic in Week 4, for example, includes reading
the API, locating the constructor, creating an instance, and then
using its feature to solve the problem at hand. Similarly, the topic
of Week 8 tells us how to identify aggregate classes from their
APIs, not by looking at their implementations.

1. Programming
Language elements, the edit-compile-run cycle
declaration, assignment, expressions

2. Delegation
Methods and fields, application architecture,
the client, Java standard library, contracts

3. API
Anatomy, a development walkthrough, output
formatting and input validation, utility classes

4. Objects
Creating objects, a day in the life of an object,
the object’s state, accessors and mutators

5. Control Structures
Flow of control, the if statement, iteration, re-
visiting input validation

6. Strings
Language support, the String methods, the
StringBuffer class, regular expressions

7. Software Development
The waterfall and the iterative methodology,
UML, software testing, debugging

8. Aggregation
Aggregations and compositions, deep/shallow
copying, collections, traversals, complexity

9. Inheritance
The subclass API, early/late binding and poly-
morphism, interfaces, Object, generics

10. Collections
The framework and its interfaces, the APIs,
using iterators, the Collections utility

11. Exceptions
Exception delegation, try-catch, O-O
exception handling, checked exceptions

12. Applications
Projects involving a multi-component archi-
tecture with both aggregation and inheritance

Figure 1. The weekly topics of CS1.

The figure does not include topics from areas such as SP (social
and professional issues) since they are concern-neutral. The
ordering of the shown topics and the emphasis placed on each
were influenced by the textbook that we used [8] but one can shift
the emphasis or introduce objects a bit earlier or later as needed.
The selection of topics to include, however, is dictated by the
requirement of main-only classes. Hence, topics such as recursion
(which requires writing a method other than main) and callback
(which requires writing an instantiable class and registering it as a
listener) simply do not belong in a client-first CS1. Similarly,
when unit testing is discussed in Week 7, it is necessarily black-
box testing since we have no access to the code within
components. In other words, by letting the client draw the line
between what can and cannot be covered in CS1, we obtain a
natural selection of topics in CS1/CS2 guaranteed to separate the
concerns.

3.2 Possible Applications
In this subsection we list applications that our CS1 students can
write at the end of each of the weeks shown in Figure 1. The list is
not meant to be prescriptive in any way; we present it here merely
to further clarify the client-view approach and to demonstrate that
it is indeed possible to build non-trivial applications by writing
only a main method.

1. Primitive Types
Given a code fragment, determine the type and value of the
expressions in it.

2. Apply Integer Arithmetic
Invoke the currentTimeMillis method of the System
class and compute an approximation to today’s date from it.

3. A Project
Write a program that reads the altitude of a satellite and out-
puts its period in hours, minutes, and seconds. Involves the
Math class and printf.

4. Explore an API
Read the API of the Random class in java.util and use it
to create an instance and invoke the nextInt method on it
several times. Why is this method overloaded?

5. Infinite Series
Write a program that computes the sum, but with alternating
signs, of the reciprocals of the odd numbers. Show that this
sum converges to pi/4.

6. Symmetric-Key Cryptography
Write a program that reads a string of letters and outputs it
encrypted (done through an alphabet shift using a Vigenere-
style keyword). Involves a single loop and the String class.

7. HTML Scraping
Write a program that outputs the current temperature (or get a
live stock quote) by querying a site. Involves the URL class,
Scanner, and StringTokenizer.

8. Working with Dates
Write a program to determine if the relationship between the
Calendar and Date classes is a composition or not. Both
classes are in java.util.

9. Object Serialization
Read the API of the ObjectOutputStream class and use
it to store a Calendar instance in a file. In a different main
program, retrieve the instance and output its date.

10. Working with Collections
Write a program that reads distinct integers and outputs their
median. Do this first with and then without invoking the sort
method of Collections.

11. Socket Programming
Write two programs (preferably on different computers) that
allow their users to chat. Uses the Socket and Server-
Socket classes of java.net.

3.3 Our Experience
We moved our CS1 to Java using the conventional (i.e. mixed-
concern) objects-first pedagogy back in 1999. We then shifted to
the client-only approach presented herein in the fall of 2003. The
course has been offered six times since then by six different
instructors. All six instructors had taught the course before the
shift, and hence, were in position to compare before/after results.
The following points capture the main findings:

• The “initial shock” has been reduced. Whereas the old
approach used to quickly alienate a large percentage of the
students and lead them to drop in the first six weeks, the new
one seems to engage almost all students early.

• The early dropout rate (occurring before the final exam) was
cut at least in half. This result is the same regardless of who is
teaching the course.

• The presentation of key concepts becomes sharply focused in
the client-only view. In order to determine how a method be-
haves when its precondition is not met, or whether a method
returns a deep or a shallow copy, you must write a client and
experiment; you cannot peek at the implementation.

• The extension mechanism in Java makes it very easy for
students to use instructor-created components. By bundling
the components in a jar file and asking the students to store
it in their ext directory, the components become accessible
like any class in the standard library.

4. CS2: THE IMPLEMENTER VIEW
The topics we cover in CS2 are shown in Figure 2. The choice of
topics for CS2 depends of course on whether the two-course or
the three-course introductory sequence [2] is used. Nevertheless,
the theme is the same: implementing components and covering
implementer-only topics such as GUI and callback, recursion and
sorting, and selected data structures.

There has been a significant difference in how students perceive
the material of CS2 since CS1 was moved to the client view. For
one thing, they are already familiar with the terminology and the
fundamental OO concepts. Moreover, they are comfortable with
the language constructs; can read APIs and use them; and, per-
haps most importantly, can confidently deal with the compiler and
the runtime error messages. With these concepts and skills in
place, learning how to implement a class given its API appears as
natural next step.

A second observed difference is that students continued to think
like clients even after they learned how to implement. When we
ask them to build an appointment book, for example, their first
reaction is to extend or aggregate a Map, and use the methods in
the Calendar class, rather than use arrays.

5. CONCLUSION
We have presented a new pedagogy for OOP in which objects are
used in CS1 and implemented in CS2 (and CS3 if present). At
first glance, it may seem wasteful (or shallow) to spend the entire
CS1 playing the client role but we have shown that one can cover
most of the key concepts and build elaborate applications without
exposing any implementation. That one can teach CS1 like this
without building a repertoire of components or a specialized IDE
is possible thanks to the availability of numerous powerful com-
ponents in the standard libraries of today’s O-O languages.

We argued that this pedagogy makes CS1 seem easier and allows
students to build interesting applications quickly. And having
used components throughout CS1, students become ready, and
even eager, to look “under the hood” in CS2. We also presented
anecdotal evidence that supports these arguments.

6. REFERENCES
[1] Bucci, P., Long, T. and Weide, B. Do We Really Teach

Abstraction? In Proceedings of the SIGCSE Technical
Symposium on Computer Science Education, ACM Press,
2001, 26-30.

[2] Computing Curricula 2001, Final Report. Joint IEEE-ACM
Task Force. http:// www.sigcse.org/cc2001.

[3] Dijkstra, E. Note EWD447 (1974) reproduced in Selected
Writings on Computing: A Personal Perspective, Springer-
Verlag, Berlin, 1982. ISBN 0–387–90652–5.

[4] Howe, E., Thornton, M., and Weide, B. Components-First
Approaches to CS1/CS2: Principles and Practice. In
Proceedings of the SIGCSE Technical Symposium on
Computer Science Education, ACM Press, 2004, 291-295.

[5] Koenig, A. and Moo, B. Rethinking How to Teach C++, Part
1: Goals and Principles. Journal of Object Oriented
Programming 13, 7 (2000), 44-47

[6] Long, T., Weide, B., Bucci, P. and Sitaraman, M. Client
View First: An Exodus From Implementation-Biased
Teaching. In Proceedings of the SIGCSE Technical
Symposium on Computer Science Education, ACM Press,
1999, 136-140.

[7] Roumani, H. Design guidelines for the lab component of
objects-first CS1. SIGCSE2002, 222-226.

[8] Roumani, H. Java By Abstraction: A Client-View Approach.
Pearson Education Canada, Addison-Wesley, Toronto, Ont.,
2006. ISBN 0-321-22689-5. URL: http://vig.pearsoned.ca
/catalog/academic/product/0,1144,0321226895,00.html

[9] Sitaraman, M., Long, T., Weide, B., Harner, E. and Wang, L.
A Formal Approach to Component-Based Software
Engineering: Education and Evaluation. In Proceedings of
the ICSE International Conference on Software Engineering,
IEEE, 2001, 601-609.

1. Implementing Classes I
Attributes and methods, constructors, access
modifiers, API generation through javadoc

2. Implementing Classes II
Delegating and communicating within the
class, constructor chaining, private methods

3. Implementing Aggregation I
Non-primitive attributes, implementing a
custom collection through aggregation

4. Implementing Aggregation II
Arrays, implementing collections through
arrays, dynamic growing and shrinking

5. Implementing Inheritance I
Extending classes, method override, shadow-
ing, overriding the methods in Object

6. Implementing Inheritance II
The why and how of abstract classes, interface
implementation, inner classes

7. GUI I
The swing components and containers, adding
and laying out components in a frame

8. GUI II
Callback and event-driven programming,
registering listeners, elements of MVC

9. Recursion I
void and non-void recursive methods, the
recursion tree

10. Recursion II
Design patterns, searching algorithms, sorting
algorithms

11. Linked Lists I
Overview of data structures, implementing a
simple linked list through an inner class

12. Linked Lists II
Implementing a collection using a linked list,
implementing an iterator

Figure 2. The weekly topics of CS2.

