
Roumani on Quantum q.roumani.ca Page 1/6

Quantum Computing Notes
Prof. Hamzeh Roumani

EECS, York University, Toronto, Ont., Canada

THE DEUTSCH-JOZSA ALGORITHM

1. The Problem
Consider a function f: {0,1}n --> {0,1}. Its domain has 2n elements and its co-domain has 2. You
can think of f as a 0/1-valued function of n 0/1 variables. In programming terms, f is a boolean
function that takes n boolean parameters. And if you treat the n arguments of f as the bits of
the binary representation of some integer x, then f can be thought of as a function that maps
an integer in [0,N-1] to either 0 or 1, where N=2n. We assume that f is provided as a black-box
Uf (an oracle) that implements it in hardware.

Given that f is either constant or balanced (the promise), determine which case it is. A function
is constant if it maps all elements in its domain to the same value and is balanced if it maps half
of them to 0 and the other half to 1. It is one way or the other, guaranteed.

2. Examples
n=1: f(0)=0, f(1)=0 à constant
n=1: f(0)=1, f(1)=1 à constant
n=1: f(0)=0, f(1)=1 à balanced
n=1: f(0)=1, f(1)=0 à balanced

n=2: f(0,0)=0, f(0,1)=0, f(1,0)=0, f(1,1)=0 à constant
n=2: f(0,0)=1, f(0,1)=1, f(1,0)=1, f(1,1)=1 à constant
n=2: f(0,0)=0, f(0,1)=0, f(1,0)=1, f(1,1)=1 à balanced
n=2: f(0,0)=0, f(0,1)=1, f(1,0)=0, f(1,1)=1 à balanced
n=2: f(0,0)=1, f(0,1)=0, f(1,0)=0, f(1,1)=1 à balanced
n=2: f(0,0)=0, f(0,1)=1, f(1,0)=1, f(1,1)=0 à balanced
n=2: f(0,0)=1, f(0,1)=0, f(1,0)=1, f(1,1)=0 à balanced
n=2: f(0,0)=1, f(0,1)=1, f(1,0)=0, f(1,1)=0 à balanced

3. A Classical Algorithm
Since we have no direct access to f (its formula or its circuit), all we can do is send arguments to
the oracle and examine its returns. For example, we can send all 0s to get f(0,0,…0). Next, we
evaluate f(0,0,…1). If these two returns are different, we are done! The function in that case
must be balanced as it is clearly not constant. On the other hand, if they are equal, we cannot
draw any conclusion, and hence, must make more queries. The question then becomes: how
many queries do we need to make in the worst case before we can draw a conclusion?

Roumani on Quantum q.roumani.ca Page 2/6

The answer depends of course on n, the number of variables in f, and it grows exponentially
with it. This problem is therefore intractable, i.e. no efficient, deterministic (classical) algorithm
exists for solving it. In fact, even for n is as small as 300, the number of needed oracle queries
exceeds the number of atoms in the observable Universe!

• For n=3, how many different constant functions can there be?
• For n=3, how many different balanced functions can there be?
• Show that 2n / 2 + 1 queries are needed in the worst case in the above classical algorithm.
• Show that the complexity of the classical algorithm above is ϴ(2n).
• Argue that the query complexity of any deterministic classical algorithm is Ω(2n).

4. The Quantum Advantage
The explosive growth of the classical algorithm stems from the enormous size the domain of f
(2n elements) and the fact that we need to evaluate f at over half of them. Superposition, in the
quantum realm, allows us to feed the oracle a superposition of all those 2n possibilities and get
a return that captures all values of f in one oracle query! This seems to suggest that a quantum
algorithm may be able to solve this problem in O(1) instead of O(2n). We will see shortly that
this is indeed the case, and hence, the quantum advantage is quite manifest for this problem. It
should be noted that this advantage stems from superposition and is therefore novel--it has no
classical counterpart. In particular, it is not like parallel computing (e.g. 2n circuits that compute
different values of f in parallel) because we have only one circuit in our datapath.

5. The Idea
Computing f at a superposition of states does indeed evaluate it at all those states in one shot,
but the individual function values are inaccessible to us because they appear in a superposition,
and once we measure, we only “see” one of them. For example, take the n=1 case (a function
of one variable) and feed the oracle a superposition of the two possible arguments, |x> =
(1/√2) [|0> + |1>], with |c> = 0:

In this case, the output would be:

|output> = (1/√2) [|0> ⊗	|f(0)>	+	|1>|f(1)>]	

| x >
Uf | x > ⊗	| c⊕	f(x) >

| c >

Roumani on Quantum q.roumani.ca Page 3/6

So, yes, both f(0) and f(1) were computed with just one query but upon measuring, the state
will collapse to one or the other, so we can only learn one function value (and we don’t even
get to choose which). Hence, we need to manipulate the quantum state, before measuring, so
that the sought global property (constant versus balanced) can be measured. To that, let us pick
|c> = |−> = (|0> − |1>)/√2 in the hope of creating a discriminator for this property. For this |c>,
the output would be:

|output> = (1/2) [|0> ⊗	|f(0)>	−	|0> ⊗	|~f(0)>	+	|1> ⊗	|f(1)>	−	|1> ⊗	|~f(1)>]	
|output> = (1/2) [|0> ⊗	(|f(0)>	−	|~f(0)>)	+	|1> ⊗	(|f(1)>	−	|~f(1)>)]	

We not that if f(0) is 0 then its complement would be 1; otherwise, it would be 0. And similarly
for f(1). Hence:

|f(0)>	−	|~f(0)>	=	(-1)f(0)	(|0>	−	|1>)		and		|f(1)>	−	|~f(1)>	=	(-1)f(1)	(|0>	−	|1>)	

Substituting in the above and factoring out yields this |output>:

 (1/2) [(-1)f(0)|0> + (-1)f(1)	|1>]	⊗	(|0>	−	|1>)	= (1/√2) [(-1)f(0)|0> + (-1)f(1)	|1>]	⊗	|−>	

With this choice of |c>, the function values became phases that modulate the phases of the
two basis states of the upper qubit, and this fleshes out the global property of the function.
Indeed, if the function is constant, the two modulating phases would be the same, and the
state of the upper qubit becomes |+>. And if the function is balanced, the two phases become
opposite, and the state of the upper qubit becomes |−>. These two possible states are
orthogonal, and hence, we can distinguish them with a single measurement. The query
complexity is thus indeed O(1) for this n=1 case.

• Does the above n=1 algorithm un-compute its ancilla qubit |c>?
• Instead of using |c>=|−>, start with |c>=|0> and add a single-qubit gate (before the Uf

oracle) to make the lower input |−>. In addition, make sure the ancilla qubit is un-computed.
• Instead of measuring in the |+>,|−> basis, we like to stick to the standard |0>,|1> basis.

Show that this can be achieved by adding a single-qubit Hadamard gate to the upper output
of the oracle before measuring.

• Work out the n=2 case and verify that the algorithm still works with O(1) query complexity.

6. The General Case
The input consists of n+1 qubits, n in the upper register and 1 in the lower, all initialized to |0>.
Superposition is created in all qubits thru Hadamard gates and is then fed to the Uf gate that
implements f. The gate’s output undergoes a second set of Hadamard gates before we arrive at
the final output, which contains n qubits in the upper register U and 1 in the lower L.

Roumani on Quantum q.roumani.ca Page 4/6

|𝜓! >	= |0 >	⊗	|0 >	⊗ |0 >	⊗ …	⊗ |0 >	⊗ |1 >

|𝜓" >	= 	
|0 > +	|1 >

√2
⊗
|0 > +	|1 >

√2
⊗
|0 > +	|1 >

√2
⊗
|0 > +	|1 >

√2
…⊗ |−>

|𝜓" >	= 	
1
√2#

/ |𝑘 >
$'%"

&'!

⊗ |−>

|𝜓$ >	= 	
1
√2#

/ |𝑘 >
$'%"

&'!

⊗	
|𝑓(𝑘) > 	−	|~𝑓(𝑘) >

√2

|𝜓$ >	= 	
1
√2#

/ |𝑘 >
$'%"

&'!

⊗	(−1)((&) 	
|0 > 	−	|1 >

√2

|𝜓$ >	= 	
1
√2#

/ 	(−1)((&)|𝑘 >
$'%"

&'!

⊗	|−>

|𝜓+ >	=
1
√2#

/(−1)((&)
$'%"

&'!

1
√2#

/(−1)&.-
$'%"

-'!

|𝑙 >	⊗ |1 >

|𝜓+ >	=
1
2#

/(/ (−1)&.-
$'%"

&'!

(−1)((&))
$'%"

-'!

|𝑙 >	⊗	|1 >

|ψ3> |ψ2> |ψ1> |ψ0>

|0>⊗n H⊗n

H |1>
Uf

H⊗n

H L

U

Roumani on Quantum q.roumani.ca Page 5/6

The step before last (|ψ2> to |ψ3>) involves applying H to all n+1 qubits. For the lower qubit,
this transforms |−> to |1>. For the upper n qubits, represented by the ket |k>, this transforms
every |0> to (|0> + |1>)/√2 and every |1> to (|0> − |1>)/√2. When these are multiplied out, we
get a sum of 2n terms of the form ±|l>. The sign is negative whenever we use an odd number of
1s in |k>. These 1s appear in |l> at the same positions as in |k>. Hence, you get a −1 when k
and l share an odd number of 1s. The symbol l.k denotes the number of common 1s between l
and k; i.e. 1s in the same positions. Note that |ψ3> consists of a sum of 2n terms each of which
involves a sum of 2n terms.

In the final step, we reversed the order of the two summations so we can group all 2n
occurrences of each |l> ket. These occurrences appear with a sign that depends on the product
(−1)k.l x (−1)f(k). If the function f is constant then the relevant phase is (−1)k.l, which is +1 when k
has an even number of 1s and -1 otherwise. In other words, the |l> states with even number of
1s cancel the ones that have an odd number of 1s. The only state that survives is the one
without any 1s; i.e. the state l=0. On the other hand, if f is balanced then the 0 state would not
survive because when l=0, (−1)k.l is always 1 (because l.k = 0). In this case, the |0> state cancels
because the other phase, (−1)f(k), is +1 as many times as −1.

In conclusion, we simply measure the upper qubit. If it is |0>, f is constant; else, it is balanced.

• Show that if z=|00> then H⊗2|z>=½	(|00>	+	|01|	+	|10>	+	|11>)			
Hint:	Recall that H|0>=(1/√2)(|0>+|1>) and H|1>= H|0>=(1/√2)(|0>−|1>)

• Show that if z=|01> then H⊗2|z>=½	(|00>	− |01|	+	|10>		− |11>)
• Show	that	if	|z>	is	an	arbitrary	2-qubit	basis	state	then	H⊗2|z>=½	Σk	(-1)z.k|k>	(k	=	
0..3)	

• Show that the |0> state that survives when f is balanced is correctly normalized.
• Work out the n=3 case and verify that |0> is a discriminator of constant vs balanced.

7. A Non-Deterministic Classical Algorithm
If we settle for a randomized classical algorithm, one whose conclusion is mostly--but not
always-- correct, we can do much better than O(2n). Rather than evaluating f at exponentially
many arguments, we can pick a small sample of the domain and base our conclusion on it. If the
sample is chosen randomly and uniformly, we can increase our confidence in the conclusion by
increasing the sample size. For example, let us pick a sample of only 10 elements and evaluate
the function at them. If any two are the same, we declare the function balanced; else we
declare it constant. The probability of us being wrong in the constant case is about (½)10 (for
large n), which is less than 0.1%. Hence, only O(1) queries are needed to get an answer that is
correct with high probability.

• Derive the relation between the success probability and the number of queries needed in

the worst case for the randomized classical algorithm above.

Roumani on Quantum q.roumani.ca Page 6/6

• Look up the definition of the complexity classes P and EQP and show that the Deutsch
problem defines a relation between them.

• Look up the definition of the complexity classes BPP and BQP and show that the Deutsch
problem does not define a relation between them.

Remarks
• This algorithm was proposed by David Deutsch and Richard Jozsa c. 1992.

• The “Walsh-Hadamard” transform W is a generalization of the single-qubit Hadamard trans-
form H: it applies H to each qubit in a multi-qubit state. In other words, W = H⊗n.

• The phrase “phase kickback” refers to cases in which applying a gate to one qubit leads to a
phase manifesting in another. For example, the Uf gate normally keeps its upper input |x>
unchanged and changes its lower input |c> to |c⊕f(x)>.	But	in the circuit above, the lower
qubit “kicked” its change to the upper output and stayed unchanged. Indeed the lower qubit
remained |−> and kicked a phase of (-1)f(x) to the upper qubit. (Compare |ψ1> to |ψ2>.)

• This algorithm employs the so-called quantum parallelism by computing all values of f(x) in
one shot. The result appears as a superposition of states each of which involves a value of x
together with a value of f at that x. The algorithm manipulates the phases of these terms in
such a way that exposes the sought property. Specifically, the terms interfere destructively
(i.e. cancel out) if f has a particular global property.

• This success of this algorithm can be traced back directly to the first pillar of quantum com-
puting: superposition. Its circuit has the same characteristics as our Apple Gedanken (or its
implementation in a Mech-Zehnder interferometer); namely: a fork to induce superposition
(a splitter), and a merge (a 2nd splitter) to allow the superposition components to interfere.

• Note that entanglement, the second pillar of quantum computing, does not play a key role in
this algorithm. The two outputs of Uf seem entangled but phase kickback de-entangles the
two registers. Hence, the algorithm’s power rests squarely on superposition.

