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New method for the Hamiltonian formulation for lattice spin systems
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The I.anczos scheme for finding low-lying eigenvalues of a sparse matrix of large dimension is applied to
solving the Himiltonian formulation for Z(2) and Z{3) Ising spin systems in 1+ 1 dimensions. The location
of the fixed points and the values of the critical indices are consistent with known results.

I. INTRODUCTION H. THE METHOD

In this paper we study the Hamiltonian formula-
tion'3 for Z(2) and Z(3) Ising spin systems in 1+ 1
dimensions, looking toward future application to
lattice Hamiltonian f ield theories. 3

For such systems two methods have been used.
Qne is the Hamiltonian analog4 of the high-tem-
perature expansion employed in statistical me-
chanics. In this method one uses perturbation
theory to generate power-series expansions for
the energy levels to rather high order in the cou-
pling. These series are then extrapolated to the
large-coupling region by pade methods. Critical
properties, masses of excitations, and other quan-
tities of interest are obtained from the padh ap-
proximants. The other method is the real-space
renormalization- group transformation. ' Here,
one would examine how certain physical quantities
change as the length scale increases.

A third method has recently been proposed by-

Hamer and Barber. 7 Their method consists of
comparing a sequence qf finite lattices. The finite-
lattice systems are solved exactly, and various
quantities can be calculated as functions of the
lattice size L, for small L. Finally, these func-
tions are scaled up to L =~. Two steps are needed
before these ideas can be realized. First, one
needs a procedure for solving the finite-lattice
system exactly. This involves diagonalizing real
symmetric matrices of enormous dimensions.
Second, one needs a procedure for extrapolating
from finite to infinite L. This extrapolation pro-
cedure has already been found and used in sta-
tistical mechanics. In this paper we present a
method for handling step one above. We believe
that our method is better than that used in Ref.
7, for reasons given in Sec. II.

This paper is organized as follows: In Sec. II
the method is explained. In Sec. III we apply the
method to the Z(2) and Z(3) models in 1+1 dimen-
sions. We compare our results with those ob-
tained by the other two methods (perturbation
theory and renormalization group)' in Sec. IV.

The problem can be formulated in general as
follows. Given a Hamiltonian defined on a finite
lattice having N sites with n states each, find the
low-lying eigenvalues of H. The standard method
of implementing this on a computer would involve
calculating a matrix representation of H (an
n" x n" matrix) and then using standard computer
routines to f irs t transf orm this matr ix into tr i-
diagonal form, then diagonalize it. This method
is, unfortunately, impractical for our purposes
because even for the simplest model [Z(2) in one
spatial dimension] one has n=2 and a 2"x 2"
matrix is too large to be stored in the computer's
central memory for N& &.

An alternate method due to Lanczos' uses a
special basis so that the matrix representation of
H is immediately tridiagonal. That means, in-
stead of storing n" x n" numbers one has to store
2n~ of them only. This method has been exten-
sively used in shell-model calculations in nuclear
physics. ' The basis can be constructed as follows.
Let P, be an arbitrary, normalized state of the
system. g, is the first element of the basis. The
remaining elements can be generated recursively
from P& by repeated applications of H:

Here, a, and b& are chosen so that p3 is normalized
and orthogonal to p&. We act with H again,

H$3 —c&gt + a3$3 + b 3/3

where again one chooses c„a3, and b3 so that p3
is normalized and orthogonal to both g, and p3.
We continue along these lines: each time a new
state P„ is generated, we compute the state Hg„,
subtract off its components along p&, Q3, . . . , p„
and normalize what is left over, which is g„,„

8 2

HP„=P a&/&+ „c&P„& +pa„+gb„, &.
fa$

(We have separated off the first n —2 components
for reasons to become clear shortly. ) The n+1
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states g„P„.. . , P„,, generated thus far are, by
construction, orthonormal. If we take the pro-
jection of Eq. (1) on the state P~ (j ~n —2), we find

(P~, W.)=c&.
We use the fact that H is Hermitian to rewrite this
as

However, we see from Eg. (1), applied with n =j,
that HP& is a linear combination of states, each of
which is orthogonal to P„. Hence,

n) ——0, j =1,2, . . . , n —2.
Thus we have the following structure:

H&i =nisi+ bi%

H//)2 = C($g + C2$2 + b2$3

Hp„= c„,p„,+a„p„+b„p„

The Hermiticity of H also implies &; = ~;, i
=1,2, . . . . In the basis P&, P2, . .. , Hhas the tri-
diagonal form

a& b&

b& a2 62

b& a3 53
~ ~

The I.anczos process terminates automatically
when the states g„g2, . . . span the entire space of
H, or a sector of it connected by nonvaoishing
matrix elements of H.

The most attractive feature of the method is
that one does not have to carry the process to com-
pletion in order to have accurate estimates of the
low- lying eigenvalues. The low-lying eigenvalues
of the leading P xP principal submatrix of H, which
is completely determined after P —I steps, con-
verge extremely rapidly to those of H. One can
monitor this convergence numerically by di-
agonalizing the tridiagonal matrix after each step
and watching how the eigenvalues change. We have
found for the cases we studied that with P =20,
that is, after 20 I.anczos steps, the lowest eigen-
value was accurate to machine accuracy, irrespec-
tive of the size of n or

¹ Detailed evidence for the
rapid convergence in the shell-model problem is
presented in Ref. 9.

The number of states involved is further reduced
because of the fact that we study only translational-
ly invariant states. (We use periodic boundary
conditions throughout. ) Thus, instead of having to
deal with n" states, one needs only certain linear
combinations of them. In the Z(2) case, for ex-

ample, if one starts with a spin configuration g&

having all N spins down, then only states with an
even number of up spins can be generated because
the potential-energy piece of H flips two spins at a
time. The number of translationally invariant
states with an even number of up spins is M
=(2" ~+N —1)/N for Na prime number and,
hence, the Lanczos process will terminate after
M- 1 steps. The last Lanczos state will be a
linear combination of M translationally invariant
states. Special techniques had to be used to store
and manipulate such many-component states.
These techniques are explained in Appendix B.

In applying the method, one starts off with the
weak-coupling ground state P~&, obtained by putting
each site in its ground state. The lowest eigen-
value generated from this $0& is the ground state
ED of the system. To get E&, the first excited state
of the system, one starts with the weak-coupling
first excited state g„having all sites in their
ground states except one, which is in its first ex-
cited state. From the results of these calculations
one obtains the free energy E=E„/N, and the
mass gap G = E, —Eo. Note that the validity of the
method is independent of the size of the coupling con-
stant xinH. Thus, the functions F(x,N) and G(x, lU) can
be calculated exactly at any x. Scaling arguments
are then used to extract information from E and
G about the N- ~ limit. These arguments are dis-
cussed and used in the next section. We also in-
vestigated the possibility of obtaining E and G of
the infinite lattice directly, without using scaling,
by simulating an infinite lattice on a finite one.
The results obtained this way are rather interest-
ing and are discussed in Appendix A.

The method used in Ref. 7 is similar to ours
in that it involves generating a special basis
and then diagonalizing the matrix representation of
II in that basis. Unl. ike our method, however,
their method does not render the matrix represen-
tation of the complete Hamiltonian H tridiagonal.
Specifically, they generate a basis $0, Q„.. . by
starting with an arbitrary normalized spin con-
figuration P, and then form the states V"Q,
(n = 1, 2, . . . ), where V is the potential-energy
part of the Hamiltonian H = E+ V. Note that since
V is a sum of N terms, each time one operates
with V, one generates N states (some of which are
translations of each other). The generation pro-
cess terminates for Z(2), after Q = (N+1)/2 steps,
for N odd. This way NQ states will be generated
of which L (say) are translationally invariant.
The states Q„Q„P„.. . , Pz, are decoupled from
the rest of the states and, hence, H can be
diagonalized separately in this L -dimensional
space. The disadvantage of this scheme relative
to ours is that the resulting I -dimensional repre-
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sentation of H is not tridiagonal and, thus, the
scheme is limited, practically, to cases with
L ~ 200.

III. APPLICATIONS

A. The fixed point

The fixed point of an infinite system is defined,
in the Hamiltonian formulation, as the value of x,
x*, at which the mass gap G(x) va, nishes. For
Ising-type systems, G(x) is expected to have an
algebraic zero at x:

3—

G(x) -G0(x" —x)", as x x (2)

where v is the correlation length index:
—$0(»" —x) "as x-x~. With our Lanczos scheme
we can compute G(x, N), which approaches G(x)
when N is large. Figure 1 shows G(x, N) as a
function of x for several N values for the Z (2)
model whose Hamiltonian is

W= Q $1 +a,(i})—m„(i)a,(i + 1})..

Also shown in Fig. 1 is G(»)=G(», ~). Figure 2

is the corresponding plot for the Z (3) model whose
Hamiltonian is'

2 2', /2nW= g — 1 —cos ' —x cos~ —(m, —m, ) ~3 3 )+1 . ) y

[I„m,] =-i—3

We see from these two figures that G(x, N) does
not vanish at any finite value of x in agreement

1.5

1.4—

1.2—

.2 .3 4 .5 .6 .7 .8 .9 I

X~

FIG. 2. Similar to Fig. 1, but for Z(3).

with the fact that a finite system cannot have a,
phase transition.

One can, nevertheless, extract»~ from G(x, N)
by the following argument, "which we reproduce
for the convenience of the reader. The natural
measure of the deviation of the finite system from
the infinite one is L/Lo, where L is the linear
dimension of the finite system (L = Na, a is the
lattice spacing) and L0 is the correlation length
of the infinite system (Lo ——$a). Thus, it is natural
to assume that G(x, N) depends on x through L/L,
and we write, for the x dependence of G(x, N),

G (x, N ) ~f(L/LD) =f(N (x —x)"/g 0 ) .
If we are to retrieve Eq. (2) as N-~, we have to
assume that the asymptotic functional form of f is
a power

f (y) foy as y

In addition, we need a factor to cancel the N de-
pendence of f as N-~. This factor must be of
the form N &. Thus, we have

G(x, N) =N ~f(N(x —»)"/$0}. (3)

.8—

4

0
0 .2 4 .6 .8 1.0 1.2 1.4 1.6 1.8 2Q

FIG. 1. The mass gap G(x, N) of the Z(2) model as a
function of x for several N values. The straight line is
the exact mass gap of the infinite system (N=~).

or

lnG(x, N) = lnf(N(x~ —x)"/go) - ln¹ (4)

Equation (4) states that if we plot G(», N) against
N on a log-log plot, we will get a straight line of

P can be easily determined by equating G(x, N) of
Eq. (3) to G(x) of Eq. (2) in the limit N-~, x-x:

N ~f (N(x' -»)"/gp'= G, (»' -x)",
which implies

f0=$0 Go and, p=1.
So Eq. (3) becomes

G(x, N) =N f(N(x -x)"/$0)
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slope —1 only if x =x and provided that N is
large enough for the scaling of Eq. (4) to set in.
Such a plot is shown in Fig. 3 for the Z(2)
model and in Fig. 4 for the Z(3) model. We
see in this figure that for x & 1 (x & 1), G(x, N)
tends to curve up (down) away from the slope = —1
direction. Near x =1 is a transition region between
these two regimes and it is in this region where
one should look for x*.

Since one does not know, a ProÃ, the value of
N at which scaling sets in, one has to consider
several N values and examine the results. We
used the following procedure. We evaluate G(x, N)
for three values of N, N1, N2, and N3, chosen as
large as possible. The slope of G(x, N) between
N1 and N2, on a log-log plot against N, is given by

IO

x =.4
x =.5
x =.6
x =.67
x=,7
x =.8

20
I

50 IOO
I

IOO

S»»(x) =1n[G(x, Nl)/G(x, N2)]/ln(N1/N2) .
We write

S»»( ) = —1+d)(x),

S».~3» =- 1+d2(x»

and take@ to be+st. , where@ is a value of x that
minimizes, as well as possible, both Id2(x) I

and

I S„,„2(x)—S~,,»(» I, and e is the larger of the
two numbers d2(») and IS~I »(x) —Sn, N3(x) I

We calculated G(x, N) of Z(2) for N1=9, N2=11,
and N3 = 13 and fitted the results to polynomials
for x close toe;

G(x, 9) =3.453 —6.044x+3.166»'2- 0.400»~,

G(x, 11)=3.031 —4.394x+ 1.Q53x +Q 453»

G(x, 13)=3.953 —6.779»+ 2 999» —0 053»'

FIG. 4. Similar to Fig. 3, but for Z(3).

Using these fits to carry out the procedure out-
lined above, we obtained for the critical point x~
the value 0.9995+0.0010.

The same type of analysis was done for the Z(3)
model with Nl =7, N2 =9, and N3 =11 (see Fig. 4).
The fit for g close to g* was

G (», 7) = 2.202 —5.359» + 3.321»

G(x, 9) = 2.862 —7.346» + 4.763x2,

G(x, 11)=3.635 —9.659» + 6.460x2,

yielding for Z(3) the critical point x~ =0.6658
a 0.0040.

8. The index v

I 2 3 5 7 9III3 20

x=.6

x=.8

X=I

x=1.2

x=l.4
IO

IOO We write Eq. (3) in a more convenient form:

(N '~"
G(», N)=N Ig

I

— (x~ —x')
&40

This implies

=N 'i"x const
8G

(5)

-2
IO

or
aa

v= 1+la ' '

) ln(N1/NR)g~+ Q~Q

The derivatives involved are readily calculable
from the polynomial fits. We find, for Z(2),
v=0.935+0.001 and t'or Z(3), v=0.796+0.030.

IO
I 2

I I I I I I I

5 7 9 II I3 20
N~

C. The susceptibiTity

The susceptibility of an infinite system is given
by

FIG. 3. Log-log plot of G(x, N), of the Z(2) model,
versus N for several x values.
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where E is the ground-state energy density and h

is the magnetic field that enters into the Hamil-
tonian through the operator +&ho„(i). For Ising-
type systems, X is expected to diverge algebraical-
ly at x (Ref. 2):

X(x)-(x —x) " as x x (6)

We define the finite system susceptibility y(x, N)
by

82E(x, N)yx, N
7c- 0

The same scaling argument that we used for
G(x, N) can be repeated for y(x, N) because Eqs.
(2) and (6) have the same structure. Hence, we
can use Eq. (3) for y(x, N):

X(x, N)=N 'f(N( '-«)"/0, ), (7)

where f(y) -y as y —~. p is determined so that
Eq. (7) reduces to Eq. (6) in the limit N-

One finds p =- y/v. We rewrite Eq. (7)
atx=x .

y(x, N) =const x N~ ~",

or

y = v In[y (x, N I)/y(x", N 2)] /ln(N 1/N 2) .
Using this equation, we find for the Z (2) model
y/v =1.735+ 0.011. We have not computed y for
the Z(3) model.

D. Possibility of using different variables

A(g N) =N ~f[(N/c)'"(g g*)]- (8)

Atg=g*, Eq. (8) states that lnA(g*, N) is linear
in lnN with slope= -1, which is equivalent to say-
ing that lnG(x*, N) is linear in InN with the same
slope. Hence, the determine. tion of x* does not .

change. The value of p, however, does change,
because upon differentiating Eq. (8), we obtain
at g=g*,

=N "' ' x const (9)

Instead of x and G(x, N), derived from the di-
mensionless Hamiltonian 8', we tried the custo-
mary variables g=v'2/x and the physical (di-
mensioned) mass gap & (g, N) = (g/2a)G(x, N), de-
rived from the physical (dimensioned) Hamiltonian
H =g~/2a. In terms of these variables, Eq. (2)
becomes

A(g)-Ao(g-g*)" as g-g*
wherevisthecorrelationlengthindex: t'-c(g-g*) ".
By using the same scaling arguments as before,
but now in terms of g instead of x, we obtain

or, in terms of G andx,

G(x*, N) -2x* =N "' " x const,
aG

which is different from Eq. (5). Using Eq. (9)
one obtains, for Z(2), v=0.996+ 0.004 and for
Z(3), &=0.84+0.02. These values of v seem to
be more in line with what one expects. It is not
clear to us, though, why using g and A should
work better than x and G.

IV. CONCLUSION

We have presented a method for solving the
Hamiltonian formulation for lattice spin systems.
Our work was inspired by the paper of Hamer and
Barber, ' but we have modified their method by
using the Lanczos scheme. The results of the
scheme, when applied to Z(2) and Z(3), compare
rather well to other methods, as can be seen in
Tables I and II.

The method has two attractive features. The
first feature is that it is easily generalizable to
any model having a finite number of states per
site. In fact only that part of the program that
handles the spin flipping need be changed from one
model to another. The rest of the program, which
uses the Lanczos procedure, is essentially model
independent. The method can also be applied to
continuous spin systems if a truncation scheme is
used to keep the number of states per site finite.
An example of this would be the Z (N) models,
thought of as successive truncations of the X—F
model.

The other feature is that exact results can be
obtained by this method for finite systems. Finite
systems may, not be especially important for their
own sake, but it is rather interesting that one can,
using the Lanczos method, exactly solve a system
like Z(3) with 11 particles. In the most naive
formulation, such a system would require dealing
with 3"= 177147 states and diagonalizing a 177147

Method

Exact
P.T.
R.G.
Our

1
1
1.053
0.9995

1
1
0.86
0.996

1.750
1.76

1.735

TABLE I. Comparison of our results for the fixed
point (x*), the correlation length index p (from Sec.
IIID), and the index y/&, for the Z(2) model, with those
obtained by an exact method (Bef. 11), perturbation-the-
ory method (P. T.) (Ref. 2)', and by a renormalization-
group method (B.G. ) (Bef. 5). The B.G. results are ob-
tained by block-spinning 7 sites per cell. No direct com-
putation of y was done in Bef. 5.
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TABLE II. Comparison of our results for x* and p

(from Sec. III D) for Z(3), with those obtained (Ref. 12)
experimentally (Expt. ), by perturbation theory (P.T.)
(Ref. 10), and by the renormalization group (Ref. 13),

' with two spins per block. The value of x*=3, which we
listed under P.T., is actually exact and can be obtained
by a duality transformation [&(3) is self-dualj.

Method

Expt.

P.T.
B.G.

Our

0.597

0.666

0.82

0.84

0.705

x 177147 matrix. With the Lanczos method, one
encounters for the ground state of the same sys-
tem states which are linear combinations of 5369
translationally invariant states and diagonalizes
a 20x 20 matrix.
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APPENDIX A

We considered the possibility of computing
physical quantities for the infinite lattice directly
rather than. solving the f inite one first and then
scaling it.

We realize from the outset that exact results for
the finite system will not serve this purpose be-
cause the finite system differs radically from the
infinite one. It cannot, for example, have a phase
transition even when the infinite one does. This
implies that the finite-system mass gap G(x, N)
does not vanish at any finite x value, as depicted
in Fig. 1, where we show G(r, N) of Z(2) for
various N values as a function of x, along with the
N =~ gap obtained exactly. " Figure 2 shows
G(x, N) of Z(3) vs x.

The difference between a finite and an inf inite
system shows up computationally through the
boundary conditions. The use of periodic boundary
conditions at the edges allows information to propa-
gate from one spin to one edge, loop around to the
other edge, and return back to that spin. That is
how a spin "knows" the system is finite. If we can
somehow prevent this looping back of information,
the spin would "think" the lattice is infinite and
would behave accordingly. Since the potential
energy flips two spins at a time, if we then stop
the Lanczos process after r = (N —1)/2 steps, V
mould have acted r times only and, thus, there

would not be enough interactions to flip a line of
spins leading from one edge all the way to the
other edge. This way these tw'o spins would not
be able to communicate. This is only a plausibility
argument and one shouM not be surprised if this
scheme of stopping the Lanczos process after x
steps does not work.

In fact, we were surpri. sed to find that for the
Z (2) case the values of the mass gap obtained in
this way were identical to the exact results, "
giving v=1 exactly. We believe this is just an
accident related to the fact that the high-tempera-
ture series for the mass gap terxninates at second
order, 4 since, in fact, we also get exact results
for the mass gap if we terminate the Lanczos pro-
cess at any stage with fewer than r = (N —1)/2
steps. Applied to Z(3) the scheme does not yield
good results.

APPENDIX B

In this Appendix we discuss some of the pro-
gramming techniques that we used. The first
problem one encounters is how to represent a
quantum- mechanical state in the computer memo-
ry For d.efiniteness we will discuss Z(2)-type
states and generalize at the end. A typical trans-
lationally invariant Z (2) state with %=3 is

(~f40) + ~404) + ~Nfl)).

We note that since all states in our calculation. are
translationally invariant, we need only store one of
the three configurations 440, 400, and 044 as a
representative. One has to adopt some rule for
picking out the representative. Our rule chooses

The coefficient 1/v3 need not be stored be-
cause we can always compute it from the repre-
sentative. The computer memory is divided into
cells (words) that can be addressed directly. Each
word consists of a number of subcells called bits.
A bit can store 1 or 0 only. A spin configuration
like 4 04 can be stored in the first 3 bits of a word
as 011 if we take 0 to be represented by 1 and 0 to
be represented by 0. The contents of the remaining
bits are irrelevant. We see then that a transla-
tionally invariant Z(2) state can be stored in one
word by thinking of the first N bits of the word
(counting from the right) as spins. Such a repre-
sentation of translationally invariant states not
only saves on memory, but is also very con-
venient as it makes it easy to act on the states with
quantum operators. If, for example, we want to
act on the state 444, stored internally as 110 by
the operator o„(1)o„(2),which flips the first two
spina (counting from the right), all we have to do
is to form the logical xoa (exclusive or) function
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of the state with the number 3. This is because
the number 3 is stored internally as 011 and
(011) xoR (110)=(101), i.e. ,

o„(I)c,(2) ~~~~& = ~Ht&.

In general, one can implement c„(N)c„(N + 1) by
forming the xoR of the state with the number
3 x 2~ '. Many other logical functions are available
( ANn, surFT, . .. ) so that any quantum operator can
be implemented with a few instructions. These
functions are standard (built in) at the assembly
language level and, in most machines, are also
available in high-level languages such as FoRTRm,

Having learned how to store simple transla-
tionally invariant states, we turn now to the most
general Z (2) state which is a linear combination of
m states, each of which is translationally invari-
ant. This state will be stored in two lists (arrays)
of m words each: one to hold the spin configura-
tions and the other to hold their coefficients. Con-
sider, for example, the N =3 state

1
~
f04&+ (404& + )khan&

(~2 y p2)1/2 v3

i»»+ )»~&+~»» ~~

v& )'
If we store the translationally invariant states
uhder the word corresponding to its component
with the smallest numerical value, the first list
contains 001 in its first word and 011 in its second.
The second list contains o/(a 2+ p2)'~2 in its first
word and p/(n + p )'~ in its second. Note that in
the Lanczos method only three states are present
at any one time because to compute g„, , from
Hg„, we need P„2,g„„and g„.

The following points are helpful in writing the
program:

(1) In order to compute P„,, from Hg„, one has
to perform scalar products and other operations
that require searching the above- mentioned lists
for a given record. The search time can be great-
ly reduced if the lists are ordered, because then
one can use binary searching rather than search
sequentially. We ordered the lists according to
the numerical values of the words representing
spin states.

(2) Another way to speed up the program is to
write in assembly language the subroutines which
manipulate the words representing quantum state
vectors. We found that this would speed up the
program by a factor of at least 2, and in some
cases by a much larger factor.

(2) In the Lanczos method the coupling constant
x enters the calculation in a very simple way so
that one can perform most of the generation and
manipulation of the lists without specifying the
value of x. We were able to save a great deal of
computer time by doing these manipulations only
once and then storing the results on a disk. A
different program can then read these results and
use them to compute the eigenvalues at specified
x values.

(4) Because of round-off errors, the state g„, ,
may not be orthogonal to P„g„.. . , g„. This can
cause problems, as pointed out in Ref. 9. In that
reference the authors overcame this problem by
reorthogonalizing the states whenever a new state
is generated. In all the calculations that we have
done we did not encounter any such problem.

It is straightforward to generalize these ideas
to any model with a finite number of states per
site. For Z (2) we reserved one bit for each site
because the spin at that site can be either up or
down. For Z(n) one has to reserve I bits per site
where 2'~ n.
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