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Finite-lattice Hamiltonian results for the phase structure of the Z (q) models
and the q-state Potts models
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We use our finite-lattice approach to study the ph lse transitions of the H lmiltonian formul'l-

tion for the (1+1)-dimensional Z(q) models. We confirm the known result that these models

possess two phases for q & q, and three phases for q ~ q, . Our calculation, however, gives

q, =6, while the perturbative calculation predicts q, =5. Simil lr calculations for the (1+1)-di-
rnensional q-state Potts models for q =4, 5, and 8 f tiled to differentiate the second-order tr lnsi-

tion expected for q ~4 from the first-order transition expected for q ~ 5.

I. INTRODUCTION

The phase structure of the Z(q) models has at-
tracted the attention of physicists for a long time.
Using perturbation theory and Pade extrapolants, El-
itzur et al. , ' argued that the Hamiltonian formulation
of the Z (q) models exhibits a conventional Ising-like
transition for q ( q, =. 5, while for q ~ q„a massless
phase separates the low- and high-temperature
phases. Recently Rujan et al. ' approached the prob-
lem using variational and Migdal recursion-relation
techniques, and found that q, =6.

In this paper we apply our finite-lattice approach to
the Hamiltonian form for these models. The finite-
lattice calculational techniques are explained in Ref.
3. The extrapolation to the infinite-lattice limit is

presented in Ref. 4. In Refs. 3 and 4 the finite-lattice
approach was applied to a variety of models among
which were the q = 2, 3, and ~ Z (q) models (the

q =4 model is nothing but a decoupled set of two

q =2 models). We obtained conventional second-
order transitions for q =2, 3, and for q = ~, a line of
fixed points extending from x =x' to ~. It is very
interesting to see how this line will build up, within
our finite-lattice approach, as q

In Sec. IV of this paper we report similar calcula-
tions for the q-state Potts models for q =4, 5, and 8.
We obtain similar results for the three cases and
these results are typical of second-order phase transi-
tions. There is no sign in our calculations of the
first-order phase transition expected for q ~ 5.

II. Z(q) MODEL

The Hamiltonian of the Z(q) model is given by'

H =(g/2a) W
1

I —c s(2'/q )L;'—x cos (MI —M;+~)
I —cos(2m/q ) q

where x =2/g2, 'a is the lattice spacing, and L;, M;
satisfy

L;+g.M;+a=Le M (3)

((L;,MJ] = i (q/2n )—s& (4)

The coupling constant x is related to A. of Refs. 1 and
2 via

x = ) /[ I —cos(2n/q ) ]

Recall that the theory is self-dual in A. , i.e., the mass
gap satisfies m (X) = Xm (X ').

III. RESULTS FOR THE Z(q) MODELS

According to the renormalization-group interpreta-
tion of Ref. 4, the quantity of interest is

GH(x, N) =gNG(x, N) (6)

where G(x, N) is the m'ass gap of W. At a fixed
point x =x', the quantities GH (x', N ) become equal
for different N.

In Fig. 1, G~ for the q =5 model, is plotted against
x for N =2—6. Figures 2, 3, and 4 are similar to Fig.
1 but for the q =6, 7, and 9 models, respectively.

It should be noted that our calculation of G is not
valid when x is very large. In that region the mass
gap calculated above becomes identically zero when
N ~. (This region is the analog of the spontane-
ous magnetization phase of the Ising model. ) The
relevant mass gap of that region involves new sectors
characterized by rather complicated topological excita-
tions. (It is difficult to represent a single domain
wall, for example, with periodic boundary condi-
tions. ) We did not compute the mass gap for these
sectors, but since the transition character is not af-
fected by that region of large x, the above observation
does not affect our conclusions regarding the nature
of the transition. We cannot, however, discuss the
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FIG. 1. Quantities GH(x, N) given by Eq, (6) vs the cou-
pling parameter x defined in Eq. (2) for the q =5 model
Z(5). Separate curves are given for N =2—6. Note that
the curves for N =3—6 appear to cross at x = 1.4,

FIG. 3. Same as Fig. 1 for the q =7 model Z(7). The
curves for N =3—6 appear to meet at x = 1.8.
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FIG. 2. Same as Fig. 1 for the q =6 model Z{6). The
curves for N =3—6 appear to meet at x = 1.7.

FIG. 4. Same as Fig. 1 for the q = 9 model Z (9). The
curves for N =3—6 appear to meet at x =2.0.
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phase transition at the low-temperature end of i line of fixed points.
We see in Fig. 1 that the Z(S) model has a conventional phase transition [the curves GI&(x.N) intersect at one

value of x =x ], whereas Figs. 3 and 4 indicate the presence of a line of fixed points separating the high- and
low-temperature phases. The Z(6) model appe mrs to be on the border line between these two regimes.

These conclusions can be obtained quantitatively by computing the P functions of these models. We use the
formula

p(g) In[N'G (g, N')/NG (g, N ) ]
(lnN'/N) [I + —,g (I)/I)g ) ln[NG (g, N) N'G (g, N') ])

(7)

P(g) =(I/c)(g —g')'" (8)

in the neighborhood of the critical point. If the fit
gives o. =0, the transition is conventional second or-
der and the correlation length index v is given by
v=c. For nonzero 0- there is a line of fixed points.

In Table I, we summarize the results we obtained
by fitting to Eq. (8) for the q = 5—7 and 9 models.
We see that for the q = 5 case, cr = 0 in agreement
with the qualitative behavior of Fig. 1. For q =6, 7,
and 9 on the other hand, we obtain a nonvanishing
value for 0- which means that the fixed-line regime
sets in for q ~ q, =6. These results differ from the
perturbative results given in Sec. VI (Table III) of
the paper by Elitzur, Pearson, and Shigemitsu (Ref.
1). Working with the same quantum Hamiltonian
(2) and using Pade extrapolated strong-coupling ex-
pansions, these latter authors obtained q, =5 and
values for o considerably larger than those given in

our Table I.
Our result, along with the two methods of Ref. 2

(Migdal recursion relations and variational calcula-
tions), constitute a set of three independent ap-

derived in Ref. 4, to calculate P(g). Here N and N'

define the renormalization-group transformation
N = L/a N' = L/a', with L a fixed length and a, a'
two lattice spacings. The numerical values obtained
in this way are fitted to the form

proaches all leading to the result q, =6 (if only in-

tegral q, are considered).

IV. q-STATE POTTS MODELS

H =(g/2a) W, x =2/g'
N N q-i

W= —XR, —x X XM"M,
i I k i

(10)

with R; and M; the following q x q matrices for each
site

q —1

0 1

0 1

0
(12)

The transfer matrix for the q-state-Potts models
was derived by Mittag and Stephen. ' From this cal-
culation one infers a Hamiltonian, which was put into
a convenient form by Solyom. :

TABLE I. The fixed point x, the correlation length in-

dex v, and the index cr are shown for the Z{q) models with

q =5—7 and 9. When o. is nozero, the index v is, of course,
nonexistent.

0

1 0

~ 1

0

1.40
1.67
1.81
2.00

2.4 0.0
0.02
0.06
0, 1

From the point of view of the numerical calcula-
tion, W for the Potts models, Eq. (10), is very simi-

lar to W for the Z (q) models, Eq. (2), and the com-
puter program required only minor changes.

We were primarily interested in the Potts models
because according to Baxter's theorem' the q-state
Potts model has a second-order phase transition for

q ~ 4 and a first-order phase transition for q ~ 5.
Thus we wanted to see if our method, based on finite
scaling of exact numerical results for small systems,
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could detect the first-order phase transition. In either
case q ~ 4 or ~ 5 duality predicts that the phase
transition for the %of Eq. (10) should occur at x = l.

%'e performed our finite-lattice calculations for
5—7 sites for the two cases q = 4 and 5 and 4—6 sites
for the case q = 8, The case q = 8 with 6 sites was
the biggest calculation we could conveniently handle.
In Fig. 5 GH for the q =4 model is plotted versus x
for N = 5—7. Figure 6 is a similar plot for the q = 5

model, and Fig. 7 is a similar plot for the q =8
model, except with N =4—6 instead of 5—7. [Note
that we use the same definitions as for the Z (q)
models; H = (g/2a) W, x = 2/g', and GH =KG with
G the mass gap of H. j We see that there are fixed
points in the quantities GH and hence phase transi-
tions at x = 1.0 for all cases q =4, 5, and 8. The
three cases appear remarkably similar and have the
general appearance of a second-order phase transi-
tion. Figures 5—7 are very similar in appearance to
the corresponding plots generated for the (2+ 1)-
dimensional Ising model and recorded in Ref. 4.

Thus our finite-lattice approach can easily find the
phase transition at x = 1.0, but in its present form,
appears unable to differentiate between first- and
second-order transitions, at least for the Potts Hamil-
tonian. Both cases q ~5 and ~4 lead to isolated
fixed points with a gap 6 which scales as W, for the
values of N for which we were able to do the calcula-
tion. It should be emphasized that this is not a de-

l4.0

IO.O

8.0

6.0

4.0

2.0

0.0
0.8

I

0.9 l.O
X

I.2

FIG. 6. Quantity G&(x, A') defined in Eq. (6) for the
Potts Hamiltonian (9,10) for the case q =5. The three
curves correspond to N =5—7 sites.
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FIG. 5. Quantity GH(x, N) defined in Eq. (6) for the
Potts Hamiltonian (9,10) for the case q =4. The three
curves correspond to N =5—7 sites.

FIG. 7. Quantity G&(x,N) defined in Eq. (6) for the
Potts Hamiltonian (9,10) for the case q =8. The three
curves correspond to N =4—6 sites.
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feet of the numerical method; the numerical results
obtained are exact for the small values of N & 7, for
which we could do the calculation. The difficulty lies
with scaling the results to the N ~ system of in-

terest. The correlation length in lattice units is

I/a -2/gG. For a second-order transition G 0 and
I/a ~ oo, in fact G —const/N. For a first-order tran-
sition G const, leading to finite I/a. However if I

becomes larger than the finite-lattice size Na, the fi-

nite lattice "thinks" I is infinite and produces results
similar to those for a second-order transition.
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