
Java By Abstraction - Test-D (Chapters 7-12)

Last Name

First Name

Do not write below this line

 Q1 (35%)

 Q2 (35%)

 Q3 (30%)

 TOTAL

String Methods
(invoke on a string s)

char charAt(int p)
Returns the character at position# p in s.

int compareTo(String t)
Returns a negative number if s<t, zero
if s=t, and a positive number if s>t.

Static Methods

int indexOf(String t, int f)
Looks for the string t within s, starting at
position# f in s. Returns the position in s
where the match was found. Returns -1
if no match was found.

Integer.parseInt(s)
Double.parseDouble(s)
methods to convert a string s
that contains a number to a
primitive type.

int indexOf(String t)
Looks for the string t within s (as
above), starting at the beginning of s.

double abs(double x)
Returns the absolute value of x (Math)

String substring(int f,int t)
Returns all characters in s with position
numbers ≥ f and < t.

double pow(double x, double y)
Returns x raised to y. (Math)

String substring(int f)
Returns a substring of s that begins at f
and extends to the end of s.

double rint(double a)
Returns the closest double to a that is
equal to a mathematical integer. (Math)

String replace(char x,char y)
Returns a string with all occurrences of
character x in s replaced by y.

String repeat(int count,char c)
Returns a string made up of c repeated
count times. (IO)

String toUpper/LowerCase()
Returns a string of all characters in s
converted to upper / lower case.
String trim()
Returns the same content as s but with
any leading/trailing white-space

String Tokenizer
Constructor: (String s,
 String delimiters)
Methods: String nextToken(),
 boolean hasMoreTokens(),
 int countTokens()

Java By Abstraction Test-D Pg. 1 of 10

 QUESTION 1 <35 points >

Consider the classes Route, Time, Trip, XTrip, and Log whose API appear at the end of this
booklet. One of the transit routes is route number 11 whose lower station is "Union" and whose
upper station is "Steeles". On average, a regular trip along this route takes 105 minutes, but an
express one takes only 45 minutes.

Write an app that prompts the user to enter a route number and then generates a report that lists all
trips along that route in the log returned by the getRandom method. This method returns a
collection of randomly chosen trips along a variety of routes. Your app must extract from it only
those trips that are along the route entered by the user, and then generate a report that looks like
this (assuming the user entered route number 11):

Route Number 11, Union <--> Steeles (105 min)

From Vehicle Departed Arrived Deviation
Union 700 08:30 10:30 15
Union 400 08:45 10:30 0
Steeles 700 10:40 12:10 -5
Union 512-X 10:45 11:35 5
Steeles 400 10:50 12:30 -5

The report starts with a line that identifies the route number, the route's lower / upper stations, and
the expected travel time between them. Then, a line is generated for each trip in the log showing
where it started, the vehicle number, the departure / arrival times, and the deviation from the
schedule.

The first row indicates that vehicle 700 left Union at 08:30 and arrived at Steeles at 10:30. This
means it took 120 minutes and that is why the 5th column shows 15, the difference between the
actual duration (120 min) and the theoretical one (assumed in the above example to be 105 min).
The fourth row depicts an express trip. It adds a "-X" suffix to the vehicle number and takes the
express nature into account when it computes the deviation. For this trip, the getSavedTime
method returns 65, and hence, the expected time for it is 105 - 65 = 45 min. That is why the last
column shows a deviation of 5 min between the actual time (50) and the express time (45).

The above output is only an example but your code must reproduce the above layout (the entries in
the table are all tab-delimited) for any log and any route. You can assume, however, that there is at
least one trip in the log along the user-entered route; i.e. the report has at least one row.

Note that the ordering of lines in the report must follow that of the log; i.e. you do not have to order
the trips in any way, just output them in the order you retrieve them from the log.

Write your answer on the next page.

Java By Abstraction Test-D Pg. 2 of 10

 QUESTION 1 continued.

import type.lang.*;

public class Transit
{ public static void main(String[] ar)
 {

Java By Abstraction Test-D Pg. 3 of 10

 QUESTION 2 <35 points >

We want to develop a billing app for a cellular phone company. The app reads a file called
"calls.txt" that contains information about phone calls made by a customer and generates a bill
for the customer to pay. Each record in the file represents a phone call and consists of three pipe-
delimited fields: rate|start|end

The first field is the charge rate for the phone call and is expressed in cents per second. The second
field is the time at which the call started, and the third is the time at which the call ended. For
example, the record:

0.15|Sep 1, 2003 11:10:56 PM|September 2, 2003 1:17:40 am

represents a phone call that started at 11:10:56 pm on September 1st and ended at 1:17:40 am on
the following day. Hence, this call lasted for 2 hours, 6 minutes, and 44 seconds, or 7,604 seconds.
At 0.15 cent/sec, this call leads to a charge of: 0.15 * 7604 / 100 = $11.41.

One of the challenges facing this app is the variability of the format in which the start / end times
are expressed, e.g. the month name is sometimes abbreviated. To overcome this, the app delegates
the date/time extraction to the parse method of the DateFormat class. This class does not have
a constructor but does have a static method that returns an instance of it. Once the string is con-
verted to a Date, we can use the getTime method of Date to convert it to long (measured in
milliseconds). The relevant parts of the API of both classes are reproduced below.

java.text

Class DateFormat

Method Summary

static DateFormat

getDateTimeInstance()
Gets the date/time formatter with the default formatting style for the
default locale

Date

parse(String source)
Parses text from the given string to produce a date.

Throws: java.text.ParseException
if the specified string cannot be parsed.

java.util

Class Date

Method Summary

long

getTime()
Returns the number of milliseconds since January 1, 1970, 00:00:00
GMT represented by this Date object.

Java By Abstraction Test-D Pg. 4 of 10

QUESTION 2 continued

The app must implement the following algorithm:

1. Open the file calls.txt
2. Read its records one by one
3. Extract the rate and turn it into a double
4. Extract the start date/time and turn it into a long
5. Extract the end date/time and turn it into a long
6. Compute the charge in dollars using (rate/100)*(end - start)/1000
7. Output the number of the processed record (counting starts at zero), followed by a tab, and

followed by the charge.
8. Process the next record.

The app must use Java's exception handling. If an error were encountered in a record, one of the
following error messages would replace the charge in the output (step #7 above):

Error Message When to issue

Non-numeric rate! If rate cannot be parsed into a double

"start" is not a date! If start cannot be parsed into a Date

"end" is not a date! If end cannot be parsed into a Date

Missing field! If one of the fields is missing

"start" is later than "end"! If start occurs later in time than end

Here is a sample file:

0.15|Sep 1, 2003 11:10:56 PM|September 2, 2003 1:17:40 am
0.75|September 5, 2003 2:17:34 pm|Sep 5, 2003 2:30:0 pm
0.75|September 5, 2003 2:17:34 pm
$1.03|September 5, 2003 2:17:34 pm|Sep 5, 2003 2:30:0 pm
1.03|Sept. 5, 2003 2:17:34 pm|Sep 5, 2003 2:30:0 pm
1.03|September 5, 2003 2:17:34 pm|5/9/2003 2:30:0 pm
0.75|September 5, 2003 2:17:34 pm|Sep 3, 2003 2:30:0 pm

And here is its corresponding sample run:

0 OK $11.41
1 OK $5.60
2 Missing field!
3 Non-numeric rate!
4 "start" is not a date!
5 "end" is not a date!
6 "start" is later than "end"!

Recall that StringTokenizer throws a java.util.NoSuchElementException when
a token is missing and that Double throws a java.lang.NumberFormatException when
a non-numeric character is encountered.

Java By Abstraction Test-D Pg. 5 of 10

 QUESTION 2 continued.

import type.lang.*;
import java.util.*;
import java.text.*;

public class Bill
{ public static void main(String[] ar)
 {

Java By Abstraction Test-D Pg. 6 of 10

 QUESTION 3 <30 points >

Write an app that reads a file of tokens, one token per record, and produces an
ordered table whose rows correspond to the word lengths found in the file. For
example, if the input file were as shown on the right then the produced output
would be as shown below:

1 [a, k]
3 [arm, end, far, the, try]
4 [echo, exit, well, word]
5 [point, quite]
6 [arrive, indent]
8 [aaaaaaaa]

The first row, for example, corresponds to words of length 1, and hence, it con-
tains 1 followed by a tab, followed by the set of all words of length 1. Notice
that each set is sorted alphabetically and that the rows are sorted in increasing
length order. Note also that duplicates are removed. The word "the", for
example, appears twice in the table but only once in the output. Note that the
tokens in the files should be treated as strings of arbitrary lengths and contents;
i.e. do not assume they must be English words.

Hint:
Create a map whose key is the length of a word in the file and whose value is a set of all words in
the file having that length. Whenever a word is read, the map is searched to see if it has an
element with that length as key. If so, the new word is added to the element's set. Otherwise, a
new element is created in the map.

Here is some relevant API from the collection's framework:

SET MAP

To add an element:

boolean
add(Object e)

Object
put(Object key, Object value)

To access an element:

none
Object
get(Object key)

To search for an element:

boolean
contains (Object o)

boolean
containskey (Object key)

To traverse all elements:

Iterator: iterator()

invoke on it:

Object next()
boolean hasNext()

Iterator: keySet().iterator()

invoke on it:

Object next()
boolean hasNext()

the
word
arm
a
quite
well
a
the
point
end
aaaaaaaa
arrive
try
indent
k
exit
echo
far

Java By Abstraction Test-D Pg. 7 of 10

QUESTION 3 continued.

import type.lang.*;
import java.util.*;

public class LengthMode
{ public static void main(String[] ar)
 {

Java By Abstraction Test-D Pg. 8 of 10

• Class Route
This class encapsulates a public transit route. Each route is identified uniquely by its route number
(an integer in [1,999]) and the class uses this number as a key to a central database in order to
retrieve the names of the two stations that the route connects (known as the lower and the upper
stations) and the average travel time between them.

Constructor Summary

Route(int routeNumber)
Construct a Route object having the passed route number. The route data is retrieved from a central
database based on the passed routeNumber. If the passed number is invalid (less than 1 or
greater than 999) or if it is not found in the database, a precondition exception will be thrown.

Method Summary

int

getRouteNumber()
Return the number of this route.

String

getLowerStation()
Return the name of one end of this route.

String

getUpperStation()
Return the name of the other end of this route.

int

getExpectedTime()
Return the time, in minutes, that it takes a transit vehicle on average to travel
from either end of this route to the other.

• Class Time
This class encapsulates the time-of-day, in hours and minutes, using a 24-hour clock.

Constructor Summary

Time(int hh, int mm)
Construct a Time object. A precondition exception will be thrown if the hour hh is not in [0, 23]
or if the minute mm is not in [0, 59].

Method Summary

void

add(int m)
Add m minutes to this time instance.

int

getInterval(Time other)
Return the absolute value of the shortest number of minutes between this time
and other, e.g. if one time is 10:15 and the other is 10:00, the return would be
15. And if one time is 23:45 and the other is 00:15, the return would be 30.

String

toString()
Return the 5-character string hh:mm (hh and mm are zero-filled; e.g. 03:05)

Java By Abstraction Test-D Pg. 9 of 10

• Class Trip

This class encapsulates a trip of a particular transit vehicle along a route. It holds the vehicle
number, the route of the trip, the direction along the route, and the departure/arrival times.

Field Summary

static final int

UP
This value indicates that the trip begins at the lower station of the route
and ends at its upper station.

static final int

DOWN
This value indicates that the trip begins at the upper station of the
route and ends at its lower station.

Constructor Summary

Trip(int vehicle, Route r, int direction, Time start, Time end)
Construct a Trip that starts at time start and ends at end along route r. The Trip starts at
the lower station of the route and ends at its upper station if direction is UP (a class constant);
otherwise, it is in the opposite direction. A precondition exception will be thrown if direction is
neither UP nor DOWN; the start time is not earlier than the end time; or the vehicle number,
vehicle, is not positive.

Method Summary

int

getVehicleNumber()
Return the number of the vehicle of this Trip.

Route

getRoute()
Return the route of this Trip.

int

getDirection()
Return the direction of this Trip.

Time

getStartTime()
Return the start time of this Trip.

Time

getEndTime()
Return the end time of this Trip.

String

toString()
Return the string: "A Transit Trip".

boolean

equals(Object other)
Return true if other is a Trip instance having the same route number,
direction, start time, and end time as this trip. The return is false otherwise.

Java By Abstraction Test-D Pg. 10 of 10

• Class Log
This class encapsulates a collection of trips and provides methods for traversing the stored trips per
route and in non-descending start time order.

Constructor Summary

Log()
Construct an empty log capable of holding an arbitrary number of Trip objects.

Method Summary

void

add(Trip t)
Add t to this log.

Trip

getFirst(int routeNumber)
Return a trip from this log having the passed route number and the earliest start
time. The return is null if no trips along the passed route exist in this log.

Trip

getNext()
Return a trip from this log having the route number indicated in the last invoca-
tion of getFirst and the next earliest start time. The return is null if no
more trips along the passed route exist in this log.

static Log

getRandom()
Return a reference to a randomly created log.

• Class XTrip extends Trip

This class encapsulates an express trip of a public transit vehicle along a route. The vehicle in such
a trip does not stop in any intermediate station as it travels from one end of the route to the other.

Constructor Summary

XTrip(int vehicle, Route r, int direction, Time start, Time end)
Exactly the same behavior as the superclass constructor.

Method Summary

int

getSavedTime()
Return the time, in minutes, that is saved on average due to the express nature
of this trip.

String

toString()
Return the string: "An Express Transit Trip".

boolean

equals(XTrip other)
Return true if other has the same route number, start time and end time as
this trip (regardless of direction). The return is false otherwise.

