
Java By Abstraction - Test-B (Chapters 1-6)

Last Name

First Name

Do not write below this line

 A (40%)

 B (60%)

 TOTAL

String Methods
(invoke on a string s)

char charAt(int p)
Returns the character at position# p in s.

boolean equals(String t)
Returns true if s and t have equal
contents.

int compareTo(String t)
Returns a negative number if s<t, zero if
s=t, and a positive number if s>t.

int indexOf(String t, int f)
Looks for the string t within s, starting at
position# f in s. Returns the position in s
where the match was found. Returns -1
if no match was found.

Integer.parseInt(s)
Double.parseDouble(s)
Static methods to convert a string s that
contains a number to a primitive type.

int indexOf(String t)
Looks for the string t within s (as
above), starting at the beginning of s.

String trim()
Returns the same content as s but with any
leading/trailing white-space removed.

String substring(int f,int t)
Returns all characters in s with position
numbers ≥ f and < t.

Static methods in Math

String substring(int f)
Returns a substring of s that begins at f
and extends to the end of s.

double abs(double x)
Returns the absolute value of x.

String replace(char x,char y)
Returns a string with all occurrences of
character x in s replaced by y.

double pow(double x, double y)
Returns x raised to y.

String toUpper/LowerCase()
Returns a string of all characters in s
converted to upper / lower case.

double rint(double a)
Returns the closest double value to a that
is equal to a mathematical integer.

Java By Abstraction Test-B Pg. 1 of 10

GROUP - A <10 questions x 4 points each = 40 points >

For each question, write in the box the output of the shown fragment. If you believe the
fragment will not produce output due to errors, write the error type and a brief

explanation. You can assume all needed classes are properly imported.

A.1

int k = 16412;
int m = k % 10;
k = k / 10;
k = k % 1000;
IO.println(m);
IO.println(k);

A.2

String s = "York University";
int p = s.indexOf("n");
int q = s.substring(3, 9).indexOf("n");
IO.println(p);
IO.println(q);

A.3

Stock s = new Stock("NT");
Stock u = new Stock();
Stock t = s;
u.setSymbol("NT");
IO.println(t.getSymbol());

s.setSymbol("ATY");
IO.println(t.equals(u));

Java By Abstraction Test-B Pg. 2 of 10

 GROUP - A, continued

A.4

int i1, i2, i3;
double r1, r2;
i1 = 5;
r1 = 3.0;
r2 = 2 * r1;
i2 = 2 * i1;
i3 = i2 / r2;
IO.println(r2);
IO.println(i3);

A.5

The BankAccount class has a constructor that takes two parameters: the name
of the account (a String) and its initial balance (a double). The class has a
double accessor method getBalance() that returns the balance of the
account on which it was invoked.

BankAccount a1 = new BankAccount("Mary", 1000);
BankAccount a2 = new BankAccount("Mary", 1000);
BankAccount a3;
a3 = a1;
int m = 0;
if (a2 == a3)
{ m = 55;
}
int k = 0;
if (a2 == a1)
{ k = -1
} else if (a3.getBalance() == a2.getBalance())
{ k = -22
} else
{ k = -333
}
IO.println(m);
IO.println(k);

Java By Abstraction Test-B Pg. 3 of 10

GROUP - A, continued

A.6

int x = 5763;
int y = 0;
int k;
for (k = 0; x > 0; k++)
{ y = y + x % 10;
 x = x / 10;
}
IO.println(k);
IO.println(y);

A.7

int a = 10;
int b = 20;
int c = 30;
boolean m = a + 10 == c;
IO.println(m);

if (a > b || b + 10 > c)
 IO.println("case 1");
else if (a < b && b + 10 < c)
 IO.println("case 2");
else if (!(a + 20 > c) || a + 10 < b)
 IO.println("case 3");
else
 IO.println("case 4");

Java By Abstraction Test-B Pg. 4 of 10

GROUP - A, continued

A.8

String s = "abcdefgh";
int k = s.length() - 6;
IO.println(s.substring(k, s.length() - 1));
boolean b = s.substring(1,2) == "b";
IO.println(b);

A.9

String s1 = "100";
String s2 = "20";
IO.println(s1 + s2 + 30);
IO.println(9 / 2 + 30 + s1 + s2);

A.10

Stock stk1 = new Stock("RY");
Stock stk2 = new Stock("BMO");
Stock stk3 = stk2;
stk2 = null;
boolean b1 = stk2 == stk3;
IO.println(b1);

stk3.setSymbol("RY");
boolean b2 = stk3 == stk1;
IO.println(b2);

Java By Abstraction Test-B Pg. 5 of 10

 GROUP - B <60 points >

B.1 <20 points>

Consider the following (partial) API of two classes:

Department Class
Constructor Summary
Department(String name, int budget)
Constructs a Department object.

Parameters:

name - name of the department
budget - budget of this department

Method Summary
void assign(Employee who)

Add an employee to this department
Parameter:
who - the employee to be assigned to this department

int getHeadCount()
Returns:
the number of employees in this department

int getBudget()
Returns:
the budget of this department

void changeBudget(int delta)
Increase or decrease the budget of this department by the passed
amount. Delta is the increment or decrement, not the new budget.
Parameter:
delta - change the budget by adding this amount to it (to reduce budget,
provide a negative amount).

Employee Class
Constructor Summary
Employee(String name,int rank)
Constructs an Employee object.

Parameters:

name - name of the employee
rank - the rank (level) of the employee

Java By Abstraction Test-B Pg. 6 of 10

B.1, continued

Develop the Java application App whose main method performs the following tasks, in the
order shown:

1. Create a department called "R&D" with budget 2,000,000.

2. Create an employee John whose rank is 3.

3. Create an employee Debbie whose rank is 2.

4. Assign both John and Debbie to the R&D department

5. Determine the head count of the R&D department by using a method, and store it in

some variable count.

6. If count is greater than 10, increase the department budget by 5%, otherwise reduce

it by 2%.

Note that it is OK to use the above magic numbers –no need to store them in finals.

Write your app on the next page.

Java By Abstraction Test-B Pg. 7 of 10

B.1, continued

import type.lang.*;

public class App
{ public static void main(String[] args)
 {

Java By Abstraction Test-B Pg. 8 of 10

 GROUP - B

B.2 <20 points>
Write the program App that starts by prompting for and reading a string from the user. If
the length of the entered string is equal to or greater than 20, the program must terminate
with the error message "String too long!". Otherwise, the program outputs the string
after padding it with '+' characters at its two ends, so that the total length of the output is
20 and the entered string is at
the centre of the output. If the
number of '+' characters to be
added is odd, you can put the
extra '+' on either side. Three
samples are shown.

import type.lang.*;
public class App
{ public static void main(String[] args)
 { final int WIDTH = 20;

 Enter a string: Toronto
 +++++++Toronto++++++

 Enter a string: Computer Science Dept.
 String too long!

 Enter a string: 1234567890
 +++++1234567890+++++

Java By Abstraction Test-B Pg. 9 of 10

 GROUP - B

B.3 <20 points>

Write the program App that plays a game with the user as follows: it prompts the user to
enter a guess for the role of the dice. It then simulates throwing one die by generating a
random number (an integer between 1 and 6, inclusive) and displaying it on the screen. If
the user's guess was correct, the user gets $2; i.e. the program adds $2 to the user's
balance, otherwise, the user loses $2, and the new balance is displayed on the screen.
The game continues indefinitely until the user enters an invalid guess (less than 1 or more
than 6) or runs out of money. The user starts off with $10.

Here is a partial API of the Random class whose services enable you to simulate the
throwing of a dice:

Random Class in the java.util package
Constructor Summary
Random()
 Creates a new random number generator.

Method Summary
int nextInt(int n)

Returns a random number uniformly distributed between 0 (inclusive) and
the specified parameter n (exclusive); i.e. the return is greater or equal to
0 and less than n.

Write the program on the next page.

Java By Abstraction Test-B Pg. 10 of 10

B.3, continued

import type.lang.*;

public class App
{ public static void main(String[] args)
 {

