
Java By Abstraction - Test-C (Chapters 7-9)

Last Name

First Name

Do not write below this line

 Q1 (30%)

 Q2 (30%)

 Q3A (10%)

Q3B (30%)

 TOTAL

String Methods
(invoke on a string s)

char charAt(int p)
Returns the character at position# p in s.

int compareTo(String t)
Returns a negative number if s<t, zero
if s=t, and a positive number if s>t.

Static Methods

int indexOf(String t, int f)
Looks for the string t within s, starting at
position# f in s. Returns the position in s
where the match was found. Returns -1
if no match was found.

Integer.parseInt(s)
Double.parseDouble(s)
methods to convert a string s
that contains a number to a
primitive type.

int indexOf(String t)
Looks for the string t within s (as
above), starting at the beginning of s.

double abs(double x)
Returns the absolute value of x (Math)

String substring(int f,int t)
Returns all characters in s with position
numbers ≥ f and < t.

double pow(double x, double y)
Returns x raised to y. (Math)

String substring(int f)
Returns a substring of s that begins at f
and extends to the end of s.

double rint(double a)
Returns the closest double to a that is
equal to a mathematical integer. (Math)

String replace(char x,char y)
Returns a string with all occurrences of
character x in s replaced by y.

String repeat(int count,char c)
Returns a string made up of c repeated
count times. (IO)

String toUpper/LowerCase()
Returns a string of all characters in s
converted to upper / lower case.
String trim()
Returns the same content as s but with
any leading/trailing white-space

String Tokenizer
Constructor: (String s,
 String delimiters)
Methods: String nextToken(),
 boolean hasMoreTokens(),
 int countTokens()

Java By Abstraction Test-C Pg. 1 of 12

 QUESTION 1 <30 points >

Write the app CodeStyle that reads a text file containing a syntactically correct Java program and
generates a second text file containing the same program except its whitespace content is formatted
as per our coding style. Here is a sample run:

java CodeStyle
Filename: Test.txt
Done. The file: "StyledTest.txt" has been generated.

The app reads the name of the input filename from the user and then generates the output on a file
having the same name but with the prefix: "Styled". Here are the contents of the two files:

Specifically, your app must: (1) read the file line by line and remove any leading whitespace from its
lines; (2) remove any extra whitespace within the line and replace it by a single space (or a single
tab if following an open brace); and (3) indent each block by one tab relative to its braces. You can
assume that any open / closed brace in the original file appears as the first non-whitespace character
in its line, and that it is separated from any following token by white space.

import type.lang.*;
 import type.lib.*;

public class Example
{ public static void main(String[] args)
 { for (int i = 0; i < 5; i++)
 { for (int j = 0; j < 3; j++)
 { IO.print(i);
IO.print(" ");
 IO.println(j);
}
 }
 }
}

File: Test.txt

import type.lang.*;
import type.lib.*;

public class Example
{ public static void main(String[] args)
 { for (int i = 0; i < 5; i++)
 { for (int j = 0; j < 3; j++)
 { IO.print(i);
 IO.print(" ");
 IO.println(j);
 }
 }
 }
}

File: StyledTest.txt

Java By Abstraction Test-C Pg. 2 of 12

 QUESTION 1 continued.

import java.util.*;
import type.lang.*;

public class CodeStyle
{ public static void main(String[] ar)
 { IO.print("Filename: ");
 String inFile = IO.readLine();

String outFile = "Styled" + inFile;

Java By Abstraction Test-C Pg. 3 of 12

 QUESTION 2A <15 points >

Pages 10 and 11 of this booklet depict the API of three classes: Route, Time, and Trip. One of
the transit routes is route number 11 whose lower station is "Union" and whose upper station is
"Steeles". Let us assume that transit vehicle number 700 made a trip up this route. It left Union at
11:30 am and arrived at Steeles 1 hour and 45 minutes later. In order to represent this trip, an
object was created as follows:

Trip t = new Trip("700", 11, UP, "11:30", "1:15");

Each of the following 5 questions (at 4 points each) deals with one of the parameters in the above
constructor. For each, either state that the parameter is correct as written or correct it.

• First parameter: "700"

• Second parameter: 11

• Third parameter: UP

• Fourth parameter: "11:30"

• Fifth parameter: "1:15"

Java By Abstraction Test-C Pg. 4 of 12

QUESTION 2B <15 points >

Assume that the object in question 2A was correctly created and that t is a reference to it. Given t,
consider how it is used in the following 5 questions. For each, if you think the usage is incorrect,
write "incorrect" and explain the reason briefly. Otherwise, write the output.

• IO.println(t.getRouteNumber());

• IO.println(t.getRoute().getUpperStation());

• IO.println(t.getStartTime());

• IO.println(t.Route.getLowerStation());

• IO.println(t.getEndTime().add(10));

Java By Abstraction Test-C Pg. 5 of 12

 QUESTION 3A <10 points >

XTrip is a subclass of Trip that represents express trips, ones that don't stop in between the two
route ends. Its API is shown at the end of this booklet.

3A.1 Classify all the methods in XTrip. For each, state whether it is new, inherited, overriding,

or cross-class overloading.

3A.2 Draw a UML diagram that depicts the relationship between the 5 classes: Route, Time,

Trip, and XTrip.

Java By Abstraction Test-C Pg. 6 of 12

 QUESTION 3B <30 points >

Consider an app that deals with route number 11 whose lower station is Union and upper station is
Steeles. On average, a regular trip along this route takes 105 minutes, but an express one takes only
45 minutes. The app starts by the declarations:

 Trip t1;
 Trip t2;
 Trip t3;
 XTrip t4;

3B.1 Write one or more statements to create a Trip for vehicle number 20 that leaves Union at

10:05 and arrives at Steeles at 11:40. Make t1 a reference to it.

3B.2 Write one or more statements to create an XTrip for vehicle number 20 that leaves Union

at 10:05 and arrives at Steeles at 11:40. Make t2 a reference to it.

Java By Abstraction Test-C Pg. 7 of 12

QUESTION 3B continued.

3B.3 Write one or more statements to create an XTrip for vehicle number 20 that leaves

Steeles at 10:05 and arrives at Union at 11:40. Make t3 a reference to it.

3B.4 Write one or more statements to create an XTrip for vehicle number 20 that leaves

Steeles at 11:45 and arrives at Union at 13:40. Make t4 a reference to it.

t1, t2, t3, and t4 are now properly declared and initialized. In each of the following parts, we
are going to add one output statement to the app, and you need to state its output and justify your
answer (i.e. write a brief explanation of how you reached your conclusion). If you think the added
statement will produce syntax or a runtime error, state so and also justify your answer. Treat the
parts independently.

3B.5 IO.println(t1);

Java By Abstraction Test-C Pg. 8 of 12

 QUESTION 3B continued.

3B.6 IO.println(t3);

3B.7 IO.println(t4);

3B.8 IO.println(t3.getSavedTime());

3B.9 IO.println(t1.equals(t2));

Java By Abstraction Test-C Pg. 9 of 12

 QUESTION 3B continued.

3B.10 IO.println(t2.equals(t3));

3B.11 IO.println(((XTrip) t2).equals(t3));

3B.12 IO.println(((XTrip) t2).equals((Xtrip) t3));

Java By Abstraction Test-C Pg. 10 of 12

• Class Route
This class encapsulates a public transit route. Each route is identified uniquely by its route number
(an integer in [1,999]) and the class uses this number as a key to a central database in order to
retrieve the names of the two stations that the route connects (known as the lower and the upper
stations) and the average travel time between them.

Constructor Summary

Route(int routeNumber)
Construct a Route object having the passed route number. The route data is retrieved from a central
database based on the passed routeNumber. If the passed number is invalid (less than 1 or
greater than 999) or if it is not found in the database, a precondition exception will be thrown.

Method Summary

int

getRouteNumber()
Return the number of this route.

String

getLowerStation()
Return the name of one end of this route.

String

getUpperStation()
Return the name of the other end of this route.

int

getExpectedTime()
Return the time, in minutes, that it takes a transit vehicle on average to travel
from either end of this route to the other.

• Class Time
This class encapsulates the time-of-day, in hours and minutes, using a 24-hour clock.

Constructor Summary

Time(int hh, int mm)
Construct a Time object. A precondition exception will be thrown if the hour hh is not in [0, 23]
or if the minute mm is not in [0, 59].

Method Summary

void

add(int m)
Add m minutes to this time instance.

int

getInterval(Time other)
Return the absolute value of the shortest number of minutes between this time
and other, e.g. if one time is 10:15 and the other is 10:00, the return would be
15. And if one time is 23:45 and the other is 00:15, the return would be 30.

String

toString()
Return the 5-character string hh:mm (hh and mm are zero-filled; e.g. 03:05)

Java By Abstraction Test-C Pg. 11 of 12

• Class Trip

This class encapsulates a trip of a particular transit vehicle along a route. It holds the vehicle
number, the route of the trip, the direction along the route, and the departure/arrival times.

Field Summary

static final int

UP
This value indicates that the trip begins at the lower station of the route
and ends at its upper station.

static final int

DOWN
This value indicates that the trip begins at the upper station of the
route and ends at its lower station.

Constructor Summary

Trip(int vehicle, Route r, int direction, Time start, Time end)
Construct a Trip that starts at time start and ends at end along route r. The Trip starts at
the lower station of the route and ends at its upper station if direction is UP (a class constant);
otherwise, it is in the opposite direction. A precondition exception will be thrown if direction is
neither UP nor DOWN; the start time is not earlier than the end time; or the vehicle number,
vehicle, is not positive.

Method Summary

int

getVehicleNumber()
Return the number of the vehicle of this Trip.

Route

getRoute()
Return the route of this Trip.

int

getDirection()
Return the direction of this Trip.

Time

getStartTime()
Return the start time of this Trip.

Time

getEndTime()
Return the end time of this Trip.

String

toString()
Return the string: "A Transit Trip".

boolean

equals(Object other)
Return true if other is a Trip instance having the same route number,
direction, start time, and end time as this trip. The return is false otherwise.

Java By Abstraction Test-C Pg. 12 of 12

• Class Log
This class encapsulates a collection of trips and provides methods for traversing the stored trips per
route and in non-descending start time order.

Constructor Summary

Log()
Construct an empty log capable of holding an arbitrary number of Trip objects.

Method Summary

void

add(Trip t)
Add t to this log.

Trip

getFirst(int routeNumber)
Return a trip from this log having the passed route number and the earliest start
time. The return is null if no trips along the passed route exist in this log.

Trip

getNext()
Return a trip from this log having the route number indicated in the last invoca-
tion of getFirst and the next earliest start time. The return is null if no
more trips along the passed route exist in this log.

static Log

getRandom()
Return a reference to a randomly created log.

• Class XTrip extends Trip

This class encapsulates an express trip of a public transit vehicle along a route. The vehicle in such
a trip does not stop in any intermediate station as it travels from one end of the route to the other.

Constructor Summary

XTrip(int vehicle, Route r, int direction, Time start, Time end)
Exactly the same behavior as the superclass constructor.

Method Summary

int

getSavedTime()
Return the time, in minutes, that is saved on average due to the express nature
of this trip.

String

toString()
Return the string: "An Express Transit Trip".

boolean

equals(XTrip other)
Return true if other has the same route number, start time and end time as
this trip (regardless of direction). The return is false otherwise.

