EECS4413/Roumani

EECS
piendll BUILDING e-COMMERCE SYSTEMS

SERVER-SIDE
MICROSERVICES

PROF H ROUMANI
Dept. of Electrical Engineering & Computer Science

ABOUT MICROSERVICES
ARCHITECTURE

m Multithreaded, Pooled, Containers, Nodes
m Load Balancer/AP| Gateway

vs MONOLITHIC

m Scalable, Robust, and Platform-Independent
m Language/Transport/Protocol Agnostic

FUNCTIONALITY
Compute
Use APIs
Access Data (static files as well as databases)
Delegate / Orchestrate with other services

TCP
THE PROTOCOL




EECS4413/Roumani

ABOUT TCP

TCP over IP

IP: machine-to-machine (IP address)
Loopback/Localhost; Private/Public IP; NAT
TCP: process-to-process (port number)
Connection: order + guaranteed delivery
Protocol: text/binary; custom/standard
Connection: yes; State: no (restful)

TCP

SERVICES

SOCKETS

Client

b

=




EECS4413/Roumani

TCP CLIENT

Find the server's Host and Port
Socket client = new Socket(host, port);

Get a stream to issue the request to it
new PrintStream(client.getOutputStream(), true).printin(request...);

Get a stream to read the response from
response = new Scanner(client.getinputStream()).nextLine();

Close the connection
client.close();

THREADS IN JAVA

= Given a class W that extends Thread
which means it has a public void run()

To execute W "in parallel" with you
new W().start() [this will invoke run()]

In microservices, run() would typically:
compute; use APIs; lookup a DB; use HTTP; ...

Other languages
See the repo for Golang and Python examples

TCP SERVER

Create a server instance on a host/port
ServerSocket server = new ServerSocket(port, 0, host);

Query the server re host/port for logging
server.getinetAddress(), server.getLocalPort()

Socket socket = server.accept()
accept will block until a request arrives

Query the socket
getPort, getinetAddress, getlnput/OutputStream




EECS4413/Roumani

package service;
imports...
public class MyService extends Thread
{
public static main ...

{

create server
loop until need to shutdown

{
client = server.accept(); new myService(client).start();
}
}
public void run()
{
get infout streams from the client socket
read request from in
form the response
write response to out
}

10

DATABASE ACCESS

= Determine the database URL
jdbc:sqlite:<path to db file> for file-based / embedded
jdbc:derby://host:port/name;credentials for network-based

Get a connection to the DB
Connection connection = DriverManager.getConnection(url...);

Create a SQL statement
Statement statement = connection.createStatement();
PreparedStatement stm = con.prepareStatement(query);

Execute the query and see its result
ResultSet rs = statement.executeQuery(query...)
Can then do if or while based on rs.next()

XML MARSHALLERS

JAXBContext context = JAXBContext.newlInstance(bean®.class);
Marshaller m = context.createMarshaller();
m.setProperty(Marshaller.JAXB_FORMATTED_OUTPUT, Boolean.TRUE);

m.marshal(<bean instance>, <output stream>);

The xml document root must be annotated:
@XmlRootElement(name = "whatever")




EECS4413/Roumani

JSON SERIALIZERS

m Gson gson = new Gson();

m <String result> = gson.toJson(<object instance>);

HTTP
THE PROTOCOL

ABOUT

m HTTP over TCP uses URI := URN | URL
m URL syntax: proto://host:port/path?QS

m QS: paraml=vall&param2=val2...
The val are URL-encoded (%hex)

m HTTP Methods: GET, HEAD, POST
m Request / Response protocol

The Response Status Codes
1xx, 2xx, 3xX, 4xx, 5xx

Cousin Protocols
HTTP 2.0, HTTPS, and WebSocket




EECS4413/Roumani

HANDS-ON EXAMPLE

GET /index.html HTTP/1.1
Host: roumani.eecs.yorku.ca

HTTP/1.1 200 OK
Content-Type: text/html

<payload>

GET Line, Host header line, optional header lines
Empty line

Status Line, Content-type line, optional header lines
Empty Line

Payload

SECURITY
TELEMETRY
SCALABILITY

SECURITY

Network based Measures
IP filtering, black and white lists, DOS, DDOS, ...

Confidentiality

Encrypt: link level or end-to-end

Authentication
Passwords, Accounts, OAuth

SQL Injection

Always sanitize incoming parameters and use prepared queries.




EECS4413/Roumani

PASSWORDS

= The Past: store password
Server hacks; insider attacks; social engineering

The Present: store the hash
Detect equality; rainbow table - add salt and slow it down

The Future’: No passwords!
Why not PKI with challenges? Password never leave you
and cannot be re-played.

TELEMETRY

System Logs
Performance Timing
Metrics

Analytics

Data Mining
Machine Learning

SCALABILITY

Multithreading

Throttling

Thread Pooling

Scale thru Containers (e.g. Docker, Kubernetes)
Scale thru boxes (pods and nodes) or VMs
Load Balancing

Auto Scaling




