
EECS4413/Roumani

1

PROF H ROUMANI
Dept. of Electrical Engineering & Computer Science

BUILDING e-COMMERCE SYSTEMS

1

ABOUT MICROSERVICES

vs MONOLITHIC
■ Scalable, Robust, and Platform-Independent
■ Language/Transport/Protocol Agnostic

2

ARCHITECTURE
■ Multithreaded, Pooled, Containers, Nodes
■ Load Balancer/API Gateway

FUNCTIONALITY
■ Compute
■ Use APIs
■ Access Data (static files as well as databases)
■ Delegate / Orchestrate with other services

2

3

EECS4413/Roumani

2

ABOUT TCP

■ TCP over IP
■ IP: machine-to-machine (IP address)
■ Loopback/Localhost; Private/Public IP; NAT
■ TCP: process-to-process (port number)
■ Connection: order + guaranteed delivery
■ Protocol: text/binary; custom/standard
■ Connection: yes; State: no (restful)

4

4

5

ServerClient

Network

SOCKETS

6

output

output

input

inpu
t

6

EECS4413/Roumani

3

TCP CLIENT

7

§ Find the server's Host and Port
Socket client = new Socket(host, port);

§ Get a stream to issue the request to it
new PrintStream(client.getOutputStream(), true).println(request…);

§ Get a stream to read the response from
response = new Scanner(client.getInputStream()).nextLine();

§ Close the connection
client.close();

See course repo

7

THREADS IN JAVA

8

§ Given a class W that extends Thread
which means it has a public void run()

§ To execute W "in parallel" with you
new W().start() [this will invoke run()]

§ In microservices, run() would typically:
compute; use APIs; lookup a DB; use HTTP; …

§ Other languages
See the repo for Golang and Python examples

8

TCP SERVER

9

§ Create a server instance on a host/port
ServerSocket server = new ServerSocket(port, 0, host);

§ Query the server re host/port for logging
server.getInetAddress(), server.getLocalPort()

§ Socket socket = server.accept()
accept will block until a request arrives

§ Query the socket
getPort, getInetAddress, getInput/OutputStream

9

EECS4413/Roumani

4

10

package service;
imports…
public class MyService extends Thread
{

public static main …
{

create server
loop until need to shutdown
{

client = server.accept(); new myService(client).start();
}

}
public void run()
{

get in/out streams from the client socket
read request from in
form the response
write response to out

}
}

See course repo.

10

DATABASE ACCESS

11

§ Determine the database URL
jdbc:sqlite:<path to db file> for file-based / embedded
jdbc:derby://host:port/name;credentials for network-based

§ Get a connection to the DB
Connection connection = DriverManager.getConnection(url…);

§ Create a SQL statement
Statement statement = connection.createStatement();
PreparedStatement stm = con.prepareStatement(query);

§ Execute the query and see its result
ResultSet rs = statement.executeQuery(query…)
Can then do if or while based on rs.next()

Eclipse has tools (Data Source Explorer, SQL Scrapbook) to explore the database and
test queries. For SQLite, I prefer CLI –see https://sqlite.org/cli.html

11

XML MARSHALLERS

■ JAXBContext context = JAXBContext.newInstance(bean†.class);

■ Marshaller m = context.createMarshaller();

■ m.setProperty(Marshaller.JAXB_FORMATTED_OUTPUT, Boolean.TRUE);

■ m.marshal(<bean instance>, <output stream>);

The xml document root must be annotated:
@XmlRootElement(name = "whatever")

12

†POJO with private attributes, def constructor, accessors, and mutators.

12

EECS4413/Roumani

5

JSON SERIALIZERS

■ Gson gson = new Gson();
■ <String result> = gson.toJson(<object instance>);

13

13

14

ABOUT
■ HTTP over TCP uses URI := URN | URL
■ URL syntax: proto://host:port/path?QS
■ QS: param1=val1¶m2=val2...

The val are URL-encoded (%hex)
■ HTTP Methods: GET, HEAD, POST
■ Request / Response protocol
■ The Response Status Codes

1xx, 2xx, 3xx, 4xx, 5xx

■ Cousin Protocols
HTTP 2.0, HTTPS, and WebSocket

15

15

EECS4413/Roumani

6

HANDS-ON EXAMPLE

16

GET /index.html HTTP/1.1
Host: roumani.eecs.yorku.ca

HTTP/1.1 200 OK
Content-Type: text/html

<payload>

telnet to it!

§ GET Line, Host header line, optional header lines
§ Empty line
§ Status Line, Content-type line, optional header lines
§ Empty Line
§ Payload

16

17

SECURITY

18

§ Network based Measures
IP filtering, black and white lists, DOS, DDOS, ...

§ Confidentiality
Encrypt: link level or end-to-end

§ Authentication
Passwords, Accounts, OAuth

§ SQL Injection
Always sanitize incoming parameters and use prepared queries.

18

EECS4413/Roumani

7

PASSWORDS

19

§ The Past: store password
Server hacks; insider attacks; social engineering

§ The Present: store the hash
Detect equality; rainbow table à add salt and slow it down

§ The Future†: No passwords!
Why not PKI with challenges? Password never leave you
and cannot be re-played.

†My take on the subject

19

TELEMETRY

■ System Logs
■ Performance Timing
■ Metrics
■ Analytics
■ Data Mining
■ Machine Learning

20

20

SCALABILITY

■ Multithreading
■ Throttling
■ Thread Pooling
■ Scale thru Containers (e.g. Docker, Kubernetes)

■ Scale thru boxes (pods and nodes) or VMs
■ Load Balancing
■ Auto Scaling

21

21

