

 ▶ 1

CHAPTER 0 – DOING D
O
I
N
G

.
.
.

D
O
I
N
G

.
.
.

D
O
I
N
G

.
.
.

D
O
I
N
G

Preliminaries

D0.1 THE TOOLBOX

D0.1.a The IDE

D0.1.b The Device

D0.2 A QUICK TOUR OF THE IDE

D0.2.a Creating a Project

D0.2.b The Main Screen

D0.2.c User Interface Tools

D0.2.d Saving Your Work

D0.2.e Running a Project

D0.3 EXERCISES

2 ◀ Chapter 0 Preliminaries D O I N G

D0.1 – THE TOOLBOX

D0.1.a – The IDE

Android Studio is the official Integrated Development Environment (IDE) for the Android
platform. It includes all the tools needed to create, edit, build, test, and deploy Android apps.
You will therefore need to install it on your development machine before attempting any of
the projects in the "Doing" parts of this book.

The IDE is available on all the major platforms and can be download for free from:

https://developer.android.com/studio/
This single download has all the needed components, including Java, so no other download
is needed. Follow the installation process and accept all the defaults.

There are a multitude of tools bundled within this IDE. In particular:

• Java Tools
To develop the Java components of the app.

• User Interface Tools

To develop the user interface components of the app.

• Build Tools

To translate Java code to Dalvik (the code that Android devices can execute) and then to
package all components and resources in one APK (Android Package).

You will learn how to use the IDE in the remainder of this chapter.

D0.1.b – The Device

The IDE has tools that test each and every component of your app. For example, there are
tools that check your Java code as you type, and ones that verify your user interface as you
build it. But even though each component is tested thoroughly on its own, you still need to
ensure that the components work together when combined into one app. This type of integ-
ration testing is done by deploying the app on an Android device.

App deployment can be done on a real device or a virtual device. In the former, you connect
the device to the computer using ADB (the Android Debug Bridge) and transfer the APK to
it (a process known as sideloading). In the latter, you use an AVD (Android Virtual Device)
to select any emulating device you want and run your app on it.

D0.2 – A QUICK TOUR OF THE IDE

D0.2.a – Creating a Project

We will create a new project for the Doing part of each chapter. Follow these steps to create
Project Zero (the prompts and their order may differ slightly based on IDE version):

1. Launch Android Studio and start a new project.
2. Accept all defaults except for the ones indicated below:

- Select Phone/Tablet for the target platform.
- Select Empty Activity for the default screen.
- Select Java for the programming language.
- Name the project Zero.

3. Click Finish.

When Studio completes its project setup, it displays its main screen.

D0.2.b – The Main Screen

Spend some time to become comfortable with the content of this screen. Yes, it can be over-
whelming at first but by focusing only on few aspects, you will gradually overcome the initial
jolt. These aspects are highlighted in the remainder of this section.

The screen consist of many panes, windows that can be minimized, maximized, and docked.
It is recommended that you keep only the following two panes open and minimize the rest:
The Project Pane on the left and the bigger, multi-tab Editor Pane on the right.

Note that the Project tab (on the left margin of the project pane) is selected by default. If
you accidently de-selected it, or if you find the project pane empty, simply click on it.

The project pane shows the components of your project and it does so in a number of views.
By default, the Android view is selected (as shown in a drop-down tab that appears just
above the project pane). In this view, the components appear in a tree outline, which you can
expand or collapse by clicking the arrows. Two sections of this view are noteworthy:

• The subtree under app, java contains files that control the behaviour of the app, and is
divided into three packages: one holds our Java classes, including the activity (verify and
note the activity name), and we will call it the main package. The other two are used for
testing, and we will use the one labeled Test to unit-test our code.

• The subtree under app, res contains files that control the look-and-feel of the app, and is
divided into several resource folders. The folder named layout holds the user interface
(verify and note that its name has an xml extension).

4 ◀ Chapter 0 Preliminaries D O I N G

In addition to the Android view, the project components can be viewed via the Project
view. Drop down the list of views (the tab above the project pane) and select Project. The
resulting tree outline contains two sections that are noteworthy:

• The subtree under app, src, main, java contains the main package—the one that holds
our project's Java classes, including the activity. Verify this.

• The subtree under app, src, main, res, layout contains the layout folder of our project.
Verify this.

Hence, you can reach these two important components of our project via either view. We
will find later that the Android view (the default) is best suited for development work, while
the Project view is best suited for file-based operations, such as backup and restore, because
it mirrors the directory structure in which the component files are stored on disk.

The Editor Pane to the right of the Project Pane is where we enter our code and do our user
interface design. Note that our activity and layout names appear in tabs above the pane. Click
the two tabs and verify.

D0.2.c – User Interface Tools

Click on the layout tab of the editor pane to bring the design editor to the front. By default,
the editor shows two design surfaces: Design and Blueprint, but we only need the former.
Hence, select the design-only surface using the toolbar above the design editor as shown in
Fig. D0.1 (click the box marked ❶ and select Design).

The design surface shows the app as it will appear on the device. You can pick the device to
be used (replacing Nexus 4 on the toolbar of Fig. D0.1 with another device) but there is no
need to change the default. More importantly, the box marked ❷ in Fig. D0.1 enables you to
change the device orientation from Portrait to Landscape. Try it out. This feature is extremely
useful as it allows us to verify the correctness of our design. Good user interface design
should tolerate orientation changes and this button helps us test this.

❷ ❶

Figure D0.1 Configuring the design editor: ❶ choose the design surface, ❷ choose the device orientation.

The user interface (UI) of an app involves a number of widgets that allow the app and its user
to communicate with each other. The three most-used widgets are:

Ø Label
This is a box in which the app can display text for the user to see. The user cannot write
into this box (i.e. it cannot receive the focus). In Android lingo, labels are called text
views because the name of their Java class is TextView.

Ø Textbox
This is a box in which the user can type text in; i.e. make an input. In Android lingo, it is
known as an EditText because this is the name of its Java class.

Ø Button
This is a button that the user can tap in order to ask the app to perform some action.
The button has a caption written on it to let the user know the action it performs. In
Android lingo, it is known as a Button because this is the name of its Java class.

Each widget has a unique id that uniquely identifies. It also has a large number of attributes
(aka properties) that you can control manually during the design and programmatically while
the app is running. One of the most frequently used attributes is called text. It holds the text
displayed in a label; the text entered by the user in a textbox; and the caption of a button.

The Android library comes with a large number of ready-made widgets that allow you to
create almost any required UI. These widgets appear in the Palette window that appears to
the left of the design editor. Click All in the palette window to see all the available widgets.
Note that the EditText widget (i.e. the textbox) is listed under the name Plain Text, so
whenever you are asked to insert a textbox in this book, pick the Plain Text from the palette.

Our Zero app comes with a default label with "Hello World" as its text. Click on it to see its
attributes displayed in the attributes pane that appears to the right of the design editor. The
pane lists the most-often used attributes such as the id, layout, text, and text format (font,
colour, style, etc.). You would normally set the attributes specified in the requirement doc-
ument and leave the rest at their default values.

In addition to viewing the UI graphically as a collection of widgets, which
is useful at the design stage, you can also view it textually as XML code,
which is useful for editing. By clicking the three toolbar icons (Fig. D0.2),
you switch from code, to design, to split view (which shows both). Try it.

We now turn our attention to how widgets are laid out relative to each other and relative to
the borders of the device. This task is rather challenging because we don't know the size of
the device on which our app will be deployed or how the user will hold it.

Figure D0.2

6 ◀ Chapter 0 Preliminaries D O I N G

Note that the default Hello World label appears in the centre of the screen. Flip the
orientation to landscape (as was explained in Fig. D0.1) and note that it is still in the centre.
You can also change the emulated device from the default phone to a small watch or to a big
tablet, yet the label will remain in the centre.

The placement of widgets should not be done via absolute dimensions but rather through
layout managers that reposition the widgets dynamically (i.e. when the app is running)
based on device size and orientation.

Android comes with several layout managers such as:

• ConstraintLayout which is explained below.
• LinearLayout which arranges the widgets vertically or horizontally.
• RelativeLayout which arranges the widgets relative to each other.
• Grid and Table layouts which place widgets in rows and columns.

The constraint layout is the default—the IDE auto-selects it when an activity is created. We
will use this layout for all the apps of this textbook because it is very versatile. One of its key
advantages is that it can accommodate most UI requirements with a flat hierarchy; i.e. all
widgets would reside inside it without having to put a layout inside another layout.

In order to familiarize ourselves with the key features of the Constraint Layout, let us build
the UI shown in Fig. D0.3. This UI has the following features:

• The first row has two buttons, with captions 0 and 1, residing in the upper-left and
upper-right corners of the screen.

• The second row has a button with caption 2 centered horizontally in the screen.

• The third row has two buttons, with captions 3 and 4, with equal distances between them
and the screen edges.

• The fourth row has two buttons, with captions 5 and 6, stretched across the screen.

• Finally, there are two buttons, with captions 7 and 8, residing in the lower-left and lower-
right corners of the screen.

Note that adding a button to the design surface is easy: you simply drag the button widget
from the palette to the device and then set its text attribute (in the attributes pane) based on
the required caption. Laying out the button to match Fig. D0.3, however, is not as easy. If
you do it manually, by visually placing the button where it belongs, it may look fine at first,
but once you switch the orientation to landscape, you will immediately realize that it is not.
Instead, we should let the constraint layout place the buttons as explained below.

Figure D0.3 UI of the Zero app in portrait (top) and landscape (bottom).

8 ◀ Chapter 0 Preliminaries D O I N G

Follow these steps:

1. Delete the Hello World label which was added by default.
2. Drag a button from the palette and place it somewhere in the middle of the screen.
3. Click the button and set its text attribute in the attributes pane.
4. Note that the button has circular constraint handles on each side.
5. Click and hold the constraint handle on the left side and drag it to the left edge of the

screen. This forces the button to hug the left edge (in any orientation).
6. Click and hold the constraint handle on the top side and drag it to the top edge of

the screen. This forces the button to hug the upper edge (in any orientation).

The 0-button is now anchored to the upper left corner. Perform similar steps to anchor the
1-button to the upper right corner.

7. Drag another button to the middle for the 2-button.
8. Click and hold the constraint handle on the top side and drag it to the bottom handle

of the 0-button. This forces the button to be under the first row.
9. Click and hold the constraint handle on the left side and drag it to the left edge of the

screen. This forces the button to hug the left edge. Then, click and hold the
constraint handle on the right side and drag it to the right edge of the screen.

The 2-button has to satisfy two horizontal constraints, one pulling it to the left edge of the
screen and one to the right edge, so it centres itself across the screen.

10. Drag two more button widgets to create the 3 and 4 button.
11. Select both buttons and right-click the selection. Choose Chain and then Create

Horizontal Chain.

The 3 and 4 buttons are now properly laid out horizontally. To anchor them vertically,
simply drag the top handle of each and drag it to the bottom handle of the 2-button.

12. For the 5 and 6 buttons, do the same thing (i.e. chain them) but change their
layout_width attributes from wrap_content to match_constraint.

Finally, add the 7 and 8 buttons and constrain them to the bottom left and right corners.
Verify your design (ideally after every placement) by switching the device orientation. The
constraints of the top four rows are shown in Fig. D0.4.

It should be noted that we have covered only a small subset of the capabilities of this layout
manager. In particular, the attributes pane allows you to control the margins and the
horizontal bias of every widget.

As you add widgets, the IDE keeps track of their types and id's and depicts these in a pane
known as the component tree. A sample of this tree is shown in Fig. D0.5 for our app.

Figure D0.5 The component tree of
the Zero app.

Figure D0.4 The top components of the Zero app with constraints shown.

10 ◀ Chapter 0 Preliminaries D O I N G

D0.2.d – Saving Your Work

Whenever you work on a project, it is important that you save your work frequently so that it
can be recovered should your development environment become unusable (perhaps due to a
software bug or a hardware malfunction).

There are several options for saving your work:

• Use a Version Control System
This is by far the most professional approach. A system such as git allows you not only to
save your work both locally and to the cloud, but also to keep track of changes made by
you or by others in your team. Moreover, it integrates seamlessly with our IDE.

• Zip and Save the Project Folder
This quick-and-dirty method uses the operating system's zip utility to compress the pro-
ject folder (e.g. AndroidStudioProjects/Zero for our Zero app) into a file (e.g. Zero.zip) which
can then be moved to cloud storage or a USB flash drive. This method has a high over-
head as it is not automatic and the zipped file is rather large (~30MB). Moreover, it has a
dependency on the particular version of the IDE.

• Save Only Your Work
For most projects, your work is captured in very few files, typically one XML file and a
couple of Java files. You can find these files in these folders:

AndroidStudioProjects/[app]/app/src/main/java/[package]

AndroidStudioProjects/[app]/app/src/main/res/layout

where [app] is your app name (e.g. Zero). These text files are tiny (~kilobytes) and can
easily be saved; in fact, you can simply copy-and-paste their contents directly from the
editor. Most beginners like this method because it allows them to actually see and study
the copied files, and easily reuse them in future projects.

D0.2.e – Running a Project

To run your project on a virtual device, click AVD Manager in the Tools menu and create an
AVD (e.g. a phone or a tablet) and download any image (e.g. Q). This takes some time but it
is only done once. Once created, you simply select it in the Run menu and run.

To run on a physical Android device, turn on debugging in its setting, and then connect it to
your computer. It will appear in the list along with your virtual devices so you can select it in
the Run menu and run your app on it.

D0.3 – EXERCISES

1. Modify the layout of the Zero app so that Button 3 becomes as in Fig. D0.6 below.

As you can see, the button's background has become black and its caption's colour has
become white.
Hint: Click on the brackets (or ellipsis) to the right of the attribute to access the available colours.

2. Add a ninth button to the Zero app with layout
and caption as shown in Fig. D0.7. Its location
must be such that:

• It divides the screen horizontally by three
quarters to one (75% of the screen width to
its left and 25% to its right).

• It divides the distance between the fourth
row (i.e. Buttons 5 and 6) and the bottom
edge of the screen by one quarter to three;
i.e. 25% of that distance above it and 75%
below it.

Verify your design by changing the orientation
of the emulated device from portrait to land-
scape and by changing the device type.

Hint:
The attribute window shows an outline of the button
widget above the partial attribute list. That outline has
two so-called bias slider that allow you to adjust the left-
right and top-bottom ratios. The default is 50-50 but
you slide the bias to any desired percentage.

Figure D0.6 The modified look of Button 3 in the Zero app.

Figure D0.7 The Zero app with an added button.

12 ◀ Chapter 0 Preliminaries D O I N G

3. We viewed our design on the screen but have not yet deployed our Zero app on a device.
Let us do that now. Click the Run menu of the IDE and select Run… and then app. To
run on an emulator, pick any emulator you like (or create a new virtual device). After a
delay, the emulated device should appear in a window of its own (separate from the
IDE). It will boot up like a real device and your app will be downloaded on it (i.e. it will
be stored in its Downloads folder). The app will be launched automatically and you will be
able to interact with the app using your mouse. You can even rotate the device or trigger
its sensors by using its side toolbar.

4. We will now deploy the Zero app on a real device rather than an emulated one. You will
need an actual Android device for this. By default, Android allows only signed apps to be
installed on the device (for security reasons) so you need to change the settings of your
device to allow our unsigned app to be installed. Once done, connect your device to your
computer's USB port and re-run the app. The IDE will now ask you to select the device
to run the app on and it should show the emulated device and the real device just
connected. Select the real device. After a brief delay, the app will be side-loaded and it
will appear on your device screen.

❖ ❖ ❖ ❖

5. Change the captions of the eight buttons of the Zero app from digits to names of digits;
i.e. ZERO instead of 0, ONE instead of 1, and so on. But rather than hard-coding the names,
we will learn a more professional, best-practice approach.

To change the text attribute of Button 0 click the brackets (or ellipsis) to the right of the
attribute in the attribute window and click + to Add new resources in the window that pops
and then add a string Value. Enter s0 as the Resource name and ZERO as its value. Click ok
and note that the text attribute of this button has become: @string/s0.

Repeat this process for the remaining buttons to make the final layout is in Fig. D0.8
(ignoring the button added in Exercise 2).

Referring to the values ZERO, ONE, … EIGHT via names (such as s0, s1, … s8) creates a
level of indirection between the attribute and its value. For example, the text attribute of
Button 5 is now @string/s5 rather than a fixed value. The advantage of this indirection
is that it makes our app scalable and easier to maintain. A case in point is shown in
Exercise 6 where the indirection enables the app to become sensitive to the device locale
thereby changing the caption from FIVE to CINQ to ھسمخ automatically depending on the
device's language.

As you will discover, indirection is a recurring theme in Computer Science. By separating
the concerns and creating intermediate abstraction levels, we can confront complexity
and architect robust and scalable solutions.

Note: The name-value pairs that you have just created are now recorded in strings.xml (a file that
resides in app/res/values in the Project Pane) as shown below. In fact, you could have created these
resources yourself by editing the file directly. Go ahead and double click this file to see it.

<resources>
 <string name="app_name">Zero</string>
 <string name="s0">ZERO</string>
 <string name="s1">ONE</string>
 <string name="s2">TWO</string>
 ...
 <string name="s7">SEVEN</string>
 <string name="s8">EIGHT</string>
</resources>

Figure D0.8 Digits replaced with digit names.

14 ◀ Chapter 0 Preliminaries D O I N G

6. Let us make our Zero app English/French
bilingual by making the captions locale sen-
sitive; i.e. they automatically switch language
based on the language of the device the app is
running on. Follow these steps:

• Double-click the strings.xml file that was
built in the previous exercise.

• Click on Open editor in the upper right.

• Click the globe in the upper left and select
French (Canada).

• For each of our eight resources, click the
English name and then enter its corres-
ponding French translation in the bottom.
You can see the translations in Fig. D0.9.

To test our work, go back to the layout tab (or
double-click the layout in the project pane).
The toolbar above the device has a globe that
allows you to select the language. Switch to
French and observe.

Notes:

- To test your work on an emulator, run the app as usual and when the emulator window boots up, go
to the emulated device settings and change the default language to French. You may have to add the
language if it is not already present.

- Similarly, you can test your work on a real device by deploying the app on it and then changing its
default language.

- Go back to the resource editor and click the globe again. Select a new language that you know and
enter the translations. Verify that your app is now tri-lingual.

- The translations that you have entered get stored in a file that is also named strings.xml and you
can find it also under app/res/values in the Project Pane. On disk, it resides under res in a folder
parallel to values named values-fr-rCA.

- As before, you could have created the translations by editing this file directly. In general, anything
that the IDE does can also be done manually by creating files.

Figure D0.9 The Zero app in a French locale.

7. In Exercise 1 you were asked to change a couple of attributes for one of the buttons. In
this exercise, you are asked to make the same change to all eight buttons, but rather than
doing so one button at a time, you need to style all buttons in one shot. Specifically:

• Double click the styles.xml file under app/res/values.

• The file already contains a default style. Add a new style named "i2c" by appending
the file (but before the closing </resoueces> tag) with the following:

<style name="i2c">

 <item name="android:textColor">#ff0000</item>

 <item name="android:background">#0000ff</item>

</style>

• This style sets the text colour to #ff0000. This hex number specifies the red-green-
blue components of the colour, with each component's intensity ranging between 00
and ff. Hence, the text colour is set to maximum red, no green, and no blue.

• The style also sets the background colour to #0000ff or blue.

• Change the style of all eight buttons to this new custom style. For each button, click
it and type i2c in its style attribute in the attribute window.

Did all buttons change as expected? If so, modify the i2c style so that the background
colour becomes black and the text colour becomes white. Again, you should see the
change immediately taking effect in the layout tab.

Finally, elaborate on the following statements by arguing for or against them:

• This styling methodology introduces a level of indirection between a widget and
its attributes.

• This styling methodology makes our app easier to maintain.

• This styling methodology enables us to give our app a consistent look and feel.

• This styling methodology separates presentation from the formatting.

• If you are familiar with html (hyper-text markup language) and css (cascading style
sheets), then compare and contrast this styling methodology with css.

16 ◀ Chapter 0 Preliminaries D O I N G

8. In Exercise 7, we created a custom style for all our buttons. In this exercise, we create a
second style as follows:

• Double click the styles.xml file under app/res/values.

• Add a new style named "i2c.big" after the first and before the closing </resoueces>
tag as follows:

<style name="i2c.big">

 <item name="android:textSize">20sp</item>

</style>

• The name of the new style is prefixed (with a dot separator) by the name of the first
style. This means the new style inherits all the items in the first style but it can add or
override some items.

• The new style adds an item relating to the size of the text font. It sets it to 20sp.

• The unit sp (scalable pixel) allows device independence because it is converted to
actual screen pixels based on the resolution of the device. It is similar to dp (which is
used for widget size and layout) but is intended specifically for font size.

• Change the style of some of the buttons (e.g. the even ones) to the new custom style.

Did the captions change as expected? If so, modify the i2c.big style so that it overrides
the background colour so it becomes different from the one set in the parent i2c style.

