
1

acse-roumani

We DonWe Don’’t Need Arrays!t Need Arrays!
A call for a component-based software architecture

Prof. Hamzeh Roumani
Dept of Comp Sc & Eng

York University

acse-roumani

• A Story

• Reflections

• The Collection Framework

• More Delegations

acse-roumani

A StoryA Story

acse-roumani

2

acse-roumani

The KingThe King The MinisterThe Minister

acse-roumani

1. Pedaling & the Chain

2. Braking & the Wire

3. Etiquette of the Road

The Bicycle Course

acse-roumani

Session 1:

Pedaling, and the Chain

acse-roumani

The QueenThe Queen

3

acse-roumani

1. The Gas pedal, Spark Plugs, and the Green Light

2. The Brake Pedal, Break Pads, and the Red Light

3. The Steering Wheel, Tires, and Signals

The Car Course

acse-roumani

Session 2:

Stopping the Car

acse-roumani

Q: What makes a car stop?

A: When the traffic light
turns red, the brake fluid gets
compressed and this pulls on
the pedal so the driver must
depress it. This stops the car.

acse-roumani

4

acse-roumani

ReflectionsReflections

acse-roumani

Pascal,
Turing…

OOP

acse-roumani

Pascal,
Turing…

OOP

Simplicity allows us to teach usage (riding) and
implementation (the parts) together.

acse-roumani

Pascal,
Turing…

OOP

Simplicity allows us to teach usage (riding) and
implementation (the parts) together.

To confront the complexity, we must separate
driving from looking under the hood.

5

acse-roumani

• “What” versus “How”
Reinventing the Wheel? Inferiority?

• Encapsulation (a.k.a Need-to-Know)
Reusability… Accountability… Sbstitutability

• Specification
Shift the emphasis to communication, specs, APIs

Separation of Concerns

acse-roumani

The Software of the Future
Component-Based Architecture

app

acse-roumani

Component World

• Variables and Types

• If statements and Loops

• Components

Programming:

• Belongs to a package

• Utility (all static) or non-utility (must instantiate)

• Concrete or not (look for a concrete that extends
or implements it)

Each Component:

acse-roumani

Our Challenge
• Launch an Editor;

• launch the API;

• and write applications that have
only a main method.

Do not implement classes;
use only the existing ones.

6

acse-roumani

The The
Collection Collection
FrameworkFramework

acse-roumani

•Overview of the Collection Framework
- The Main Interfaces
- The Implementing Classes
- Generics
- No More Arrays

•The Framework’s API
- Highlights
- The Iterator
- Searching and Sorting
- Summary

•Applications

acse-roumani

OverviewOverview

acse-roumani

The Interfaces

add(element)
remove(element)
iterator()
...

Set

add(key, value)
remove(key)
get(key)
keySet(): Set
...

Map

add(element)
remove(element)
get(index)
iterator()
...

List

Sequence Set Pairs

Duplicates are OK
and the positional
order is significant

A pair is
(key,value) where

key is unique

Duplicates are not
allowed and order
is insignificant

Reference: Java By Abstraction, Roumani, Pearson Addison-Wesley, Toronto (2006)

7

acse-roumani

The Implementing Classes

add(element)
remove(element)
iterator()
...

Set

add(key, value)
remove(key)
get(key)
keySet(): Set
...

Map

add(element)
remove(element)
get(index)
iterator()
...

List

ArrayList
LinkedList

HashSet
TreeSet

HashMap
TreeMap

The two classes that implement each interface are
equivalent in the client’s view. The only visible diff
is performance (running time).

acse-roumani

• Declare using the interface, not the class

• Use LinkedList only if your app tends to add or
remove elements at index 0

• Use TreeSet/Map only if you want to keep the
elements sorted

• Specify the type of the elements that you intend
to store in the collection

Example: A list of strings

ArrayList
LinkedList

HashSet
TreeSet

HashMap
TreeMap

The Classes, cont.

List<String> bag = new ArrayList<String>();

acse-roumani

Generics
All classes in the framework support generics.
By specifying the type (between < and >) the
client ensures:

- No rogue element can be inserted
- No casting is needed upon retrieval

Example:
List<Date> bag = new ArrayList<Date>();

// bag.add("Hello"); will not compile!
bag.add(new Date());

Date d = bag.get(0); // no cast!

acse-roumani

APIAPI

8

acse-roumani

Highlights
• Use add to add elements to lists and sets:

List<Date> list = new ArrayList<Date>();
Set<String> set = new HashSet<String>();
list.add(new Date());
set.add("Hello");

Map<Integer, String> map;
map = new HashMap<Integer, String>();
map.put(55, "Clock Rate");

• Use put to add an element to a map

acse-roumani

Highlights
• Use remove to delete from lists and sets:

boolean done = set.remove("Adam");

String gone = map.remove(55);

• To delete a map element given its key:

Note that remove returns false if the specified
element was not found and returns true otherwise.

Note that remove in maps returns the value of the
element that was removed or null if the specified
key was not found.

acse-roumani

Highlights

• To insert x at position 5:
list.add(5, x);

list.remove(5);

• To delete the element at position 5:

The elements of lists are indexed (starting from 0).
Hence, but only for lists, we can also add and delete
based on the position index:

This will work only if the list has at least 5 elements, and it
will adjust the indices of all elements after position 5, if any.

This will work only if the list has at least 6 elements.

acse-roumani

Highlights

•The element at position 3 in a list:
Date d = list.get(3);

The elements of lists and maps (but not sets) can be
retrieved using get:

•The value of the element with key 55 in a map:
String s = map.get(55);

Note:
All interfaces come with size(), equals(), toString(),
and contains (containsKey in maps).

9

acse-roumani

 ... e0 en-1 e1

• Lists and Sets aggregate an iterator

• Use iterator() to get it

• It starts positioned before the 1st element

• Use next() and hasNext() to control the cursor

The Iterator

acse-roumani

The Iterator

Note that the iterator methods are not part of the
collection; they are in a separate class, Iterator.
Because of this, we can perform multiple traversals
by creating one instance of Iterator per traversal.

Iterator it = set.iterator();
for (; it.hasNext();)
{

output.println(it.next());
}

Iterator it = set.iterator();The statement:

returns an iterator positioned just before the very
first element. We use it as follows:

acse-roumani

The Iterator and Generics

To benefit from this, let us rewrite the loop of the
previous slide so it prints the elements capitalized:

Iterator<String> it = set.iterator();
for (; it.hasNext();)
{
String tmp = it.next();
output.println(tmp.toUpperCase());

}

Iterator<String> it = set.iterator();

The Iterator class supports generics; i.e. we
can obtain a type-aware iterator as follows:

acse-roumani

The Iterator in Maps

Iterator<Integer> it = map.keySet().iterator();
for (; it.hasNext();)
{

int key = it.next();
String value = map.get(key);
output.println(key + " --> " + value);

}

public Set<K> keySet()

The Map interface has no iterator() method but
we can obtain a set of the map’s keys:

And by iterating over the obtained set, we can,
in effect, iterate over the map’s elements:

10

acse-roumani

Searching and Sorting
Searching
One simple (albeit inflexible) way to search a collection
is to use the contains method (containsKey in maps). It
determines if an element in the collection is equal to a
given value and returns true or false accordingly.

output.print("Enter a word to look for: ");
String lookFor = input.nextLine();
output.println(set.contains(lookFor));

output.print("Enter a key to look for: ");
int findMe = input.nextInt();
output.println(map.containsKey(findMe));

acse-roumani

Searching, cont.
For applications that require more than a simple yes/no,
we use traversal-based searches. For example, find out
if a given key is present in a map and output its value:

output.print("Enter a key to look for: ");
int find = input.nextInt();
Iterator<Integer> it = map.keySet().iterator();
boolean found = false;
Integer key = null;
for (; it.hasNext() && !found;)
{

key = it.next();
found = key.equals(find);

}
if (found) output.println(map.get(key));

acse-roumani

Sorting Lists
The Collections class has the method:

static void sort(List<T> list)

It rearranges the elements of the list in a
non-descending order. It works if, and only
if, the elements are comparable; i.e. one
can invoke the compareTo method on any of
them passing any element as a parameter.

Recall that compareTo (in String) returns an
int whose sign indicates < or > and whose 0
value signals equality.

acse-roumani

Sorting and Binary Search
The main advantage of sorting is speeding
up the search. When the elements are
sorted, you don't have to visit all of them
to determine if a given value is present in
the collection or not.

The method searches for value in list and returns
its index if found and a negative number otherwise

int binarySearch(List list, T value)

Note: Unlike exhaustive search (which is linear), binary search
has a complexity of O(lgN).

11

acse-roumani

Simply use TreeSet instead of HashSet.

The same technique applies to maps: use
TreeMap instead of HashMap to keep the
map's elements sorted on their keys.

Sorting Sets and Maps

acse-roumani

Sum
m
ary of Features

F
ig

 10.9, “Java B
y A

b
stractio

n
”, R

o
u

m
an

i, A
d

d
iso

n
-W

esley

acse-roumani

ApplicationsApplications

acse-roumani

• Template

• FirstList, SortedList,
and TraverseList

• FirstSet

• FirstMap

• WordStat

• Cryptography

