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ABSTRACT 
We argue that the conventional approach of representing pointers 
as arrows in memory diagrams may have certain limitations for 
internalizing the semantics of OOP in CS1/CS2. We introduce a 
new set of memory diagrams that are based on addresses rather 
than arrows. We show how these diagrams can be applied to 
reason about object manipulation in a variety of settings, from the 
simple one-component case to multiclass applications involving 
inheritance, aggregation, and arrays. 

Categories and Subject Descriptors 
K.3.2 [Computer and Education]: Computer and Information 
Science Education – Computer science education. 
 

General Terms 
Languages. 
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Memory diagram; reference; address; CS1; OOP; Computer 
science education. 
 

1. INTRODUCTION 
 A picture is worth a thousand words and a good diagram can be a 
powerful tool to learn complex ideas. For a diagram to be “good”, 
however, it must not only enable the teacher to convey ideas, it 
must also provide a mental framework in which the student can 
reason about the ideas and answer self-posed questions. The key 
to success here is abstraction: the diagram should hide details 
deemed irrelevant. If the abstraction captures the correct details, it 
enables the student to internalize the material and empowers her 

to apply it to new situations. But if the abstraction hides relevant 
details then it may limit the student’s ability to reason about 
certain aspects of OOP in terms of the diagram. 

One area in which diagrams can be extremely powerful is the 
conceptual foundation of OOP. In particular, understanding the 
difference between an object and an object reference is a 
threshold concept for the student: Get it right, and everything falls 
into place; get it wrong, and object manipulation becomes likes 
magic: assignments of object references, equality of objects, 
passing or returning an object, all become unrelated concepts 
rather than manifestations of the same idea. Because of this, most 
CS1 textbooks like, for example, [1,5,6] use diagrams of one sort 
or another to explain the difference between an object and an 
object reference. And although the usage of diagrams in textbooks 
tends to be ad hoc, it invariably relies on representing the 
reference and the object as floating shapes connected by an arrow 
that emanates from the reference and ends at the object. In an 
attempt to develop such memory diagrams in a uniform and 
consistent way, Holliday and Luginbuhl [3,4] introduce several 
types of shapes, e.g. rectangle, oval, diamond, rectangle-in-oval, 
etc., to represent a larger set of entities. They capture instantiation 
and invocation using different arrow shapes, e.g. straight, wavy, 
and double arrows. Nevertheless, the abstraction theme of all 
these works remains the same: a two dimensional plane represents 
memory, geometrical shapes represent entities (e.g. objects and 
references), and arrows connote pointing at an object or invoking 
a method.  

It is our conjecture that this abstraction omits relevant details; 
namely, the value of references. We rely on these values when we 
argue that two variables are equal, and we use it to reason about 
parameter passing. When an abstraction omits the value and 
replaces it with an artifact such as an arrow, one can no longer 
appeal to the student’s preexisting knowledge, such as the 
intuitive notion of equality. We therefore believe that the notion 
of a memory address must survive the abstraction process and be 
captured in the diagrams. To demonstrate this, we introduce new, 
address-based, memory diagrams and then compare their 
pedagogical roles with conventional ones.  

We introduce our address-based memory diagrams in Section 2 
and apply them in Section 3. Section 4 and 5 demonstrate that our 
diagrams can be used in complicated multiclass applications 
involving inheritance, aggregation, and multi-dimensional arrays. 
In Section 6 we present a comparison between our address-based 
diagrams and arrow-based ones. 
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2. DIAGRAM TYPES 
Suppose that there is a class named Square and a class named 
Client that uses it. The situation is depicted in Fig. 1 using a 
standard UML diagram. Square has two static (underlined) 
features: a private attribute count to keep track of the number of 
times the class has been instantiated and a corresponding public 
accessor getCount(). We will use this scenario as a basic 
example throughout the paper. 

A memory diagram provides a pictorial abstraction of a snapshot 
of the memory used by a Java application at some point during its 
execution. We depict memory as a sequence of blocks each of 
which has an address, an arbitrary yet unique non-negative 
integer. As the application executes, and depending on the 
encountered statements, new blocks may get allocated and 
existing blocks may get updated or de-allocated. There are three 
types of blocks: class, object, and invocation. 

2.1  Class Blocks 
A class block is allocated when a class name is first encountered 
and is never de-allocated thereafter. For example, a class block is 
allocated when the name Square is first encountered in the 
main method of Client. In our model, the "cover story" is that 
a class block is thought to contain all the static attributes of the 
class along with their values, the class constructors, and all the 
methods of the class (whether static or not). Not all these features, 
however, need to be included in the diagram. As in UML class 
diagrams, one chooses what to include based on the level of 
details that needs to be revealed. A minimal class block contains 
only a title compartment, as shown in Fig. 2 for the Square class 
using the (arbitrary) memory address 200. 

If additional details need to be exposed then additional compart-
ments are added as needed, exactly as in UML. For example, Fig. 
3 shows the same class block but with three additional com-

partments for the static attribute count and its value 0; the 
constructor; and the three methods.   

2.2  Object Blocks 
An object block is allocated whenever an object is created and is 
de-allocated when that object is orphaned. This block is thought 
to contain the state of the object, i.e. the non-static attributes and 
their corresponding values. Again, the level of details exposed in 
the diagram depends on the situation being analyzed. For 
example, if all we know is that an instance of Square has been 
created, we draw a diagram similar to the one shown in Fig. 4. It 
shows that an object block has been allocated at address 300.  

On the other hand, the execution of the statement:  

new Square(3); 

will trigger the allocation of the object block of Fig. 5.  

2.3  Invocation Blocks 
An invocation block is allocated when a method is invoked and is 
de-allocated when that method returns. It is thought to contain all 
the parameters of the method along with their values and all the 
local variables of the method along with their values. Note that 
for non-static methods, the parameters include the implicit 
parameter this (the value of which is the address of the object 
on which the method was invoked). Note also that the level of 
details exposed in invocation blocks depends on the concern (or 
role): Clients can only see the method parameters whereas imple-
menters can also see its local variables. We will see examples of 
this type of block in the next section. 

Figure 5. An object block with state. 

300 Square object 

side 3

Figure 3. A class block with three compartments.

200 Square class 

count 0

Square(int) 
compareTo(Square): int 
getCount(): int 
toString(): String 

Figure 2. A minimal class block for Square.

200 Square class 

Square 

+ compareTo(Square): int 
+ getCount(): int 
+ toString(): String 

- count: int 
- side: int 

+ main(): void 

Client 

Figure 1.  UML of the basic example. 

Figure 4. A minimal object block. 

300 Square object 
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3. AN APPLICATION 
Suppose that the main method of Client contains the 
following code fragment:  

1  int length = 3; 
2  Square first; 
3  first = new Square(length); 
4  Square second = first; 
5  second = new Square(5); 
6  int flag = first.compareTo(second); 

How does a student reason about this fragment and internalize the 
role of each of its statements? The diagram in Fig. 6 depicts 
memory when execution reaches the end of Line 2. Since an 
application always starts by invoking main, we have an invoca-
tion block at address 100 (for example). The invocation block 
shows the local variables of main and their values. When Line 1 
is executed, a local variable length is declared and is initialized 
to 3. Line 2 declares first but does not initialize it, and hence, 
the diagram leaves its value blank. Furthermore, Line 2 is where 
we first encounter the Square class name, and this leads us to 
allocate a class block for it at address 200, for example, with the 
count attribute initialized to 0.  

 
Next, let us reason about the next two lines in the fragment, Line 
3 and 4, and amend the memory diagram as shown in Fig. 7. The 
right-hand side of Line 3 creates an object so we allocate an 
object block with state (side = 3) at address 300. The 
assignment in that line assigns the address of the created object to 
the object reference first so we can now fill in the blank value 
of that reference and write 300. The creation of the object also 
leads to incrementing the count attribute in the class block at 
200. Line 4 declares a new object reference but does not create an 
object. Hence, no new blocks are allocated and we simply copy 
the value of first (i.e. 300) to second. Note that the model 
leaves no doubt in the mind of the student as to the difference 
between the object reference and the object at which it points. 

Fig. 8 is drawn after executing the next two lines of the fragment, 
Line 5 and 6, but just before the method compareTo(Square 
other) returns. The new operator in Line 5 leads to the creation 
of the object block at address 500 as shown. And the assignment 
in that line would then replace the value of second with 500. At 
that point no value has yet been assigned to flag, and that is 
why it is left blank in the figure. The invocation block at 600 

assigns 300 (the value of first) to the implicit parameter this 
and 500 (the value of second) to the parameter other. Note 
how the invocation block models call-by-value: the client’s 
variables first and second are not in the invocation block, 
only their values are. Note that once compareTo returns and 
Line 6 gets executed, the invocation block at 600 will be de-
allocated and the flag variable will pick up a value.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

100 Client.main invocation 

length
first
second
flag

3 
300 
500 
 

200 Square class 

count 2

300 Square object 

side 3

500 Square object 

side 5

600 compareTo invocation  

this
other

300 
500 

Figure 8. Memory just before compareTo returns.

100 Client.main invocation 

length
first
second

3 
300 
300 

200 Square class 

count 1

300 Square object 

side 3

Figure 7. The memory model after Line 4. 

100 Client.main invocation 

length 
first 

3 
 

 

200 Square class 

count 0 

Figure 6. The memory model after Line 2. 
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4. INHERITANCE AND AGGREGATION 
In this section we show how multiclass applications can be 
captured in our diagrams. Consider the class ColoredSquare 
that encapsulates a colored square by extending the Square 
class. The situation is depicted in the UML diagram in Fig. 9. We 
see that the subclass features a (private) color attribute, provides a 
public accessor for that attribute, and overrides the toString 
method of its superclass.  

Suppose now that the main method of a client of these classes 
contains the following code: 

 
 1  int x = 7; 
 2  Color c = Color.RED; 
 3  Square s = new ColouredSquare(x, c); 
 4  System.out.println(s.toString());  
 

That ColoredSquare aggregates Color is readily handled by 
our blocks. For inheritance, we extend our class and object 
blocks. To that end, we adopt the same approach used, for 
example, by javadoc, to create an API document (see Fig. 10): the 
non-static features of the superclass are appended, without 
duplication, to those of the subclass1. Hence, the methods 
compartment of the class block at 2100 lists the methods of 
ColoredSquare followed by the non-static methods of its 
superclass except for toString (since it is overridden).  

                                                                 
1 Static features are treated differently in our diagrams than in 

javadoc since they are not depicted in the subclass block. 

Similarly the object block at 2200 lists the state of the subclass 
(color) followed by that of the parent (side). The invocation 
block at 2500 represents an invocation of a toString method 
on the object at 2200. As the diagram shows this object is a 
ColoredSquare object. Hence, the toString method being 
invoked resides in the class block at 2100. Because of the way the 
class block is constructed, and because toString appears in the 
first method compartment of the class block, it is the toString 
method defined in the ColoredSquare class that gets invoked, 
rather than the one in Square. 

 

 

Figure 9.  UML for Section 4. 

Square 

+ compareTo(Square): int 
+ getCount(): int 
+ toString(): String 

- count: int 
- side: int 

ColoredSquare 

+ getColor(): Color 
+ toString(): String 

- color: Color 

java::awt::Color 

+ RED: Color 

1200 Client.main invocation 

x
c
s

7 
1600 
2200 

1500 Color class 

1600 Color object 

2000 Square class 

count 1

Square(int) 

compareTo(Square): int 
getCount(): int 
toString(): String 

2100 ColoredSquare class 

ColoredSquare(int,Color)

getColor(): Color 
toString(): String 

compareTo(Square): int

2200 ColoredSquare object 

color 1600

side 7

2500 toString invocation 

this 2200

Figure 10. Memory just before toString returns.
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5. ARRAYS 
Our model can also handle arrays of multiple dimensions. As an 
example, consider the following code fragment: 

 1  Square[][] matrix = new Square[3][2]; 
 2  matrix[0][1] = new Square(5);  

The corresponding diagram is shown in Fig. 11. The array object 
block has an attribute length plus as many attributes as there 
are elements. Uninitialized elements default to a value appropriate 
for the type, which is null for class types. 

6. RELATED WORK 
In this section we compare our diagrams with those based on 
arrows. Fig. 12 is based on the work of [3,4] but it typifies all the 
memory diagrams that we have seen in the literature.  

A student looks at this figure and asks a legitimate question:  
 

“What is the value of first?” 
 

There does not seem to be a convincing answer to this question. If 
the answer is “The value is the arrow”, then first and second 
cannot be equal since there are two different arrows in the 
diagram. And if the answer is “The value is the object”, then this 
blurs the very distinction that the diagram was meant to assert, 
namely, that the object and the reference are two different entities. 
And although the answer “The reference does not really have a 
value” may be tempting, in OOP languages such as Java 
references do have values [2, Section 4.3.1]. This seems to leave 
only one answer: “The value is the endpoint of the arrow”, but 
this requires that we reason about and manipulate arrows, 
something new to students, rather than reasoning about and 
manipulating numbers, something students already know. 
Contrast all these answers with the one derived from our version 
of the same diagram, Fig. 7: “The value is 300”. 
 

7. CONCLUSION 
We presented a new type of memory diagrams characterized by 
simplicity, intuitiveness, and endurance. The model is simple 
because it upholds the premise that every variable has a value, 
and hence, enables the treatment of all variables on equal footing 
in assignment and parameter passing. It is intuitive because it 
leverages the student’s understanding and/or familiarity with API 
documents, UML, and computer memory. And as we showed, it 
can be applied to simple as well as complex scenarios involving 
multiple, inter-related classes. We think it is important that a 
model endures and scales across courses and we believe ours 
does. We are exploring the usage of its invocation blocks to 
reason about recursion, stack frames, and multithreading in CS2 
and the O/S course. 
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Figure 12. An arrow-based equivalent to Fig. 7. 

 

3 
side 

Square 

 
second 

 
first 

Figure 11. Memory diagram for a 2-D array. 

10 Client.main invocation 

matrix 40 

20 Square class 

30 Square object 

side 5 

40 Square[][] object 

length 
0 
1 
2 

3 
50 
null 
null 

50 Square[] object 

length 
0 
1 

2 
null 
30 


