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AbstractDespite the apparent randomness of the Internet, we dis-cover some surprisingly simple power-laws of the Internettopology. These power-laws hold for three snapshots of theInternet, between November 1997 and December 1998, de-spite a 45% growth of its size during that period. We showthat our power-laws �t the real data very well resulting incorrelation coe�cients of 96% or higher.Our observations provide a novel perspective of the struc-ture of the Internet. The power-laws describe conciselyskewed distributions of graph properties such as the nodeoutdegree. In addition, these power-laws can be used toestimate important parameters such as the average neigh-borhood size, and facilitate the design and the performanceanalysis of protocols. Furthermore, we can use them to gen-erate and select realistic topologies for simulation purposes.1 Introduction\What does the Internet look like?" \Are there any topolog-ical properties that don't change in time?" \How will it looklike a year from now?" \How can I generate Internet-likegraphs for my simulations?" These are some of the questionsmotivating this work.In this paper, we study the topology of the Internet andwe identify several power-laws. Furthermore, we discussmultiple bene�ts from understanding the topology of theInternet. First, we can design more e�cient protocols thattake advantage of its topological properties. Second, we cancreate more accurate arti�cial models for simulation pur-poses. And third, we can derive estimates for topologicalparameters (e.g. the average number of neighbors within h�This research was partially funded by the National Science Foun-dation under Grants No. IRI-9625428 and DMS-9873442. Also, bythe National Science Foundation, ARPA and NASA under NSF Co-operative Agreement No. IRI-9411299, and by DARPA/ITO throughOrder F463, issued by ESC/ENS under contract N66001-97-C-851.Additional funding was provided by donations from NEC and Intel.Views and conclusions contained in this document are those of theauthors and should not be interpreted as representing o�cial poli-cies, either expressed or implied, of the Defense Advanced ResearchProjects Agency or of the United States Government.

hops) that are useful for the analysis of protocols and forspeculations of the Internet topology in the future.Modeling the Internet topology1 is an important openproblem despite the attention it has attracted recently. Pax-son and Floyd consider this problem as a major reason \WhyWe Don't Know How To Simulate The Internet" [16]. Sev-eral graph-generator models have been proposed [23] [5] [27],but the problem of creating realistic topologies is not yetsolved; the selection of several parameter values are left tothe intuition and the experience of each researcher.As our primary contribution, we identify three power-laws for the topology of the Internet over the duration of ayear in 1998. Power-laws are expressions of the form y / xa,where a is a constant, x and y are the measures of interest,and/ stands for \proportional to". Some of those exponentsdo not change signi�cantly over time, while some exponentschange by approximately 10%. However, the important ob-servation is the existence of power-laws, i.e., the fact thatthere is some exponent for each graph instance. During1998, these power-laws hold in three Internet instances withgood linear �ts in log-log plots; the correlation coe�cient ofthe �t is at least 96% and usually higher than 98%. In ad-dition, we introduce a graph metric to quantify the densityof a graph and propose a rough power-law approximation ofthat metric. Furthermore, we show how to use our power-laws and our approximation to estimate useful parametersof the Internet, such as the average number of neighborswithin h hops. Finally, we focus on the generation of real-istic graphs. Our power-laws can help verify the realism ofsynthetic topologies. In addition, we measure several crucialparameters for the most recent graph generator [27].Our work in perspective. Our work is based on three In-ternet instances over a one-year period. During this time,the size of the network increased substantially (45%). De-spite this, the sample space is rather limited, and mak-ing any generalizations would be premature until additionalstudies are conducted. However, the authors believe thatthese power-laws characterize the dynamic equilibrium ofthe Internet growth in the same way power-laws appear todescribe various natural networks such as the the humanrespiratory system [12], and automobile networks [6]. At amore practical level, the regularities characterize the topol-ogy concisely during 1998. If this time period turns out tobe a transition phase for the Internet, our observations willobviously be valid only for 1998. In absence of revolutionary1In this paper, we use the expression \the topology of the Inter-net", although the topology changes and it would be more accurate totalk about \Internet topologies". We hope that this does not misleador confuse the reader.



changes, it is reasonable to expect that our power-laws willcontinue to hold in the future.The rest of this paper is structured as follows. In Sec-tion 2, we present some de�nitions and previous work onmeasurements and models for the Internet. In Section 3, wepresent our Internet instances and provide useful measure-ments. In Section 4, we present our three observed power-laws and our power-law approximation. In Section 5, weexplain the intuition behind our power-laws, discuss theiruse, and show how we can use them to predict the growthof the Internet. In Section 6, we conclude our work anddiscuss future directions.2 Background and Previous WorkThe Internet can be decomposed into connected subnet-works that are under separate administrative authorities,as shown in Figure 1. These subnetworks are called do-mains or autonomous systems2. This way, the topology ofthe Internet can be studied at two di�erent granularities. Atthe router level, we represent each router by a node [14].At the inter-domain level, each domain is represented bya single node [10] and each edge is an inter-domain inter-connection. The study of the topology at both levels isequally important. The Internet community develops andemploys di�erent protocols inside a domain and betweendomains. An intra-domain protocol is limited within a do-main, while an inter-domain protocol runs between domainstreating each domain as one entity.Symbol De�nitionG An undirected graph.N Number of nodes in a graph.E Number of edges in a graph.� The diameter of the graph.dv Outdegree of node v.�d The average outdegree of the nodes of agraph: �d = 2 E=NTable 1: De�nitions and symbols.Metrics. The metrics that have been used so far to de-scribe graphs are mainly the node outdegree, and the dis-tances between nodes. Given a graph, the outdegree of anode is de�ned as the number of edges incident to the node(see Table 1). The distance between two nodes is the num-ber of edges of the shortest path between the two nodes.Most studies report minimum, maximum, and average val-ues and plot the outdegree and distance distribution. Wedenote the number of nodes of a graph by N , the numberof edges by E, and the diameter of the graph by �.Real network studies. Govindan and Reddy [10] studythe growth of the inter-domain topology of the Internet be-tween 1994 and 1995. The graph is sparse with 75% of thenodes having outdegrees less or equal to two. They distin-guish four groups of nodes according to their outdegree. Theauthors observe an increase in the connectivity over time.Pansiot and Grad [14] study the topology of the Internet in2The de�nition of an autonomous system can vary in the literature,but it usually coincides with that of the domain [10].

1995 at the router level. The distances they report are ap-proximately two times larger compared to those of Govindanand Reddy. This leads to the interesting observation that,on average, one hop at the inter-domain level correspondedto two hops at the router level in 1995.Generating Internet Models. Regarding the creation ofrealistic graphs, Waxman introduced what seems to be oneof the most popular network models [23]. These graphs arecreated probabilistically considering the distance betweennodes in a Euclidean sense. This model was successful inrepresenting small early networks such as the ARPANET.As the size and the complexity of the network increasedmore detailed models were needed [5] [27]. In the most re-cent work, Zegura et al. [27] introduce a comprehensivemodel that includes several previous models 3. They calltheir model transit-stub, which combines simple topologies(e.g. Waxman graphs and trees) in a hierarchical structure.There are several parameters that control the structure ofthe graph. For example, parameters de�ne the total num-ber and the size of the stubs. An advantage of this modellies in its ability to describe a number of topologies. At thesame time, a researcher needs experimental estimates to setvalues to the parameters of the model.Power-laws in communication networks. Power-laws havebeen used to describe the tra�c in communications net-works, but not their topology. Actually, both self-similarity,and heavy tails appear in network tra�c and are both re-lated to power-laws. A variable X follows a heavy tail distri-bution if P [X > x] = kax�a L(x), where k 2 <+ and L(x) isa slowly varying function: limt!1[L(tx)=L(x)] = 1 [20] [24].A Pareto distribution is a special case of a heavy tail dis-tribution with P [X > x] = ka x�a. It is easy to see thatpower-laws, Pareto and heavy-tailed distributions are inti-mately related. In a pioneering work, Leland et al. [11] showthe self-similar nature of Local Area Network (LAN) tra�c.Second, Paxson and Floyd [15] provide evidence of self simi-larity in Wide Area Network (WAN) tra�c. In modeling thetra�c, Willinger et al. [25] provide structural models thatdescribe LAN tra�c as a collective e�ect of simple heavy-tailed ON-OFF sources. Finally, Willinger et al. [24] bringall of the above together by describing LAN andWAN tra�cthrough structural models and showing the relation of theself-similarity at the macroscopic level of WANs with theheavy-tailed behavior at the microscopic level of individualsources. In addition, Crovella and Bestavros use power-lawsto describe tra�c patterns in the World Wide Web [3]. Atan intuitive level, the previous works seem to attribute theheavy-tailed behavior of the tra�c to the heavy-tailed dis-tribution of the size of the transmitted data �les, and to theheavy-tailed characteristics of the human-computer interac-tion. Recently, Chuang and Sirbu [2] use a power-law toestimate the size of multicast distribution trees. Note thatin a follow-up work, Philips et al. [17] verify the reason-able accuracy of the Chuang-Sirbu scaling law for practicalpurposes, but they also propose an estimate that does notfollow a power-law.3 Internet InstancesIn this section, we present the Internet instances we ac-quired and we study their evolution in time. We examinethe inter-domain topology of the Internet from the end of1997 until the end of 1998. We use three real graphs thatcorrespond to six-month intervals approximately. The data3The graph generator software is publicly available [27].
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Figure 2: The growth of the Internet: the number of do-mains versus time between the end of 1997 until the end of1998.is provided by the National Laboratory for Applied Net-work Research [9]. The information is collected by a routeserver from BGP4 routing tables of multiple geographicallydistributed routers with BGP connections to the server. Welist the three datasets that we use in our paper, and wepresent more information in Appendix A.� Int-11-97: the inter-domain topology of the Internetin November of 1997 with 3015 nodes, 5156 edges, and3:42 avg. outdegree.� Int-04-98: the inter-domain topology of the Internetin April of 1998 with 3530 nodes, 6432 edges, and 3:65avg. outdegree.� Int-12-98: the inter-domain topology of the Internetin December of 1998 with 4389 nodes, 8256 edges, and3:76 avg. outdegree.Note that the growth of the Internet in the time pe-riod we study is 45% (see Figure 2). The change is signif-icant, and it ensures that the three graphs re
ect di�erentinstances of an evolving network.Although we focus on the Internet topology at the inter-domain level, we also examine an instance at the router4BGP stands for the Border Gateway Protocol [19], and it is theinter-domain routing protocol.

level. The graph represents the topology of the routers ofthe Internet in 1995, and was tediously collected by Pansiotand Grad [14].� Rout-95: the routers of the Internet in 1995 with 3888nodes, 5012 edges, and an average outdegree of 2.57.Clearly, the above graph is considerably di�erent from the�rst three graphs. First of all, the graphs model the topologyat di�erent levels. Second, the Rout-95 graph comes from adi�erent time period, in which Internet was in a fairly earlyphase.To facilitate the graph generation procedures, we ana-lyze the Internet in a way that suits the graph generatormodels [27]. Namely, we decompose each graph in two com-ponents: the tree component that contains all nodes thatbelong exclusively to trees and the core component that con-tains the rest of the nodes including the roots of the trees.We report several interesting measurements in Appendix A.For example, we �nd that 40-50% of the nodes belong totrees. Also, 80% the trees have a depth of one, while themaximum tree depth is three.4 Power-Laws of the InternetIn this section, we observe three of power-laws of the In-ternet topology. Namely, we propose and measure graphproperties, which demonstrate a regularity that is unlikelyto be a coincidence. The exponents of the power-laws canbe used to characterize graphs. In addition, we introduce agraph metric that is tailored to the needs of the complexityanalysis of protocols. The metric re
ects the density or theconnectivity of nodes, and we o�er a rough approximationof its value through a power-law. Finally, using our ob-servations and metrics, we identify a number of interestingrelationships between important graph parameters.In our work, we want to �nd metrics or properties thatquantify topological properties and describe concisely skeweddata distributions. Previous metrics, such as the averageoutdegree, fail to do so. First, metrics that are based onminimum, maximum and average values are not good de-scriptors of skewed distributions; they miss a lot of infor-mation and probably the \interesting" part that we wouldwant to capture. Second, the plots of the previous metricsare di�cult to quantify, and this makes di�cult the com-parison of graphs. Ideally, we want to describe a plot or adistribution with one number.



Symbol De�nitionfd The frequency of an outdegree, d, is the num-ber of nodes with outdegree d.rv The rank of a node, v, is its index in the orderof decreasing outdegree.P (h) The number of pairs of nodes is the total num-ber of pairs of nodes within less or equal toh hops, including self-pairs, and counting allother pairs twice.NN(h) The average number of nodes in a neighbor-hood of h hops.� The eigen value of a square matrix A: 9x 2RN and Ax = �x.i The order of �i in �1 � �2 : : : � �NTable 2: Novel de�nitions and their symbols.To express our power-laws, we introduce several graphmetrics that we show in Table 2. We de�ne frequency, fd,of some outdegree, d, to be the number of nodes that havethis outdegree. If we sort the nodes in decreasing outdegreesequence, we de�ne rank, rv, to be the index of the nodein the sequence, while ties in sorting are broken arbitrarily.We de�ne the number of pairs of nodes P (h) to be the totalnumber of pairs of nodes within less or equal to h hops,including self-pairs, and counting all other pairs twice. Theuse of this metric will become apparent later. We also de�neNN(h) to be the average number of nodes in a neighborhoodof h hops. Finally, we recall the de�nition of the eigenvaluesof a graph, which are the eigenvalues of its adjacency matrix.In this section, we use linear regression to �t a line in aset of two-dimensional points [18]. The technique is basedon the least-square errors method. The validity of the ap-proximation is indicated by the correlation coe�cient whichis a number between �1:0 and 1:0. For the rest of this paper,we use the absolute value of the correlation coe�cient, ACC.An ACC value of 1:0 indicates perfect linear correlation, i.e.,the data points are exactly on a line.4.1 The rank exponent RIn this section, we study the outdegrees of the nodes. Wesort the nodes in decreasing order of outdegree, dv, and plotthe (rv; dv) pairs in log-log scale. The results are shownin Figures 3 and 4. The measured data is represented bydiamonds, while the solid line represents the least-squaresapproximation.A striking observation is that the plots are approximatedwell by the linear regression. The correlation coe�cient ishigher than 0:974 for the inter-domain graphs and 0:948 forthe Rout-95 graph. This leads us to the following power-lawand de�nition.Power-Law 1 (rank exponent) The outdegree, dv,of a node v, is proportional to the rank of the node, rv,to the power of a constant, R:dv / rRvDe�nition 1 Let us sort the nodes of a graph in decreasingorder of outdegree. We de�ne the rank exponent, R, to be

the slope of the plot of the outdegrees of the nodes versus therank of the nodes in log-log scale.For the three inter-domain instances, the rank exponent,R, is �0:81, �0:82 and �0:74 in chronological order as wesee in Appendix B. The rank exponent of the Rout-95 graph,�0:48, is di�erent compared to that of the �rst three graphs.This is something that we expected, given the di�erences inthe nature of the graphs. On the other hand, this di�erencesuggests that the rank exponent can distinguish graphs ofdi�erent nature, although they both follow Power-Law 1.This property can make the rank exponent a powerful metricfor characterizing families of graphs, see Section 5.Intuitively, Power-Law 1 most likely re
ects a principleof the way domains connect; the linear property observed inour four graph instances is unlikely to be a coincidence. Thepower-law seems to capture the equilibrium of the trade-o� between the gain and the cost of adding an edge froma �nancial and functional point of view, as we discuss inSection 5.Extended Discussion - Applications. We can esti-mate the proportionality constant for Power-Law 1, if werequire that the minimum outdegree of the graph is one(dN = 1). This way, we can re�ne the power-law as follows.Lemma 1 The outdegree, dv, of a node v, is a function ofthe rank of the node, rv and the rank exponent, R, as followsdv = 1NR rRvProof. The proof can be found in Appendix C.Finally, using lemma 1, we relate the number of edgeswith the number of nodes and the rank exponent.Lemma 2 The number of edges, E, of a graph can be es-timated as a function of the number of nodes, N , and therank exponent, R, as follows:E = 12 (R+ 1) (1� 1NR+1 ) NProof. The proof can be found in Appendix C.Note that Lemma 2 can give us the number of edges asa function of the number of nodes for a given rank expo-nent. We tried the lemma in our datasets and the estimatednumber of edges di�ered by 9% to 20% from the actual num-ber of edges. More speci�cally for the Int-12-98, the lemmaunderestimates the number of edges by 10%. We can geta closer estimate (3.6%) by using a simple linear interpola-tion in the number of edges given the number of nodes. Notethat the two prediction mechanisms are di�erent: our lemmadoes not need previous network instances, but it needs toknow the rank exponent. However, given previous networkinstances, we seem to be better o� using the linear inter-polation according to the above analysis. We examined thesensitivity of our lemma with respect to the value of rankexponent. A 5% increase (decrease) in the absolute value ofthe rank exponent increases (decreases) the number of edgesby 10% for the number of nodes in Int-12-98.4.2 The outdegree exponent OIn this section, we study the distribution of the outdegreeof the graphs, and we manage to describe it concisely by asingle number. Recall that the frequency, fd, of an outde-gree, d, is the number of nodes with outdegree d. We plotthe frequency fd versus the outdegree d in log-log scale in
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(a) Int-11-97 (b) Int-04-98Figure 3: The rank plots. Log-log plot of the outdegree dv versus the rank rv in the sequence of decreasing outdegree.
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(a) Int-12-98 (b) Rout-95Figure 4: The rank plots. Log-log plot of the outdegree dv versus the rank rv in the sequence of decreasing outdegree.�gures 5 and 6. In these plots, we exclude a small percent-age of nodes of higher outdegree that have frequency of one.Speci�cally, we plot the outdegrees starting from one untilwe reach an outdegree that has frequency of one. As we sawearlier, the higher outdegrees are described and captured bythe rank exponent. In any case, we plot more than 98% ofthe total number of nodes. The solid lines are the result ofthe linear regression.The major observation is that the plots are approxi-mately linear (see Table 8). The correlation coe�cients arebetween 0.968-0.99 for the inter-domain graphs and 0.966for the Rout-95. This leads us to the following power-lawand de�nition.Power-Law 2 (outdegree exponent)The frequency, fd, of an outdegree, d, is proportionalto the outdegree to the power of a constant, O:fd / dODe�nition 2 We de�ne the outdegree exponent, O, to bethe slope of the plot of the frequency of the outdegrees versusthe outdegrees in log-log scale.

The second striking observation is that the value of theoutdegree exponent is practically constant in our graphs ofthe inter-domain topology. The exponents are �2:15, �2:16and �2:2, as shown in Appendix B. It is interesting to notethat even the Rout-95 graph obeys the same power-law (Fig-ure 6.b) with an outdegree exponent of �2:48. These factssuggest that Power-Law 2 describes a fundamental propertyof the network.The intuition behind this power-law is that the distri-bution of the outdegree of Internet nodes is not arbitrary.The qualitative observation is that lower degrees are morefrequent. Our power-law manages to quantify this observa-tion by a single number, the outdegree exponent. This way,we can test the realism of a graph with a simple numeri-cal comparison. If a graph does not follow Power-Law 2,or if its outdegree exponent is considerably di�erent fromthe real exponents, it probably does not represent a realistictopology.4.3 The hop-plot exponent HIn this section, we quantify the connectivity and distancesbetween the Internet nodes in a novel way. We choose to
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(a) Int-12-98 (b) Rout-95Figure 6: The outdegree plots: Log-log plot of frequency fd versus the outdegree d.study the size of the neighborhood within some distance,instead of the distance itself. Namely, we use the total num-ber of pairs of nodes P (h) within h hops, which we de�neas the total number of pairs of nodes within less or equalto h hops, including self-pairs, and counting all other pairstwice.Let us see the intuition behind the number of pairs ofnodes P (h). For h = 0, we only have the self-pairs: P (0) =N . For the diameter of the graph �, h = �, we have the self-pairs plus all the other possible pairs: P (�) = N2, which isthe maximum possible number of pairs. For a hypotheticalring topology, we have P (h) / h1, and, for a 2-dimensionalgrid, we have P (h) / h2, for h � �. We examine whetherthe number of pairs P (h) for the Internet follows a similarpower-law.In �gures 7 and 8, we plot the number of pairs P (h) as afunction of the number of hops h in log-log scale. The datais represented by diamonds, and the dotted horizontal linerepresents the maximum number of pairs, which is N2. Wewant to describe the plot by a line in least-squares �t, forh � �, shown as a solid line in the plots. We approximatethe �rst 4 hops in the inter-domain graphs, and the �rst 12hops in the Rout-95. The correlation coe�cients are is 0:98

for inter-domain graphs and 0:96, for the Rout-95, as wesee in Appendix B. Unfortunately, four points is a rathersmall number to verify or disprove a linearity hypothesis ex-perimentally. However, even this rough approximation hasseveral useful applications as we show later in this section.Approximation 1 (hop-plot exponent) The to-tal number of pairs of nodes, P (h), within h hops,is proportional to the number of hops to the power ofa constant, H: P (h) / hH; h� �De�nition 3 Let us plot the number of pairs of nodes, P (h),within h hops versus the number of hops in log-log scale. Forh � �, we de�ne the slope of this plot to be the hop-plotexponent,H.Observe that the three inter-domain datasets have prac-tically equal hop-plot exponents; 4:6; 4:7, and 4:86 in chrono-logical order, as we see in Appendix B. This shows that thehop-plot exponent describes an aspect of the connectivity ofthe graph in a single number. The Rout-95 plot, in �g. 8.b,
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(a) Int-12-98 (b) Rout-95Figure 8: The hop-plots: Log-log plots of the number of pairs of nodes P (h) within h hops versus the number of hops h.has more points, and thus, we can argue for its linearitywith more con�dence. The hop-plot exponent of Rout-95is 2:8, which is much di�erent compared to those of theinter-domain graphs. This is expected, since the Rout-95 isa sparser graph. Recall that for a ring topology, we haveH = 1, and, for a 2-dimensional grid, we have H = 2. Theabove observations suggest that the hop-plot exponent candistinguish families of graphs e�ciently, and thus, it is agood metric for characterizing the topology.Extended Discussion - Applications. We can re�neApproximation 1 by calculating its proportionality constant.Let us recall the de�nition of the number of pairs, P (h).For h = 1, we consider each edge twice and we have theself-pairs, therefore: P (1) = N + 2 E. We demand thatApproximation 1 satis�es the previous equation as an initialcondition.Lemma 3 The number of pairs within h hops isP (h) = � c hH; h� �N2; h � �where c = N + 2 E to satisfy initial conditions.

In networks, we often need to reach a target withoutknowing its exact position [7] [1]. In these cases, selectingthe extent of our broadcast or search is an issue. On theone hand, a small broadcast will not reach our target. Onthe other hand, an extended broadcast creates too manymessages and takes a long time to complete. Ideally, we wantto know how many hops are required to reach a \su�cientlylarge" part of the network. In our hop-plots, a promisingsolution is the intersection of the two asymptote lines: thehorizontal one at level N2 and the asymptote with slope H.We calculate the intersection point using Lemma 3, and wede�ne:De�nition 4 (e�ective diameter) Given a graph with Nnodes, E edges, and H hop-plot exponent, we de�ne the ef-fective diameter, �ef , as:�ef = � N2N + 2 E�1=HIntuitively, the e�ective diameter can be understood asfollows: any two nodes are within �ef hops from each otherwith high probability. We veri�ed the above statement ex-perimentally. The e�ective diameters of our inter-domain
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Figure 9: Average neighborhood size versus number of hopsthe actual, and estimated size a) using hop-plot exponent,b) using the average outdegree for Int-12-98.Hops hop-plot avg. outdegree1 0.02 1.822 -0.66 -0.933 -0.47 -0.954 0.17 -0.93Table 3: The relative error of the two estimates for theaverage neighborhood size with respect to the real value.Negative error means under-estimate.graphs was slightly over four. Rounding the e�ective diam-eter to four, approximately 80% of the pairs of nodes arewithin this distance. The ceiling of the e�ective diameter is�ve, which covers more than 95% of the pairs of nodes.An advantage of the e�ective diameter is that it can becalculated easily, when we know N , and H. Recall that wecan calculate the number of edges from Lemma 2. Giventhat the hop-plot exponent is practically constant, we canestimate the e�ective diameter of future Internet instancesas we do in Section 5.Furthermore, we can estimate the average size of theneighborhood, NN(h), within h hops using the number ofpairs P (h). Recall that P (h) � N is the number of pairswithout the self-pairs.NN(h) = P (h)N � 1 (1)Using Equation 1 and Lemma 3, we can estimate theaverage neighborhood size.Lemma 4 The average size of the neighborhood, NN(h),within h hops as a function of the hop-plot exponent, H,for h� �, is NN(h) = cN hH � 1where c = N + 2 E to satisfy initial conditions.The average neighborhood is a commonly used parame-ter in the performance of network protocols. Our estimateis an improvement over the commonly used estimate that

uses the average outdegree [26] [7] which we call average-outdegree estimate:NN0(h) = �d ( �d� 1)h�1In �gure 9, we plot the actual and both estimates of theaverage neighborhood size versus the number of hops for theInt-12-98 graph. In Table 3, we show the normalized errorof each estimate: we calculate the quantity: (p� r)=r wherep the prediction and r the real value. The results for theother inter-domain graphs are similar. The superiority ofthe hop-plot exponent estimate is apparent compared to theaverage-outdegree estimate. The discrepancy of the average-outdegree estimate can be explained if we consider that theestimate does not comply with the real data; it implicitlyassumes that the outdegree distribution is uniform. In moredetail, it assumes that each node in the periphery of theneighborhood adds �d � 1 new nodes at the next hop. Ourdata shows that the outdegree distribution is highly skewed,which explains why the use of the hop-plot estimate gives abetter approximation.The most interesting di�erence between the two esti-mates is qualitative. The previous estimate considers theneighborhood size exponential in the number of hops. Ourestimate considers the neighborhood as an H-dimensionalsphere with radius equal to the number of hops, which is anovel way to look at the topology of a network5. Our datasuggests that the hop-plot exponent-based estimate givesa closer approximation compared to the average-outdegree-based metric.4.4 The eigen exponent EIn this section, we identify properties of the eigenvalues ofour Internet graphs. There is a rich literature that provesthat the eigenvalues of a graph are closely related to manybasic topological properties such as the diameter, the num-ber of edges, the number of spanning trees, the number ofconnected components, and the number of walks of a certainlength between vertices, as we can see in [8] and [4]. All ofthe above suggest that the eigenvalues intimately relate totopological properties of graphs.We plot the eigenvalue �i versus i in log-log scale for the�rst 20 eigenvalues. Recall that i is the order of �i in thedecreasing sequence of eigenvalues. The results are shown inFigure 10 and Figure 11. The eigenvalues are shown as dia-monds in the �gures, and the solid lines are approximationsusing a least-squares �t.Observe that in all graphs, the plots are practically lin-ear with a correlation coe�cient of 0:99, as we see in Ap-pendix B. It is rather unlikely that such a canonical formof the eigenvalues is purely coincidental, and we thereforeconjecture that it constitutes an empirical power-law of theInternet topology.Power-Law 3 (eigen exponent) The eigenvalues,�i, of a graph are proportional to the order, i, to thepower of a constant, E:�i / iEDe�nition 5 We de�ne the eigen exponent, E, to be theslope of the plot of the sorted eigenvalues versus their orderin log-log scale.5Note that our results focus on relatively small neighborhoodscompared to the diameter h � �. Other experimental studies focuson neighborhoods of larger radius [17].
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(a) Int-12-98 (b) Rout-95Figure 11: The eigenvalue plots: Log-log plot of eigenvalues in decreasing order.A surprising observation is that the eigen exponents ofthe three inter-domain graphs are practically equal: �0:47,�0:50 and �0:48 in chronological order. This means thatthe eigen exponent captures a property of the Internet thatcharacterizes all three instances despite the increase in size.On the other hand, the eigen exponent of the routers graph issigni�cantly di�erent�0:177, from the previous slopes. Thisshows that the eigen exponent can distinguish di�erencesbetween families of graphs.5 DiscussionIn this section, we discuss the practical uses of our power-laws and our approximation. We also present the intuitionbehind the existence of such power-laws in a chaotic envi-ronment such as the Internet. In addition, we discuss thescope of the predictions that are based on our work.Describing Graphs: Exponents versus Averages. We pro-pose a new way to describe topological properties usingpower-laws. Our observations show that most of the distri-butions of interest are skewed, typically following a power-law. Average values falsely imply a uniform distribution,and they can be misleading. For example, 85% of the nodes

in Int-12-98 have outdegree less than the average outdegree!We propose to use the exponents of power-laws, which man-age to capture the trend of a property in a single number.Protocol Performance. Our work can facilitate the de-sign, and the performance analysis of protocols. As wesaw, our power-laws help us estimate useful graph metrics.We provide formulas for the e�ective diameter, the averageneighborhood size, and the number of edges, in De�nition4, Lemma 4 and Lemma 2 respectively. Our O( �d hH) es-timate for the average neighborhood size is a fundamentalimprovement over the commonly used O( �dh). This way, wecan �ne-tune and analyze the performance and the complex-ity of several protocols6.Predictions and Extrapolations. Our power-laws o�erguidelines for answering \what-if" questions. First, we canscrutinize the plausibility of a hypothesis, if they contradictour power-laws. Second, we can predict useful parametersof the Internet under di�erent hypotheses and assumptions.Actually, given just a hypothesis for the number of nodes,we can estimate the number of edges from Lemma 2, and6Some protocols that employ broadcasting or 
ooding techniquesare the link-state protocols OSPF and MOSPF [13], and the multicastprotocols DVMRP [22], QoSMIC [7], YAM [1].



Year 1999 2000 2001 2002Nodes 4389 5763 7137 8511Edges 8256 12639 15301 18384E�ective diameter 4.26 4.39 4.61 4.78Table 4: Internet prediction assuming linear node increase.We predict the number of edges and e�ective diameter ofthe Internet at the inter-domain level at the beginning ofeach year. Year 1999 2000 2001 2002Nodes 4389 6364 9227 13380Edges 8256 13576 19996 29421E�ective diameter 4.26 4.51 4.86 5.25Table 5: Internet prediction assuming 45% increase in thenumber of nodes every year. We predict the number of edgesand e�ective diameter of the Internet at the inter-domainlevel at the beginning of each year.the e�ective diameter using De�nition 4. Note that our toolsdo not predict the number of nodes of the Internet, but forthe sake of the example we will examine two possible growthpatterns. We can assume that the number of nodes increasesa) linearly, or b) by 1:45 each year. The results our shownin Table 4 for the linear growth and Table 5 for the 1:45growth. Given the number of nodes, we calculate the num-ber of edges using Lemma 2 with rank exponent of �0:81,which is the median of the three observed rank exponents.We calculate the e�ective diameter using De�nition 4 witha hop-plot exponent of 4:71, the median of the observedvalues.Predicting the evolution of a dynamic system such asthe Internet is not trivial. There are many social, economi-cal, and technological factors that can alter signi�cantly thetopology of the network. Furthermore, systems often evolvein bursts following social and technological breakthroughs.In this paper, we claim that our power-laws characterize theInternet topology during the year 1998. However, given thelarge number of natural distributions that follow power-laws,the Internet topology will likely be described by power-lawseven in the future. In the absence of any other information,a practitioner would reasonably conjecture that our power-laws might continue to hold, at least for the near future. Weelaborate further on our intuition regarding power-laws andnatural systems in section 5.1.Graph Generation and Selection. Our power-laws can beused to characterize graph topologies. This way, the power-laws can be used as a composite \qualifying exam" for therealism of a graph. Recall that some power-laws showed sig-ni�cantly di�erent exponents in the inter-domain and therouter-level graphs. We conducted some preliminary exper-iments with some arti�cial topologies and some real graphsof di�erent nature (e.g. web-site topology). Some graphsdid not comply to the power-laws at all, while some oth-ers showed large di�erences in the values of the exponents.The observations for these graphs and the Internet graphsin this paper suggest that our power-laws could be used tocharacterize and distinguish graphs.In addition, we provide measurements that are targeted

towards the current graph models [27], as we saw in Sec-tion 3 and Appendix A. In an overview, we list the follow-ing guidelines for creating inter-domain topologies. First, alarge but decreasing percentage of the nodes(50%, 45%, and40%) belong to trees. Second, more than 80% of the treeshave depth one, and the maximum depth is three. Third,the outdegree distribution is skewed following our power-laws 1 and 2 within a range of 1 to 1000 approximately. Asa �nal step, the realism of the resulting graph can be testedusing our power-laws.5.1 Finding Order in ChaosWhy would such an unruly entity like the Internet followany statistical regularities? Note that the high correlationcoe�cients exclude the role of coincidence. Intrigued by theprevious question, we attempt an intuitive explanation. Thetopological structure of the Internet is the collective resultof many small forces in antagonistic and cooperative rela-tionships. These forces �nd an equilibrium in a state, andit is this state that our power-laws capture. Let us thinkof how change happens. New nodes are not just \glued"on the existing graph; they trigger a chain of restructuringchanges. If many new nodes connect to an existing node, itwill probably have to increase its connectivity to accommo-date the new demand in tra�c. In other words, the changepropagates to the rest of the network like a fading wave.Therefore, at any time the topology is characterized by thesame fundamental properties. As an analogy, we can thinkof a heap of sand that we create by dropping sand from onepoint. At any given moment, the heap is a cone, though itssize changes and the grains are just dropped unorderly.The above intuitive understanding of the network topol-ogy is reinforced by the fact that this kind of dynamic equi-librium, and power-laws characterize many natural systems.First, power-laws govern the nature of various networks.The tra�c of the Internet and the World Wide Web is char-acterized by power-laws, as we already saw in section 2. Fur-thermore, power-laws describe the topology of multiple realnetworks of biological and geographical nature such as thehuman respiratory system [12] with a scaling factor of 2:9,and automobile networks [6] with an exponent of 1:6. Sec-ond, power-laws are obeyed in diverse settings, like incomedistribution (the \Pareto law"), and the frequency distribu-tion of words in natural text (the \Zipf distribution" [28]).6 ConclusionsOur main contribution is a novel way to study the Inter-net topology, namely through power-laws. These power-laws capture concisely the highly skewed distributions of thegraph properties and quantify them by single numbers, thepower-law exponents. Our contributions can be summarizedin the following points:� We discover three power-laws that characterize theinter-domain Internet topology during the year of 1998.� Our power-laws hold for three Internet instances withhigh correlation coe�cients.� We propose the number of pairs, P (h), within h hops,as a metric of the density of the graph and approximateit with the use of the hop-plot exponent, H.� We derive formulas that link the exponents of ourpower-laws with vital graph metrics such as the num-



ber of nodes, the number of edges, and the averageneighborhood size.� We propose power-law exponents, instead of averages,as an e�cient way to describe the highly-skewed graphmetrics which we examined.Apart from their theoretical interest, we showed a num-ber of practical applications of our power-laws. First, ourpower-laws can assess the realism of synthetic graphs, andenhance the validity of our simulations. Second, they canhelp analyze the average-case behavior of network proto-cols. For example, we can estimate the message complexityof protocols using our estimate for the neighborhood size.Third, the power-laws can help answer \what-if" scenar-ios like \what will be the diameter of the Internet, when thenumber of nodes doubles?" \what will be the number of edgesthen?"In addition, we decompose and measure the Internet ina way that relates to the state-of-the-art graph generationmodels. This decomposition provides measurements that fa-cilitate the selection of parameters for the graph generators.For the future, we believe that our suggestion to lookfor power-laws will open the 
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Int-11-97 Int-04-98 Int-12-98nodes 3015 3530 4389edges 5156 6432 8256avg.outdegree 3.42 3.65 3.76max.outdegree 590 745 979diameter 9 11 10avg. distance 3.76 3.77 3.75Table 6: The evolution of the Internet at the inter-domainlevel. Int-11-97 Int-04-98 Int-12-98#nodes intrees (%) 50.05 45.05 40.76#trees over#nodes (%) 10.12 10.26 9.4max depth 3 3 3avg. tree size 4.9 4.4 4.3coreoutdegree 4.7 4.9 4.9Table 7: The evolution of the Internet considering the coreand the trees.A Decomposing the InternetWe analyze the Internet in a way that suits the graph genera-tor models [27]. The measurements we present can facilitatethe selection of parameters for these generators.We study the graphs through their decomposition intotwo components: the tree component that contains all nodesthat belong exclusively to trees and the core component thatcontains the rest of the nodes including the roots of thetrees. We measure several parameters from this decomposi-tion that are shown in Table 7. These results leads to thefollowing observations.� Approximately half of the nodes are in trees 40-50%� The number of nodes in trees decreased with time by10% means that the Internet becomes more connectedall around.� The maximum tree depth is 3, however more than 80%of the trees have depth one.� More than 95% of the tree-nodes have a degree of one.This leads to the following interesting observation: ifwe remove the nodes with outdegree one from the orig-inal graph, we practically get the core component.These observations can help users select appropriate valuesfor the parameters used in various graph generation tech-niques [27].B The Exponents of Our Power-LawsWe present the exponents of our power-laws in Table 8.

Exponent Int-11-97 Int-04-98 Int-12-98 Rout-95rank -0.81 -0.82 -0.74 -0.48ACC 0.981 0.979 0.974 0.948outdegree -2.15 -2.16 -2.20 -2.48ACC 0.991 0.979 0.968 0.966hop-plot 4.62 4.71 4.86 2.83ACC 0.983 0.981 0.980 0.991eigen -0.471 -0.502 -0.487 -0.17ACC 0.990 0.989 0.991 0.994Table 8: An overview of all the exponents for all our graphs.Note that ACC is the absolute value of the correlation coef-�cient.C The ProofsHere we prove the Lemmas we present in our paper.Lemma 1. The outdegree, dv, of a node v, is a functionof the rank of the node, rv and the rank exponent, R, asfollows dv = 1NR rRvProof. We can estimate the proportionality constant,C, forPower-Law 1, if we require that the outdegree of the N -thnode is one, dN = 1.dN = C NR )C = 1=NR (2)We combine Power-Law 2 with Equation 2, and concludethe proof.Lemma 2. The number of edges, E, of a graph can beestimated as a function of the number of nodes, N , and therank exponent, R, as follows:E = 12 (R+ 1) (1� 1NR+1 ) NProof: The sum of all the outdegrees for all the ranksis equal to two times the number of edges, since we counteach edge twice.2 E = NXrv=1 dv2 E = NXrv=1(rv=N)R = (1=N)R NXrv=1 rRvE � 12 NR Z N1 rRv drv (3)In the last step, above we approximate the summationwith an integral. Calculating the integral concludes theproof.


