Situation Agents: Agent-based Externalized
Steering Logic

Matthew Schuerman Shawn Singh Mubbasir Kapadia Petros Faloutsos
{mschuerm,shawnsin,mubbasir,gf@lcs.ucla.edu

University of California, Los Angeles

Abstract

We present a simple and intuitive method for encapsulating part of agé&gsirg
and coordinating abilities into a new class of agents, calirdtion agents. Situa-
tion agents have all the abilities of typical agents. In addition, they can imfutire
steering decisions of any agent, including other situation agents, within therespf
influence. Encapsulating steering logic into moving agents is a powerftriaaben
which provides more flexibility and efficiency than traditional informed enwvinent
approaches, and works with many of the current steering methodoldy&slemon-

strate our proposed approach in a number of challenging scenarios.

Keywords: crowd simulation, steering, group behaviors, situatioeras

| ntroduction

Crowd simulation has become a topic of increasing interestdy. Aside from the obvious
entertainment applications, it has implications for fiedt€h as urban planning, architec-
ture, and law enforcement. One of the most challenging asméacrowd simulations is
obtaining the performance and simplicity required to mdikent a practical tool, which
often involves trading agent sophistication for speed.

Many agent-based steering methods exhibit good perforenand realistic agent be-
havior in crowds of reasonable density in open areas, buhlbednave trouble in situations
where body language or social customs become the dominzot fa human steering de-
cisions. In such cases, many steering methods are pronéituitedeadlocks or unnatural
behaviors. To address this, agents are often given enoygiissication to be able to recog-
nize such situations (or annotations in the environmend)atempt to resolve them. This
can either be done using very robust planning techniquey adding specialized logic to
the agent’s basic steering algorithm — neither of which isd@al solution. More robust
steering techniques often reduce performance, espeuibliyn used by many agents. Sim-
ilarly, augmenting the agent’s standard steering methodgal with specialized situations
can lead to extremely complex steering algorithms whictnat to cope with a wide vari-
ety of special cases. Both approaches result in pollutingtageth additional computation
and storage costs in order to deal with situations they nmgheven encounter.

A more effective solution is to externalize the specialiggzkring logic that deals with

troubling cases to some third party and allow agents to usentbst fundamental form of
their steering algorithm for their navigational needs. Kbg idea of this paper is to use a
new class of agents, callattuation agents, as this third party. Situations agents are similar
to standard agents in many regards: they have a defineddocatze, velocity, and goal.
They can utilize steering strategies to interact with osigration agents. However, they
differ from standard agents in that they exist solely to suige the actions of other agents
in localized scenarios that their typical steering aldomis might not support.

Situation agents provide all the advantages of traditionfdrmed environment ap-
proaches [1, 2, 3], as well as further benefits. Since speedhlogic is being removed from
standard agents, modularity and performance are enhasoegaither approach. However,
usingagentsas couriers for specialized logic provides several adgastaver traditional in-

formed environment approaches:

1. For reasons previously stated, environmental annotdties not always significantly
reduce the standard agent's complexity. Situation agemtapsulate the logic for
both the detection and resolution of difficult situationsairdifferent, and far less
numerous, population of agents. Also, when influencing ipleltagents, situation

agents can implement such logic with a broader view thawviddal agents.

2. Smart objects and areas [1] are better at segmenting eaitypthan environmen-
tal annotations, but like annotations, are often statittgfion agents give specialized

steering behaviors intuitive ways to change the area tiegtahrough agent re-sizing

and movement, which can become important in heterogeneodgnamic environ-

ments.

3. Encapsulating behaviors into agents provides a powetiiiface for making hierar-
chical decisions. Broadly scoped situation agents can ehtiascorrect aggregate
action for many agents, and then individuals revise thoggestions as required.
Since situation agents are agents themselves, arbitradlyy layers of them can be
used in this fashion. This provides a natural paradigm foalmrs such as steering,
where groups often attempt to steer within larger groupsoAbecause of this hier-
archy, macroscopic crowd behavior becomes a controllgitierg not an emergent

property of an algorithm. This is key to the results presgimehis paper.

Contribution: This paper proposes the concept of situation agents, wihia ape-
cialized steering algorithms to be externalized from séaddigents to a separate class of
agents. Such separation allows us to enhance agent-basgthgtalgorithms to exhibit
correct behavior in challenging situations with minimaddidnal processing complexity.
Situation agents are also highly customizable and loadiaed offer a simple, intuitive, and
efficient way for animators and programmers to orchestrated behaviors on a fine scale.
We illustrate this with three specific examples: deadloaksy groups agents, and forma-
tion agents. Our results show agent cooperation to resdfieutt scenarios, an important
and challenging aspect of realistic agent behavior.

The rest of this paper is organized as follows: Section 2sgaverief summary of related

literature, Section 3 explains some example situationtagemepth, Section 4 outlines our

results, and finally Section 5 concludes and discusses=fplans.

Related Work

Since Reynolds’ pioneering work [4], crowd simulation hasdree a field of active and
diverse research. The reader is referred to [5] for an extessmmary of this work. These
techniques draw inspiration from a wide variety of sourgesuding fluid dynamics [6],
physics [7], robotics [8], motion capture technologies [@jd artificial life [10] and thus
vary significantly.

However, common themes do exist in all crowd simulation #aorks. The problem
of maintaining realistic behavior in all cases while mirampg the processing per agent
has always been a paramount concern. Externalizing psrabagents’ complexity is one
solution to this problem, and it is the one we will focus onehe®Beveral frameworks [1, 2]
include both smart areas and smart objects which can dibtatean agent can interact
with them. The work in [3] extends this notion to allow the momment to add or remove
behaviors from agents. However, we are not aware of any que\attempts to externalize
steering behaviors to a distinct setagfents. Composite agents [11] did allow some agents
to instantiate and re-size a set of passive agents —proxytsgé act as obstacles to aid
in navigation. However, proxy agents do not contain any isfized logic or information,

making that methodology quite different from the one préseghere.

Situation Agents

Situation agents coordinate the behaviors of other agentadulifying those agent’s pa-
rameters. In the their most general form they can modify aamameter within any agent,
including other situation agents. Fully leveraged, thisveé them to produce arbitrarily
complex hierarchies and behaviors from relatively simplé enodular components. How-
ever, for demonstration purposes the situation agentepies in this paper modify only
two internal parameterdyoldness and preferred velocity, and typically use only a single
layer of hierarchy. This compact interface makes them cadilvipawith a wide variety of
simulation frameworks. We will discuss how these paransedes implemented in the con-
text of the continuum crowds [6] (CC) and reciprocal velocibgtacles [12] (RVO) frame-
works. These popular frameworks employ quite differentmodblogies, and using them as
examples demonstrates the portability of our approach.

Situation agents make their chandeefore the agents they influence compute their ac-
tions. This allows the influenced agents to use their owrrisiger behavior logic to carry
out the suggestions of the situation agents and createsidherdhy which is one of the
primary advantages of this technique. For the CC framewagkdhmodifications would
take place as the unit cost field is being calculated. In R\&néworks, situation agents
would process their actions first and during that time theyldonodify the parameters of
the agents they influence.

Boldnessis how likely an agent is to yield to other agents during steprAn agent with

boldness parameters set high will exert less effort to awthdr agents, while an agent with
low boldness parameters will act more timidly. By modifyingldness parameters, situation
agents can order some agents to yield and allow others to pasthe CC framework,
boldness is varied by changing the length and intensity @fdiscomfort field projected in
front of each agent: large and more intense discomfort fieddse other agents to move out
that agent’s way. As a result that agent is not required tocgedy steer around others,
effectively increasing their boldness. In RVO frameworks|dness is implemented by
modifying the safety factor and parameter. Decreasing an agent’s safety factor makes
it less afraid of collisions, while reducing its parameter decreases its responsibility for
movement as two agents reciprocally avoid each other. Guhese two parameters changes
the boldness of individual RVO agents.

All the steering frameworks we are aware of calculate eighieest path or best velocity
for each agent which will most directly guide them towardttig@al during each iteration.
This is an agent’'greferred velocity. Situation agents modify this to herd other agents when
required. At each iteration the CC framework computes a ket Ipased on the unit cost
field. Adding a local perturbation to the path and speed fieftkctively changes the best
path and speed toward the goal for a CC agent. In the RVO franketve preferred velocity
is directly calculated as a vector, typically the directisrioward the next way-point on a
pre-computed path and the speed is the desired speed of Da&dnt.

Situation agents modify the preferred velocities of othgeras,i ™, by replacing them

with 7P a weighted average of a velocity of their own calculatitwe, ¢orrection veloc-

7

ity v..-, and the agent’s original preferred velocity, as seen inaliqo 1. For best path
formulations there is an analogous method which involvelraga local perturbation to the
distance field. In Equation 1, and for the rest of this pajersubscript implies an agent’s

parameter and the subscriatimplies a parameter associated with a situation agent.

= pf new — = pf
TP = W Ueopr + Wa TP (1)

The sum of the weights,, andw, used in the above linear combination should b&sing
these weights, situation agents can choose how strongffeict ather agents’ behavior.
Varying the steering behavior of situation agents, the tsign Equation 1, and the
boldness parameters of individual agents can produce awaidety of behaviors capable
of addressing challenging crowd simulation scenarios.ctiipally, we will examine how
varying these options can make situation agents effectitlee cases of deadlocks (no steer-
ing), coherent group behaviors (moderate weighting), aadchang formations (extreme

weighting).

Example: Deadlock Agents

Consider the case of two groups of agents moving in oppogi¢etibns arriving at a nar-
row hallway at the same time. The hallway is so narrow thay andingle agent can pass
through it at once. Clearly in such a case one of the two grotipgents must wait while
the other one passes or a deadlock will arise. However, dmni$e hard to anticipate and co-

ordinate among independent agents. In some frameworkecate planning has worked,

8

but this approach is computationally expensive and harddtesup to more than a handful
of individuals. To handle this coordination problem we auuce the deadlock situation
agent. This type of agent can modify the preferred velaeitiall the nearby agents in a
centralized and efficient way to produce the required waitiehavior.

Deadlock agents can be placed dynamically by the user acatatby the framework.
The environment is analyzed before the simulation begirfintbregions so narrow that
only a single agent can pass through at once. Deadlock agenfdaced in the center of
such regions. They are stationary and circular in shapeinitial radii proportional to the
longest side of the narrow region. Agents within these radiiinfluenced by the deadlock
agents.

At each computation iteration deadlock agents performetblestoutlined in Algorithm 1.
They dynamically expand their size by looking slightly péir current radiusr(, +¢) and
then updating their radius to encompass the furthest dessifent within a predefined limit.
This allows them to grow to influence —and prevent deadlatkntire groups approaching
apassage. They can also contract by a fixed ratiduring each iteration if all nearby agents
are already within their radius.

Deadlock agents operate by instructing agents not movirgparticular direction, the
favored direction, to yield. Moving with or against the favored direction igelenined by
using~ as a threshold on the normalized dot product of an agentfenpeel velocity and
the favored direction. The favored direction is first choseie the preferred velocity of
the first agent to arrive. So long as agents are currently mgawi the direction it remains

9

Algorithm 1 Psuedocode for Deadlock Agents

Tdetect < Tsa +e€

rl . max(\ * req, r™mm)

a sa

for each agent within r ..., do

Il p’s represent the positions of the agents

—

da — ﬁa _ﬁsa

Iea < maz(ry, || dal])

it (0P Tra) /(102150]l) < then
decrease boldnegs

save possible favored directi@if")

Q—]*apf - z—]»pf new

end if
end for

N ! max
Tsa < min(r.,, rme)

update favored velocity

10

unchanged. However, when the last such agent leaves, tfegrpedirection becomes the
preferred velocity of the agent closest to the center of gaaltbck agent.
Influenced agents are instructed to yield by reducing thadiress and modifying their

preferred velocities using Equation 1 with the followingreztion velocity:
oorr = ||TPY| (cos 0, sin), (2)

wheref = arctan (y, — Ysa, Ta — Tsq) = 90°. This causes the agents not moving in the
favored direction to move aside so others can pass. Thd odghkese modifications is that,
as groups of agents arrive at a narrow doorway, one is alléovedss while others are forced
to step aside and wait. This continues until all the group® Ipassed. In the rare event that
multiple traffic agents attempt to influence a single agemly the correction velocity from

the nearest traffic is used.

Example: Group Agents

Often a desirable property of crowd simulations is that geoaf agents steer around each
other coherently as a whole. Group situation agents argmedito implement such behav-
ior. Once associated with a group of agents, group situat@mts steer to avoid other group
agents with different goals and linearly combine the rasgivelocity with the preferred ve-
locities of the group’s members. As a result steering besdmerarchical for the influenced
agents: groups first attempt to avoid each other and thevidudil agents refine that group

steering decision to suit their needs. This produces thieedlesohesion without inhibiting

11

individual steering capabilities or adding additional qoexity to standard agents.

Group situation agents should be instantiated around grofipgents moving toward
the same goal at similar speeds. They are capable of dynigmiessizing themselves
in exactly the same manner as deadlock agents. Howeverptiigyexpand to influence
agents moving to the same goal as the rest of the agents irrdbp.gOnce instantiated,
they act as agents moving toward the same goal as the agehtsrigroup. They can use
any steering algorithm, but we have found using a modifiediwarof the standard agent’s
steering algorithm is simplest to implement. The requiremtification is to allow group
agents to selectively ignore both standard agents and gtbep agents moving toward the
same goal while steering. Note that this effectively all@gxsup agents moving toward the
same goal to overlap, which is required to effectively cavesgularly shaped groups of
many individuals. This modification is compatible with atésring frameworks which we
are aware of. The result of this steering,, becomes.,,.,. in Equation 1, which dictates
the new preferred velocities of the group members. Varying controls the degree of
synchronization in the movements of the group members.

Group agent placement and membership can be the respapsibihe user, or it can be
done in various automated ways. In our examples, we use liogvilng greedy algorithm,
which provides group coherence and effective lane formatit every update each agent
and its neighbors are examined to determine how many of tmemmaving toward similar
locations in the near future, and that count is stored (thaready done by agents in most
frameworks, so these counts are often already available)heAbeginning of each update

12

those stored numbers are sorted, and group agents aredaeated the center agents of the
largest potential groups. They begin to expand to encontpasgroup at the next iteration
of computation. Group situation agents are also autonigticamoved when the group
reaches a goal or if they are not being used. Specificallygibap situation agent does not
steer around other group agents for some set period of timeowes too far off the center

of its group, it is removed.

Example: Formation Agents

Formation situation agents are used to force groups of agembarch in formation through
crowds or open spaces. In many regards they are a speciafag®eip agents: they utilize
steering, butv,, (Eq. 1) becomes, implying w, = 0, and making the velocity correction
a substitution for the agent’s preferred velocity. Form@atagents also provide additional
functionality such as re-forming and rotation. These tiediare controlled by a set of
parameters including shape, rigidity, and agent partimpavhich are defined by the user.
In order to enforce their group’s shape the boldness pamamef all the group mem-
bers in a formation agent are increased. In crowds, thisweages other agents to avoid
the agents maintaining the formation. This tendency ishrrenhanced by group situa-
tion agents steering to avoid formation agents as thoughwheee extremely bold group
agents. In return, formation agents treat group agentsnd tbrmation agents. So on both

large and fine scales, agents are encouraged to let forragiass with relative ease. The

13

correction velocity (Eqg. 1) formation agents apply to tmeembers is the sum of two terms,
’Ucorr = 65(1 + ﬁ(ﬁsa + 5(1 - ﬁa); (3)

whered, is the offset from the center of the formation agent to thentiggosition in the
formation. As the orientation of the formation agent ragathis offset is rotated as well,
which allows formations to rotate as they turn. However tdttis turning is desired, this
rotation can be omittedsi is a scalar betweef), 1] which controls how rigidly each member
of the group holds their position. Wheh= 1 group members always attempt to reach their
correct formation position exactly. Whehis a lesser value members only attempt to move
a fraction of the way to their formation position. Lowerifdgg parameter essentially allows
agents to take their time when restoring the formation. Aglgorithm 1, p,, and p,
represent the positions of the situation agent and agepecasely.

Formation situation agents have the ability to break apadtra-form their formations.
To break the formation the formation agent simply stops fiyotj the boldness and pre-
ferred velocities of its members. At that point the membeitsdve as standard agents. How-
ever, re-forming is a more intricate process. To accounthi®possibility that the formation
members have drastically re-ordered themselves, the fammagent reassigns the positions
of the formation. This is done by rotating the positions & thembers into a coordinate
system aligned with the orientation of the formation aget eentered at its position. Both
the transformed member positions and the offsets are tirggddoy y-value (the x-value is

used to break ties) and paired by order. The result is thabpeaember agents are assigned

14

positions near the front of the formation and further agangésgiven positions in the back.
This re-ordering takes place exactly once when a formag@mamusters its members. Af-
ter that the individual members use their standard behawworeach their positions within
the offset. To facilitate this, upon re-forming the fornoatiagent slows down until all its
members have gotten sufficiently close to their positionthiwithe formation. After the

formation has re-formed the formation situation agentrretiio normal speed. This is how
formation agents move through a narrow passage: they bnedlotmation when entering
it, both them and their member agents pass through, andhegme-form when exiting the

passage.

Results

Although the notion of situation agents is compatible witany crowd simulation frame-
works, for this paper we focus on its application to RVO-lubsteering. Recent studies [13]
have shown that variants of this method of agent steeringparate at high frame rates for
large numbers of agents. However, at present the RVO frankdwas no way for agents to
coordinate specialized group interactions. Steering\iehs calculated independently for
each agent, which can lead to undesired behaviors in cextamarios. Situation agents are
a well-suited solution to this coordination issue, makingRan ideal steering algorithm to
test them with.

The following sections outline the results of the three gypksituation agents presented

15

previously as they apply to RVO steering. During testing wsdad our code on RVO library
1.1 [14] and used the A* algorithm [15] as our path planneee®uite 1.02 [16] was used
for visualization and as an inspiration for test cases. Xaenples presented in this section

are not exhaustive. Additional scenarios are includederstipplementary video.

Deadlocks

Figure 1 shows a narrow doorway with two sets of agents agiat similar times. Using
standard RVO agents a deadlock occurs. By placing a deadtoekisn agent at the center
of the narrow doorway the deadlock can be avoided. The bekiparameters and preferred
velocities of the agents moving right are modified to encgerdnem to move to the side
while the agents moving left pass. Once the agents pass ifjiearparameters of the
remaining agents are restored.

Using deadlock agents eliminates the threat of deadlocksainy situations. They also
give the artist or programmer flexibility: agents can linearpeither side of the wall and
their aggressiveness can be calibrated. Also, becaudaathévior is simple and predefined,

it does not significantly reduce performance as cooperatarening schemes might.

Group Behaviors

RVO agents do produce lanes in the scenario of two small grpagsing through each

other shown in top sequence of images in Figure 3. Howevesgetlianes of agents are

16

rather thin and interleaved. Often it would be desirabletifi@ groups to remain coherent
and steer around each other completely. By applying grouptagesing the automated
process described earlier we see this result in the lowereseg of images in Figure 3. The
same behavior is evident when many group agents (the lagggsain blue) are assigned to
large groups as shown in Figure 2a.

Group agents can resolve deadlocks as well. Consider thetage groups of 2 agents
walking toward opposite ends of a hallway that is wide endogl2 agents to walk abreast.
If a group agent is placed on each pair it encourages the agefdrm lanes which allows
the groups to cross as shown in Figure 4. However, without sacouragement agents can
end up deadlocked, as we have observed using RVO agentsecumidue works for larger

groups of agents in the same hallway scenario as well.

Formations

Figure 5 illustrates a user-specified triangle formatiors. the formation moves through a
large group, other group agents (in blue) steer away frorfottmeation agent (in green). On
a finer level the individual RVO agents also steer away froergifpents within the formation.
As a result the formation can maintain its shape. Exactly @l it maintains its shape
can be controlled by parameters. If we redgde 0.5 the group becomes less rigid and the
sides begin to tuck behind the main portion of the triangleess in Figure 2b.

If the formation encounters a space too narrow, it must détat and act accordingly.

17

Once the formation agent detects an obstacle within itsaréifigure 6) it allows the member
agents to break form. The agents move through the passagelually and re-form once
the formation agent no longer intersects with the walls effghssage.

Formation agents are particularly useful for RVO steerieggduse RVOs have no built-in
mechanism for enforcing rigid group movement. But even imieavorks with such features,
formation agents are useful for their ability to determinleew marching in formation is
feasible. They are also useful because they allow all thatageithin the formation to be
treated as a single agent. This allows for hierarchicaksires such as the formation of
formations shown in Figure 2c. Note that hierarchy is pdedietween agent classes as

well: a traffic agent influencing formation agents would beegoally valid example.

Conclusions and Future Work

We have presented an approach for augmenting steeringvirane with externalized hi-
erarchical steering logic. Our approach reduces the coaplef standard agents by exter-
nalizing the specialized steering logic required for soimeasions to a new class of agents
called situation agents. These agents exist solely to imfleiehe agents within their vicinity
by modifying their preferred velocities and boldness pastars (other parameters can be
modified as well in the general case). Through this influemiceatson agents orchestrate
other agents to successfully navigate difficult situatioAslditionally, the hierarchy that

situation agents provide often enhances the elegance ampdigty of the solutions they

18

facilitate. Examples of this were given for scenarios imuaj possible deadlocks, coherent
group behavior, and enforcing marching formations.

However, the true strength of situation agents is not theiBpdehaviors demonstrated
in this paper, but the modularity they provide. Since thaddg deal with challenging
scenarios has been externalized, standard agents can osesimyler steering algorithms,
enhancing both performance and maintainability. The gfieed steering algorithms also
benefit from this separation. Encapsulating them into indial situation agents provides
a clean interface for integrating them into frameworks arayioes the separation required
for parallel development. Also, once developed, artist®lzen intuitive way to select when,
where, and which algorithm to use. For example [17, 18, 18Y¥ige more intricate meth-
ods of group management than the current group agent. iSituagents could be made
to implement each of those algorithms and artists could luse tas appropriate. None of
the existing standard or situation agents would requireifisation, the only thing required
would be new situation agents. This would not be feasiblé tvdditional informed envi-
ronment approaches. It is only because of the additionabflgy of allowing specialized
behaviors tanove as agents that such encapsulation and separation is @ossibl

For future work we would like to more thoroughly test the ogypicof situation agents
using steering frameworks other than RVO. Also, more tygestoation agents should be
explored. In the long term, this method could be added to ganggnes and animation

suites to aid artists and developers in producing realistowds.

19

References

[1]

2]

[3]

[4]

[5]

N. Farenc, S. Raupp Musse, E. Schweiss, M. Kallmann, O.eAd® Boulic, and
D. Thalmann. One step towards virtual human managementrbamuenvironment

simulation. InProceedings of the ECAI Workshop on Intelligent User Interfaces, 1998.

Franco Tecchia, €line Loscos, Ruth Conroy, and Yiorgos Chrysanthou. Agent be-
haviour simulator (abs): A platform for urban behaviourelepment. I'GTEC, pages

17-21, 2001.

Mankyu Sung, Michael Gleicher, and Stephen Chenney.abtabehaviors for crowd

simulation. Computer Graphics Forum, 23:519-528(10), Sept 2004.

Craig W. Reynolds. Flocks, herds and schools: A distriduiehavioral model. In

S GGRAPH, pages 25-34, 1987.

Norman Badler. Virtual Crowds: Methods, Smulation, and Control (Synthesis Lec-

tures on Computer Graphics and Animation). Morgan and Claypool Publishers, 2008.

[6] Adrien Treuille, Seth Cooper, and Zoran PogoviContinuum crowds ACM Trans.

[7]

Graph., 25(3):1160-1168, 2006.

Dirk Helbing and Peter Molnar. Social force model for psttian dynamicsPhysical

Review E, 51:4282, 1995.

20

[8] Paolo Fiorini and Zvi Shillert. Motion planning in dynacrenvironments using veloc-

ity obstaclesInternational Journal of Robotics Research, 17:760-772, 1998.

[9] S. Paris, J. Pettre, and S. Donikian. Pedestrian reaogvigation for crowd simula-

tion: a predictive approach. BUROGRAPHICS, pages 665-674, 2007.

[10] Wei Shao and Demetri Terzopoulos. Autonomous pedestriInSCA, pages 19-28,

2005.

[11] Hengchin Yeh, Sean Curtis, Sachin Patil, Jur van den Bengesh Manocha, and

Ming Lin. Composite agents. IBCA, pages 39-48, 2008.

[12] J. van den Berg, Ming Lin, and D. Manocha. Reciprocal vyoabstacles for real-

time multi-agent navigation. IICRA, pages 1928-1935, 2008.

[13] Stephen J. Guy, Jatin Chhugani, Changkyu Kim, Nadathtistgaviing Lin, Dinesh
Manocha, and Pradeep Dubey. Clearpath: highly parallesamilavoidance for multi-

agent simulation. I'8CA, pages 177-187, 2009.

[14] Jur van den Berg. RVO library 1.1, Sept 2009. www.cs.ede~-geom/

RVO/Library/.

[15] P. E. Hart, N. J. Nilsson, and B. Raphael. A formal basiglierheuristic determina-
tion of minimum cost pathslEE Transactions on Systems Science and Cybernetics,

4(2):100-107, 1968.

21

[16] Shawn Singh. Steersuite 1.02, Sept 2009. www.madx.@du/steersuite/.

[17] Taesoo Kwon, Kang Hoon Lee, Jehee Lee, and Shigeo Takaharoup motion

editing. ACM Trans. Graph., 27(3):1-8, 2008.

[18] Yu-Chi Lai, Stephen Chenney, and ShaoHua Fan. Group mgtaphs. IFSCA, pages

281-290, 2005.

[19] Arno Kamphuis and Mark H. Overmars. Motion planning farherent groups of

entities. InICRA, pages 3815-3822. Press, 2003.

22

Figure 1: (Left to right) Agents are placed in random locasi@on both sides of a narrow
doorway. Their goals are to cross to the other side, as ligiiizdicated by the arrow on

each agent. The top sequence shows RVO agents attempsrapththe resulting deadlock.
In the bottom sequence a deadlock agent (in red) has beesd@athe doorway in the same
scenario and deadlocks are avoided. The upper sequenceapaniod four times longer

than the lower sequence due to agent shoving, which deadtphts also eliminate.

@) (b) (c)

Figure 2: Example situation agents

23

Figure 3: (Left to right) Two groups of 6 agents each arealfiitiplaced opposite each
other with opposing trajectories. The top sequence shoeddhavior of typical RVO
agents. The bottom sequence shows the same groups of agérdach has been assigned
a group agent (in blue) using our automatic placement dlgari The groups now steer as

aggregates around each other.

€ €
£ -

Figure 4: (Left to right) Two groups of 2 agents walking todiaach other abreast in a

narrow hallway. The group agents (in blue) assigned to eaghspeer around each other

and as a result encourage lane formation. This allows this frapass each other smoothly.

24

Figure 5: (Left to right) A formation agent (in green) regesa group of agents moving
through a crowd. The group agents (in blue) steer away frarfdhmation agent, while

individual agents steer away from the individual agent®iefformation on a finer level. Due
to this hierarchy, collisions between group agents anddiradtion agent do not disturb the

formation.

Figure 6: (Left to right) The formation agent (in green) aé$ethat it intersects an obstacle

and stops enforcing the formation. Both it and the agentsifoitmation proceed through
the narrow passage. Once the formation agent no longertdetedntersection with an

obstacle, it begins rebuilding the formation.

25

