
Situation Agents: Agent-based Externalized

Steering Logic

Matthew Schuerman Shawn Singh Mubbasir Kapadia Petros Faloutsos

{mschuerm,shawnsin,mubbasir,pfal}@cs.ucla.edu

University of California, Los Angeles

Abstract

We present a simple and intuitive method for encapsulating part of agents’ steering

and coordinating abilities into a new class of agents, calledsituation agents. Situa-

tion agents have all the abilities of typical agents. In addition, they can influence the

steering decisions of any agent, including other situation agents, within their sphere of

influence. Encapsulating steering logic into moving agents is a powerful abstraction

which provides more flexibility and efficiency than traditional informed environment

approaches, and works with many of the current steering methodologies.We demon-

strate our proposed approach in a number of challenging scenarios.

Keywords: crowd simulation, steering, group behaviors, situation agents

1



Introduction

Crowd simulation has become a topic of increasing interest recently. Aside from the obvious

entertainment applications, it has implications for fieldssuch as urban planning, architec-

ture, and law enforcement. One of the most challenging aspects of crowd simulations is

obtaining the performance and simplicity required to make them a practical tool, which

often involves trading agent sophistication for speed.

Many agent-based steering methods exhibit good performance and realistic agent be-

havior in crowds of reasonable density in open areas, but begin to have trouble in situations

where body language or social customs become the dominant factor in human steering de-

cisions. In such cases, many steering methods are prone to exhibit deadlocks or unnatural

behaviors. To address this, agents are often given enough sophistication to be able to recog-

nize such situations (or annotations in the environment) and attempt to resolve them. This

can either be done using very robust planning techniques or by adding specialized logic to

the agent’s basic steering algorithm – neither of which is anideal solution. More robust

steering techniques often reduce performance, especiallywhen used by many agents. Sim-

ilarly, augmenting the agent’s standard steering methods to deal with specialized situations

can lead to extremely complex steering algorithms which attempt to cope with a wide vari-

ety of special cases. Both approaches result in polluting agents with additional computation

and storage costs in order to deal with situations they mightnot even encounter.

A more effective solution is to externalize the specializedsteering logic that deals with

2



troubling cases to some third party and allow agents to use the most fundamental form of

their steering algorithm for their navigational needs. Thekey idea of this paper is to use a

new class of agents, calledsituation agents, as this third party. Situations agents are similar

to standard agents in many regards: they have a defined location, size, velocity, and goal.

They can utilize steering strategies to interact with othersituation agents. However, they

differ from standard agents in that they exist solely to supervise the actions of other agents

in localized scenarios that their typical steering algorithms might not support.

Situation agents provide all the advantages of traditionalinformed environment ap-

proaches [1, 2, 3], as well as further benefits. Since specialized logic is being removed from

standard agents, modularity and performance are enhanced using either approach. However,

usingagents as couriers for specialized logic provides several advantages over traditional in-

formed environment approaches:

1. For reasons previously stated, environmental annotation does not always significantly

reduce the standard agent’s complexity. Situation agents encapsulate the logic for

both the detection and resolution of difficult situations ina different, and far less

numerous, population of agents. Also, when influencing multiple agents, situation

agents can implement such logic with a broader view than individual agents.

2. Smart objects and areas [1] are better at segmenting complexity than environmen-

tal annotations, but like annotations, are often static. Situation agents give specialized

steering behaviors intuitive ways to change the area they affect through agent re-sizing

3



and movement, which can become important in heterogeneous or dynamic environ-

ments.

3. Encapsulating behaviors into agents provides a powerfulinterface for making hierar-

chical decisions. Broadly scoped situation agents can choose the correct aggregate

action for many agents, and then individuals revise those suggestions as required.

Since situation agents are agents themselves, arbitrarilymany layers of them can be

used in this fashion. This provides a natural paradigm for behaviors such as steering,

where groups often attempt to steer within larger groups. Also, because of this hier-

archy, macroscopic crowd behavior becomes a controllable option, not an emergent

property of an algorithm. This is key to the results presented in this paper.

Contribution: This paper proposes the concept of situation agents, which allow spe-

cialized steering algorithms to be externalized from standard agents to a separate class of

agents. Such separation allows us to enhance agent-based steering algorithms to exhibit

correct behavior in challenging situations with minimal additional processing complexity.

Situation agents are also highly customizable and localized, and offer a simple, intuitive, and

efficient way for animators and programmers to orchestrate crowd behaviors on a fine scale.

We illustrate this with three specific examples: deadlock agents, groups agents, and forma-

tion agents. Our results show agent cooperation to resolve difficult scenarios, an important

and challenging aspect of realistic agent behavior.

The rest of this paper is organized as follows: Section 2 gives a brief summary of related

4



literature, Section 3 explains some example situation agents in depth, Section 4 outlines our

results, and finally Section 5 concludes and discusses future plans.

Related Work

Since Reynolds’ pioneering work [4], crowd simulation has become a field of active and

diverse research. The reader is referred to [5] for an extensive summary of this work. These

techniques draw inspiration from a wide variety of sources including fluid dynamics [6],

physics [7], robotics [8], motion capture technologies [9], and artificial life [10] and thus

vary significantly.

However, common themes do exist in all crowd simulation frameworks. The problem

of maintaining realistic behavior in all cases while minimizing the processing per agent

has always been a paramount concern. Externalizing portions of agents’ complexity is one

solution to this problem, and it is the one we will focus on here. Several frameworks [1, 2]

include both smart areas and smart objects which can dictatehow an agent can interact

with them. The work in [3] extends this notion to allow the environment to add or remove

behaviors from agents. However, we are not aware of any previous attempts to externalize

steering behaviors to a distinct set ofagents. Composite agents [11] did allow some agents

to instantiate and re-size a set of passive agents –proxy agents– to act as obstacles to aid

in navigation. However, proxy agents do not contain any specialized logic or information,

making that methodology quite different from the one presented here.

5



Situation Agents

Situation agents coordinate the behaviors of other agents by modifying those agent’s pa-

rameters. In the their most general form they can modify any parameter within any agent,

including other situation agents. Fully leveraged, this allows them to produce arbitrarily

complex hierarchies and behaviors from relatively simple and modular components. How-

ever, for demonstration purposes the situation agents presented in this paper modify only

two internal parameters,boldness and preferred velocity, and typically use only a single

layer of hierarchy. This compact interface makes them compatible with a wide variety of

simulation frameworks. We will discuss how these parameters are implemented in the con-

text of the continuum crowds [6] (CC) and reciprocal velocity obstacles [12] (RVO) frame-

works. These popular frameworks employ quite different methodologies, and using them as

examples demonstrates the portability of our approach.

Situation agents make their changesbefore the agents they influence compute their ac-

tions. This allows the influenced agents to use their own steering or behavior logic to carry

out the suggestions of the situation agents and creates the hierarchy which is one of the

primary advantages of this technique. For the CC framework these modifications would

take place as the unit cost field is being calculated. In RVO frameworks, situation agents

would process their actions first and during that time they would modify the parameters of

the agents they influence.

Boldness is how likely an agent is to yield to other agents during steering. An agent with

6



boldness parameters set high will exert less effort to avoidother agents, while an agent with

low boldness parameters will act more timidly. By modifying boldness parameters, situation

agents can order some agents to yield and allow others to pass. In the CC framework,

boldness is varied by changing the length and intensity of the discomfort field projected in

front of each agent: large and more intense discomfort fieldscause other agents to move out

that agent’s way. As a result that agent is not required to as actively steer around others,

effectively increasing their boldness. In RVO frameworks,boldness is implemented by

modifying the safety factor andα parameter. Decreasing an agent’s safety factor makes

it less afraid of collisions, while reducing itsα parameter decreases its responsibility for

movement as two agents reciprocally avoid each other. Tuning these two parameters changes

the boldness of individual RVO agents.

All the steering frameworks we are aware of calculate eithera best path or best velocity

for each agent which will most directly guide them toward their goal during each iteration.

This is an agent’spreferred velocity. Situation agents modify this to herd other agents when

required. At each iteration the CC framework computes a best path based on the unit cost

field. Adding a local perturbation to the path and speed fieldseffectively changes the best

path and speed toward the goal for a CC agent. In the RVO framework the preferred velocity

is directly calculated as a vector, typically the directionis toward the next way-point on a

pre-computed path and the speed is the desired speed of the RVO agent.

Situation agents modify the preferred velocities of other agents,~v pf
a , by replacing them

with ~v pf new
a , a weighted average of a velocity of their own calculation, the correction veloc-

7



ity ~vcorr, and the agent’s original preferred velocity, as seen in Equation 1. For best path

formulations there is an analogous method which involves adding a local perturbation to the

distance field. In Equation 1, and for the rest of this paper, the subscripta implies an agent’s

parameter and the subscriptsa implies a parameter associated with a situation agent.

~v pf new
a = wsa~vcorr + wa~v

pf
a . (1)

The sum of the weightswsa andwa used in the above linear combination should be1. Using

these weights, situation agents can choose how strongly to affect other agents’ behavior.

Varying the steering behavior of situation agents, the weights in Equation 1, and the

boldness parameters of individual agents can produce a widevariety of behaviors capable

of addressing challenging crowd simulation scenarios. Specifically, we will examine how

varying these options can make situation agents effective in the cases of deadlocks (no steer-

ing), coherent group behaviors (moderate weighting), and marching formations (extreme

weighting).

Example: Deadlock Agents

Consider the case of two groups of agents moving in opposite directions arriving at a nar-

row hallway at the same time. The hallway is so narrow that only a single agent can pass

through it at once. Clearly in such a case one of the two groups of agents must wait while

the other one passes or a deadlock will arise. However, this can be hard to anticipate and co-

ordinate among independent agents. In some frameworks cooperative planning has worked,

8



but this approach is computationally expensive and hard to scale up to more than a handful

of individuals. To handle this coordination problem we introduce the deadlock situation

agent. This type of agent can modify the preferred velocities of all the nearby agents in a

centralized and efficient way to produce the required waiting behavior.

Deadlock agents can be placed dynamically by the user or statically by the framework.

The environment is analyzed before the simulation begins tofind regions so narrow that

only a single agent can pass through at once. Deadlock agentsare placed in the center of

such regions. They are stationary and circular in shape withinitial radii proportional to the

longest side of the narrow region. Agents within these radiiare influenced by the deadlock

agents.

At each computation iteration deadlock agents perform the tasks outlined in Algorithm 1.

They dynamically expand their size by looking slightly pasttheir current radius (rsa +ǫ) and

then updating their radius to encompass the furthest possible agent within a predefined limit.

This allows them to grow to influence –and prevent deadlocks in– entire groups approaching

a passage. They can also contract by a fixed ratio,λ, during each iteration if all nearby agents

are already within their radius.

Deadlock agents operate by instructing agents not moving ina particular direction, the

favored direction, to yield. Moving with or against the favored direction is determined by

usingγ as a threshold on the normalized dot product of an agent’s preferred velocity and

the favored direction. The favored direction is first chosento be the preferred velocity of

the first agent to arrive. So long as agents are currently moving in the direction it remains

9



Algorithm 1 Psuedocode for Deadlock Agents
rdetect ← rsa + ǫ

r′sa ← max(λ ∗ rsa, r
min
sa )

for each agenta within rdetect do

// p’s represent the positions of the agents

~da ← ~pa − ~psa

r′sa ← max(r′sa, ‖
~da‖)

if (~v pf
a · ~vfav)/(‖~v

pf
a ‖‖~vfav‖) ≤ γ then

decrease boldness(a)

save possible favored direction(~v pf
a )

~v pf
a ← ~v pf new

a

end if

end for

rsa ← min(r′sa, r
max
sa )

update favored velocity()

10



unchanged. However, when the last such agent leaves, the preferred direction becomes the

preferred velocity of the agent closest to the center of the deadlock agent.

Influenced agents are instructed to yield by reducing their boldness and modifying their

preferred velocities using Equation 1 with the following correction velocity:

~vcorr = ‖~v pf
a ‖(cos θ, sin θ), (2)

whereθ = arctan (ya − ysa, xa − xsa) ± 90◦. This causes the agents not moving in the

favored direction to move aside so others can pass. The result of these modifications is that,

as groups of agents arrive at a narrow doorway, one is allowedto pass while others are forced

to step aside and wait. This continues until all the groups have passed. In the rare event that

multiple traffic agents attempt to influence a single agent, only the correction velocity from

the nearest traffic is used.

Example: Group Agents

Often a desirable property of crowd simulations is that groups of agents steer around each

other coherently as a whole. Group situation agents are designed to implement such behav-

ior. Once associated with a group of agents, group situationagents steer to avoid other group

agents with different goals and linearly combine the resulting velocity with the preferred ve-

locities of the group’s members. As a result steering becomes hierarchical for the influenced

agents: groups first attempt to avoid each other and then individual agents refine that group

steering decision to suit their needs. This produces the desired cohesion without inhibiting

11



individual steering capabilities or adding additional complexity to standard agents.

Group situation agents should be instantiated around groups of agents moving toward

the same goal at similar speeds. They are capable of dynamically re-sizing themselves

in exactly the same manner as deadlock agents. However, theyonly expand to influence

agents moving to the same goal as the rest of the agents in the group. Once instantiated,

they act as agents moving toward the same goal as the agents intheir group. They can use

any steering algorithm, but we have found using a modified version of the standard agent’s

steering algorithm is simplest to implement. The required modification is to allow group

agents to selectively ignore both standard agents and othergroup agents moving toward the

same goal while steering. Note that this effectively allowsgroup agents moving toward the

same goal to overlap, which is required to effectively coverirregularly shaped groups of

many individuals. This modification is compatible with all steering frameworks which we

are aware of. The result of this steering,~vsa, becomes~vcorr in Equation 1, which dictates

the new preferred velocities of the group members. Varyingwsa controls the degree of

synchronization in the movements of the group members.

Group agent placement and membership can be the responsibility of the user, or it can be

done in various automated ways. In our examples, we use the following greedy algorithm,

which provides group coherence and effective lane formation. At every update each agent

and its neighbors are examined to determine how many of them are moving toward similar

locations in the near future, and that count is stored (this is already done by agents in most

frameworks, so these counts are often already available). At the beginning of each update

12



those stored numbers are sorted, and group agents are created around the center agents of the

largest potential groups. They begin to expand to encompassthe group at the next iteration

of computation. Group situation agents are also automatically removed when the group

reaches a goal or if they are not being used. Specifically, if agroup situation agent does not

steer around other group agents for some set period of time ormoves too far off the center

of its group, it is removed.

Example: Formation Agents

Formation situation agents are used to force groups of agents to march in formation through

crowds or open spaces. In many regards they are a special caseof group agents: they utilize

steering, butwsa (Eq. 1) becomes1, implying wa = 0, and making the velocity correction

a substitution for the agent’s preferred velocity. Formation agents also provide additional

functionality such as re-forming and rotation. These abilities are controlled by a set of

parameters including shape, rigidity, and agent participation which are defined by the user.

In order to enforce their group’s shape the boldness parameters of all the group mem-

bers in a formation agent are increased. In crowds, this encourages other agents to avoid

the agents maintaining the formation. This tendency is further enhanced by group situa-

tion agents steering to avoid formation agents as though they were extremely bold group

agents. In return, formation agents treat group agents as timid formation agents. So on both

large and fine scales, agents are encouraged to let formations pass with relative ease. The

13



correction velocity (Eq. 1) formation agents apply to theirmembers is the sum of two terms,

~vcorr = ~vsa + β(~psa + ~δa − ~pa), (3)

whereδa is the offset from the center of the formation agent to the agent’s position in the

formation. As the orientation of the formation agent rotates, this offset is rotated as well,

which allows formations to rotate as they turn. However, if static turning is desired, this

rotation can be omitted.β is a scalar between(0, 1] which controls how rigidly each member

of the group holds their position. Whenβ = 1 group members always attempt to reach their

correct formation position exactly. Whenβ is a lesser value members only attempt to move

a fraction of the way to their formation position. Lowering this parameter essentially allows

agents to take their time when restoring the formation. As inAlgorithm 1, psa and pa

represent the positions of the situation agent and agent respectively.

Formation situation agents have the ability to break apart and re-form their formations.

To break the formation the formation agent simply stops modifying the boldness and pre-

ferred velocities of its members. At that point the members behave as standard agents. How-

ever, re-forming is a more intricate process. To account forthe possibility that the formation

members have drastically re-ordered themselves, the formation agent reassigns the positions

of the formation. This is done by rotating the positions of the members into a coordinate

system aligned with the orientation of the formation agent and centered at its position. Both

the transformed member positions and the offsets are then sorted by y-value (the x-value is

used to break ties) and paired by order. The result is that nearby member agents are assigned

14



positions near the front of the formation and further agentsare given positions in the back.

This re-ordering takes place exactly once when a formation agent musters its members. Af-

ter that the individual members use their standard behaviors to reach their positions within

the offset. To facilitate this, upon re-forming the formation agent slows down until all its

members have gotten sufficiently close to their positions within the formation. After the

formation has re-formed the formation situation agent returns to normal speed. This is how

formation agents move through a narrow passage: they break the formation when entering

it, both them and their member agents pass through, and then they re-form when exiting the

passage.

Results

Although the notion of situation agents is compatible with many crowd simulation frame-

works, for this paper we focus on its application to RVO-based steering. Recent studies [13]

have shown that variants of this method of agent steering canoperate at high frame rates for

large numbers of agents. However, at present the RVO framework has no way for agents to

coordinate specialized group interactions. Steering behavior is calculated independently for

each agent, which can lead to undesired behaviors in certainscenarios. Situation agents are

a well-suited solution to this coordination issue, making RVO an ideal steering algorithm to

test them with.

The following sections outline the results of the three types of situation agents presented

15



previously as they apply to RVO steering. During testing we based our code on RVO library

1.1 [14] and used the A* algorithm [15] as our path planner. Steersuite 1.02 [16] was used

for visualization and as an inspiration for test cases. The examples presented in this section

are not exhaustive. Additional scenarios are included in the supplementary video.

Deadlocks

Figure 1 shows a narrow doorway with two sets of agents arriving at similar times. Using

standard RVO agents a deadlock occurs. By placing a deadlock situation agent at the center

of the narrow doorway the deadlock can be avoided. The boldness parameters and preferred

velocities of the agents moving right are modified to encourage them to move to the side

while the agents moving left pass. Once the agents pass the original parameters of the

remaining agents are restored.

Using deadlock agents eliminates the threat of deadlocks inmany situations. They also

give the artist or programmer flexibility: agents can line upon either side of the wall and

their aggressiveness can be calibrated. Also, because thisbehavior is simple and predefined,

it does not significantly reduce performance as cooperativeplanning schemes might.

Group Behaviors

RVO agents do produce lanes in the scenario of two small groups passing through each

other shown in top sequence of images in Figure 3. However, these lanes of agents are

16



rather thin and interleaved. Often it would be desirable forthe groups to remain coherent

and steer around each other completely. By applying group agents using the automated

process described earlier we see this result in the lower sequence of images in Figure 3. The

same behavior is evident when many group agents (the large agents in blue) are assigned to

large groups as shown in Figure 2a.

Group agents can resolve deadlocks as well. Consider the caseof two groups of 2 agents

walking toward opposite ends of a hallway that is wide enoughfor 2 agents to walk abreast.

If a group agent is placed on each pair it encourages the agents to form lanes which allows

the groups to cross as shown in Figure 4. However, without such encouragement agents can

end up deadlocked, as we have observed using RVO agents. Our technique works for larger

groups of agents in the same hallway scenario as well.

Formations

Figure 5 illustrates a user-specified triangle formation. As the formation moves through a

large group, other group agents (in blue) steer away from theformation agent (in green). On

a finer level the individual RVO agents also steer away from the agents within the formation.

As a result the formation can maintain its shape. Exactly howwell it maintains its shape

can be controlled by parameters. If we reduceβ to 0.5 the group becomes less rigid and the

sides begin to tuck behind the main portion of the triangle asseen in Figure 2b.

If the formation encounters a space too narrow, it must detect that and act accordingly.

17



Once the formation agent detects an obstacle within its range (Figure 6) it allows the member

agents to break form. The agents move through the passage individually and re-form once

the formation agent no longer intersects with the walls of the passage.

Formation agents are particularly useful for RVO steering because RVOs have no built-in

mechanism for enforcing rigid group movement. But even in frameworks with such features,

formation agents are useful for their ability to determine when marching in formation is

feasible. They are also useful because they allow all the agents within the formation to be

treated as a single agent. This allows for hierarchical structures such as the formation of

formations shown in Figure 2c. Note that hierarchy is possible between agent classes as

well: a traffic agent influencing formation agents would be anequally valid example.

Conclusions and Future Work

We have presented an approach for augmenting steering frameworks with externalized hi-

erarchical steering logic. Our approach reduces the complexity of standard agents by exter-

nalizing the specialized steering logic required for some situations to a new class of agents

called situation agents. These agents exist solely to influence the agents within their vicinity

by modifying their preferred velocities and boldness parameters (other parameters can be

modified as well in the general case). Through this influence situation agents orchestrate

other agents to successfully navigate difficult situations. Additionally, the hierarchy that

situation agents provide often enhances the elegance and simplicity of the solutions they

18



facilitate. Examples of this were given for scenarios involving possible deadlocks, coherent

group behavior, and enforcing marching formations.

However, the true strength of situation agents is not the specific behaviors demonstrated

in this paper, but the modularity they provide. Since the logic to deal with challenging

scenarios has been externalized, standard agents can use much simpler steering algorithms,

enhancing both performance and maintainability. The specialized steering algorithms also

benefit from this separation. Encapsulating them into individual situation agents provides

a clean interface for integrating them into frameworks and provides the separation required

for parallel development. Also, once developed, artists have an intuitive way to select when,

where, and which algorithm to use. For example [17, 18, 19] provide more intricate meth-

ods of group management than the current group agent. Situation agents could be made

to implement each of those algorithms and artists could use them as appropriate. None of

the existing standard or situation agents would require modification, the only thing required

would be new situation agents. This would not be feasible with traditional informed envi-

ronment approaches. It is only because of the additional flexibility of allowing specialized

behaviors tomove as agents that such encapsulation and separation is possible.

For future work we would like to more thoroughly test the concept of situation agents

using steering frameworks other than RVO. Also, more types of situation agents should be

explored. In the long term, this method could be added to gameengines and animation

suites to aid artists and developers in producing realisticcrowds.

19



References

[1] N. Farenc, S. Raupp Musse, E. Schweiss, M. Kallmann, O. Aune, R. Boulic, and

D. Thalmann. One step towards virtual human management for urban environment

simulation. InProceedings of the ECAI Workshop on Intelligent User Interfaces, 1998.

[2] Franco Tecchia, C̀eline Loscos, Ruth Conroy, and Yiorgos Chrysanthou. Agent be-

haviour simulator (abs): A platform for urban behaviour development. InGTEC, pages

17–21, 2001.

[3] Mankyu Sung, Michael Gleicher, and Stephen Chenney. Scalable behaviors for crowd

simulation.Computer Graphics Forum, 23:519–528(10), Sept 2004.

[4] Craig W. Reynolds. Flocks, herds and schools: A distributed behavioral model. In

SIGGRAPH, pages 25–34, 1987.

[5] Norman Badler.Virtual Crowds: Methods, Simulation, and Control (Synthesis Lec-

tures on Computer Graphics and Animation). Morgan and Claypool Publishers, 2008.

[6] Adrien Treuille, Seth Cooper, and Zoran Popović. Continuum crowds.ACM Trans.

Graph., 25(3):1160–1168, 2006.

[7] Dirk Helbing and Peter Molnar. Social force model for pedestrian dynamics.Physical

Review E, 51:4282, 1995.

20



[8] Paolo Fiorini and Zvi Shillert. Motion planning in dynamic environments using veloc-

ity obstacles.International Journal of Robotics Research, 17:760–772, 1998.

[9] S. Paris, J. Pettre, and S. Donikian. Pedestrian reactive navigation for crowd simula-

tion: a predictive approach. InEUROGRAPHICS, pages 665–674, 2007.

[10] Wei Shao and Demetri Terzopoulos. Autonomous pedestrians. InSCA, pages 19–28,

2005.

[11] Hengchin Yeh, Sean Curtis, Sachin Patil, Jur van den Berg,Dinesh Manocha, and

Ming Lin. Composite agents. InSCA, pages 39–48, 2008.

[12] J. van den Berg, Ming Lin, and D. Manocha. Reciprocal velocity obstacles for real-

time multi-agent navigation. InICRA, pages 1928–1935, 2008.

[13] Stephen J. Guy, Jatin Chhugani, Changkyu Kim, Nadathur Satish, Ming Lin, Dinesh

Manocha, and Pradeep Dubey. Clearpath: highly parallel collision avoidance for multi-

agent simulation. InSCA, pages 177–187, 2009.

[14] Jur van den Berg. RVO library 1.1, Sept 2009. www.cs.unc.edu/∼geom/

RVO/Library/.

[15] P. E. Hart, N. J. Nilsson, and B. Raphael. A formal basis forthe heuristic determina-

tion of minimum cost paths.IEE Transactions on Systems Science and Cybernetics,

4(2):100–107, 1968.

21



[16] Shawn Singh. Steersuite 1.02, Sept 2009. www.magix.ucla.edu/steersuite/.

[17] Taesoo Kwon, Kang Hoon Lee, Jehee Lee, and Shigeo Takahashi. Group motion

editing. ACM Trans. Graph., 27(3):1–8, 2008.

[18] Yu-Chi Lai, Stephen Chenney, and ShaoHua Fan. Group motion graphs. InSCA, pages

281–290, 2005.

[19] Arno Kamphuis and Mark H. Overmars. Motion planning forcoherent groups of

entities. InICRA, pages 3815–3822. Press, 2003.

22



Figure 1: (Left to right) Agents are placed in random locations on both sides of a narrow

doorway. Their goals are to cross to the other side, as initially indicated by the arrow on

each agent. The top sequence shows RVO agents attempting this and the resulting deadlock.

In the bottom sequence a deadlock agent (in red) has been placed at the doorway in the same

scenario and deadlocks are avoided. The upper sequence spans a period four times longer

than the lower sequence due to agent shoving, which deadlockagents also eliminate.

(a) (b) (c)

Figure 2: Example situation agents

23



Figure 3: (Left to right) Two groups of 6 agents each are initially placed opposite each

other with opposing trajectories. The top sequence shows the behavior of typical RVO

agents. The bottom sequence shows the same groups of agents,but each has been assigned

a group agent (in blue) using our automatic placement algorithm. The groups now steer as

aggregates around each other.

Figure 4: (Left to right) Two groups of 2 agents walking toward each other abreast in a

narrow hallway. The group agents (in blue) assigned to each pair steer around each other

and as a result encourage lane formation. This allows the pairs to pass each other smoothly.

24



Figure 5: (Left to right) A formation agent (in green) regulates a group of agents moving

through a crowd. The group agents (in blue) steer away from the formation agent, while

individual agents steer away from the individual agents of the formation on a finer level. Due

to this hierarchy, collisions between group agents and the formation agent do not disturb the

formation.

Figure 6: (Left to right) The formation agent (in green) detects that it intersects an obstacle

and stops enforcing the formation. Both it and the agents in its formation proceed through

the narrow passage. Once the formation agent no longer detects an intersection with an

obstacle, it begins rebuilding the formation.

25


