Enabling Real-Time Physics Simulation in
Future Interactive Entertainment

Thomas Y. Yeh

Petros Faloutsos

Glenn Reinman

Department of Computer Science, University of California, Los Angeles

Abstract

Interactive entertainment has long been one of the driving factors
behind architectural innovation, pushing the boundaries of com-
puting to achieve ever more realistic virtual experiences. Future
entertainment applications will feature robust physics modeling to
enable on-the-fly content creation. However, application designers
must provide at least 30 graphical frames per second to provide the
illusion of visual continuity. This constraint directly impacts the
physics engine, which must deliver the results of physical interac-
tions in the virtual world at a fraction of this frame rate. With more
sophisticated applications combining massive numbers of complex
entities, the cost of robust physics simulation will easily exceed the
capability of today’s most power machines.

This work explores the characteristics of real-time physics simula-
tion, and proposes a suite of future-thinking benchmarks stressing
different situations that represent the demands of future interactive
entertainment. With this suite, we then explore techniques to help
meet these demands, including parallel execution, a fast estima-
tion approach that self-regulates error, and a value prediction tech-
nique that is allowed to get “close enough” to the real value. We
demonstrate that parallel execution together with the proposed fast
estimation approach can satisfy the demands of nearly all of the
PhysicsBench suite.

CR Categories: 1.3 [Computer Graphics]: Three-Dimensional
Graphics and Realism—; C.3 [Processor Architectures]: Multiple
Data Stream Architectures—.

Keywords: interactive entertainment, real-time physics, bench-
mark, parallel execution, error tolerance

1 Introduction and Motivation

Interactive entertainment has grown to a substantial industry, with
$7 billion in revenue for 2004. As the predominant form of in-
teractive entertainment, gaming has driven mass demand for high-
performance general purpose processors. Beyond entertainment,
interactive gaming is being targeted for use in education, training,
health, and public policy [Initiative]. An interesting example is the
America’s Army game, created by the United States Army for civil-
ians to experience life as a soldier [U.S. Army]. Other creative uses
include medical screening, fitness promotion, and hazmat training.

From a technical perspective, future games will be computationally
intensive applications that involve various computation tasks:
artificial intelligence, physics simulation, motion synthesis, scene
database query, networking, graphics, audio, video, I/O, OS, tactile
feedback, and GP game engine code. In order to provide the
perception of smooth motion, gaming hardware typically produces
30 graphical frames every second.

Despite the social, economic, and technical importance of interac-
tive entertainment applications, there has been very little academic
effort to quantify their behavior and needs. Recent announcements
of next generation game-consoles (Sony PlayStation 3 [CNET],
Microsoft Xbox 360 [Microsoft], and Nintendo Revolution [Nin-
tendo]) show a broad spectrum of designs aimed at the same work-
load. Differing design choices include the programming model,
number of threads, type of chip-multiprocessor, order of execution,
and complexity of branch prediction. This spectrum of designs sug-
gests that interactive entertainment software requirements are non-
standardized and vary across genres.

In this work, we focus on the use of physics simulation in interac-
tive entertainment. Such simulation has been augmenting recent
applications, like HalfLife 2, but truly immersive virtual worlds
with many interactive entities may prove far too computationally
intensive for current microprocessors. Our contributions include
the following:

e PhysicsBench, a suite of real-time physics benchmarks,
— Analysis and comparison to other workloads.
— Metrics for performance and error evaluation.

e Architectural exploration of PhysicsBench

— How far are we from satisfying the 30 frame/sec re-
quirement for interactive entertainment?

— Exploration of parallel execution.

e Novel techniques to target high frame rates.
— Fast Estimation with Error Control (FEEC)
— Fuzzy Value Prediction (FVP)

The remainder of this paper is organized as follows: The rest of
this section discusses related work. Section 2 introduces the chal-
lenges of physics simulation and the characteristics of its compu-
tational load. We propose our benchmark suite, PhysicsBench, in
Section 3. Results from a real world processor running Physics-
Bench are shown in Section 4, and we explore techniques to im-
prove this performance further in Section 5. We conclude in Sec-
tion 6.

1.1 Related Work

Throughout the paper we will explore work related to our tech-
niques, however, there is little directly related work in interac-
tive entertainment in the architecture community. [Matthews et al.
2004] compared the performance counter statistics of a single sec-
ond’s execution between two first person shooter games to music
and video playback applications. This work shows the difference
between gaming and multimedia applications due to game’s content
creation tasks, and points to chip multiprocessors (CMP) [Olukoton
et al. 1996] as a promising approach to providing performance.

Graphics Processing Units (GPUs) are specialized hardware cores
designed to accelerate rendering and display. Because GPUs are
designed to maximize throughput from the graphics card to the dis-
play, data that enters the pipeline and the results of intermediate
computations cannot be accessed easily or efficiently by the CPU.
This is problematic for physics simulation that works in a contin-
uous feedback loop. In addition, graphics hardware is primarily
designed to store 2D arrays (textures). This is suitable for computa-
tions involving grids (2D-fluids) but not 3D rigid bodies. Mapping
constrained rigid body simulation to modern GPUs is not straight-
forward and is an active area of research.

2 Physics and Interactive Entertainment
Applications

In the early days of the interactive entertainment industry, virtual
characters were heavily simplified, crude polygonal models. The
scenarios in which they participated were also simple, requiring
them to perform small sets of simple actions. The recent advances
in graphics hardware and software techniques have allowed interac-
tive entertainment applications to approach cinematic quality. Un-
precedented levels of visual quality and complexity in turn require
high fidelity animation, and modern interactive entertainment appli-
cations have started to incorporate new techniques into their motion
synthesis engines. Among them, physics-based simulation is one of
the most promising options.

2.1 Kinematics vs Physics

The current state-of-the-art in motion synthesis for interactive en-
tertainment applications is predominantly based on kinematic tech-
niques. The motion of all objects and characters in a virtual world
is derived procedurally or from a convex set of parameterized
recorded motions. Such techniques offer absolute control over the
motion of the animated objects and are fairly efficient to compute.
However, the more complex the virtual characters are the larger the
sets of recorded motions will be. For the most complex virtual char-
acters, it is impractical to record the entire set of possible motions
that their real counterparts can do.

Physics-based simulation is an alternative approach to the motion
synthesis problem. It computes the motion of virtual objects by nu-
merically simulating the laws of physics. Physics-based simulation
provides physical realism and automated motion calculation, but
also has greater computational cost, difficulty in object control, and
potentially unstable results. We will focus on the computational
cost of physical simulation, which can grow very high for complex
scenes.

Kinematic and physics-based techniques have strengths and weak-
nesses. Combining physics based simulation with kinematic tech-
niques is clearly the right approach for future applications. It is also
an active area of research that has started to produce interesting re-
sults [Zordan et al. 2005; Shapiro et al. 2003]. Such techniques
are already being incorporated into the new generation of interac-
tive entertainment applications albeit at a small scale. In addition,
applications often resort to heuristics in order to reduce the com-
putational load and achieve interactive rates for complex scenarios.
Such heuristics may involve simplified models, quasi-static dynam-
ics et al. Our work aims to understand the computational load of
the simulation as a first step toward designing a new generation of
processors that can support the computational load of physical sim-
ulation at a large scale.

In this study we focus exclusively on constrained rigid body simu-
lation [Smith ; AGEIA ; Havok] and leave the soft-body simulation
domain for future work. In the majority of games, the central ele-
ments are humanoid characters. Humanoid motion is dominated
by the rigid body motion of the character’s body parts. Soft-body
simulation such as flesh, cloth and hair animation are typically sec-
ondary effects. Among the various types of physics simulation,
rigid body physics dominates in terms of computational load. Most
recently, this was demonstrated by Sony in [V. Kokkevis 2006].

2.2 High Level Characteristics of the Simulation
Load

Efficiency is crucial in interactive entertainment: each frame of an-
imation must be computed at approximately 30 frames per second.
For a frame to be computed all the necessary components of the
application must complete within a fraction of this frame rate. For
interactive applications such as games and urban simulations, the
components include: artificial intelligence operations, path plan-
ning, user input, motion synthesis, networking, audio and video
processing, and graphics. In this work, we assume that 10% of
this frame rate can be used for physics-based simulation. Stability
is also critical to creating a realistic environment. The simulation
should not numerically explode under any circumstances. How-
ever, while it is important that actions have a visually believable
outcome and do not violate constraints placed on the objects (i.e.
bones bending, walking through walls), IE applications generally
have looser requirements on accuracy than most scientific applica-
tions. Recent research in animation [Harrison et al. 2004; Reitsma
and Pollard 2003] has actually studied and quantified errors that are
visually imperceptible. For instance, length changes below 2.7%
cannot be perceived by an average observer[Harrison et al. 2004]
while changes of over 20% are allways visible. This error tolerance
increase with scene clutter and high-speed motions[Harrison et al.
2004].

The physics load of interactive entertainment applications has cer-
tain unique features. First, it seems to be distributed. For most
scenes that depict realistic events, there are many things happening
simultaneously but independently of each other. This distributed
nature of the physics load can be exploited to reduce the complexity
of the underlying solvers and allows for parallel execution. Second,
the physics load seems to be sparse. Numerical solvers and dy-
namic formulations can exploit sparsity to improve computational
efficiency. Third, there is usually a human viewer/user involved, so
the application can focus on the area of the world that falls within
the field of view of the viewer or in general, the area around the
user.

In summary, the physics load, specifically as it applies to interac-
tive entertainment applications, seems to be distributed, sparse, re-
stricted by the interactive nature of the applications and subject to
low level vector-based acceleration. At the same time, such ap-
plications require efficiency, and stability for which they can trade
off accuracy. Based on these considerations, we use the Open Dy-
namic Engine [Smith] as a representative physics-based simulator
for interactive entertainment applications.

2.3 Open Dynamics Engine Algorithmic Load

The Open Dynamics Engine follows a constraint-based approach
for modeling articulated figures, similar to [Baraff 1997]. ODE
is designed with efficiency rather than accuracy in mind and it is
particularly tuned to the characteristics of constrained rigid body

dynamics simulation. A typical application that uses ODE has the
following high level algorithmic structure:

Create a dynamics world.

Create bodies in the dynamics world.

Set the state (position and velocities) of all bodies.
Create the joints (constraints) that connect bodies.
Create a collision world and collision geometry objects.
While (time < timeyay)

S e

(a) Apply forces to the bodies as necessary.

(b) Call collision detection.

(c) Create a contact joint for every collision point, and put it in the contact
joint group.

(d) Take a forward simulation step.

(e

(f) Advance the time: time = time + At
7. End.

N

Remove all joints in the contact joint group.

The computational load of a simulation is defined by two main com-
ponents: Collision Detection (b), and the forward dynamics step

(d).

2.3.1 Collision Detection

Collision detection (CD) uses geometrical approaches to identify
bodies that are in contact and appropriate contact points. A space
in CD contains geometric objects that represent the outline of rigid
bodies [Smith]. Spaces are used to accelerate collision detection
by allowing the removal of certain object pairs that would result in
useless tests. This concept of space allows for hierarchical CD and
isolated CD. Hierarchical CD provides fine granularity CD without
frequently incurring the high load of doing tests on a large num-
ber of objects (i.e. collisions between 2 skeletons composed of 16
bones each). Isolated CD allows CD without frequent communica-
tion (i.e. 2 pairs of armies interacting in spaces that are significantly
far apart). Both of these are exploited in the ODE engine to improve
CD performance.

Collision detection depends significantly on the geometric proper-
ties of the objects involved. ODE supports contact between stan-
dard shapes such as boxes, spheres, and cylinders, and also arbitrary
triangle meshes. The contact resolution module of ODE supports
both instantaneous collisions and resting contact with friction. High
speed collisions can be resolved even at coarse time steps. In such
cases, the collision may produce penetrating configurations. How-
ever, a nice feature of ODE is that the penetration will be eliminated
after a short number of steps. Such features make ODE especially
suitable for interactive applications.

The number and type of spaces have significant impact on CD re-
quirements. At a finer granularity, the geometric shape used to
model individual bodies in the system also contributes to differ-
ences in requirement.

2.3.2 Forward Dynamics Step

The simulator takes a forward step in time by computing the con-
straint forces that maintain the structure of the objects and that
satisfy the collision constraints produced by the collision detec-
tion module. This is the most expensive part of the simulator and
requires the solution of a Linear Complementary Problem(LCP).
ODE offers two ways of solving the LCP system for the con-
straint forces: an accurate and expensive one based on a big-
matrix approach (the so called normal step), and a less accurate
approach called quick step that iteratively solves a number of much
smaller LCP problems. Their respective complexities are O(m?)

and O(m X i), where m is the total number of constraints and i is
the number of iterations, typically 20. For any scene of average
complexity the iterative (quick-step) approach far outperforms the
big-matrix approach. Thus, in this paper we exclusively use the
quick-step approach.

ODE’s integrator trades accuracy for efficiency and allows rela-
tively high time steps, even in situations with multiple high speed
collisions. The key parameter here is the integration time step
which, for a fixed-step integrator, relates directly to the time step
of the simulation Az. Typical values range from 0.001 to 0.01.

ODE is designed to exploit parallelization: the user can create
multiple worlds which are handled independently of each other.
Within each world ODE automatically separates objects into inde-
pendent groups, called islands. Each world and each island within
a world can be solved independently and potentially on a different
thread/processor.

In the physics integration computation, the concept of an island
is analogous to the space in the above discussion on CD. The is-
land concept is defined as a group of bodies that can not be pulled
apart [Smith], which means that there are joints interconnecting
these bodies. Each island of bodies is computed independently
from other islands by the physics engine.

The computation demand is affected significantly by the number
and the complexity of islands during one simulation step. The com-
plexity of an island can be quantified by the number of objects along
with the number and complexity of the interconnecting joints. The
complexity of a joint is characterized by the degrees of freedom
(DoF) it removes as listed in the following table:

Joint Ball | Hinge | Slider | Contact

Universal | Fixed

DoF Removed 3 54) 5 1 4 6

The formation of an island has different temporal behaviors. Some
persist for a long time while others constantly change between each
integration step. This behavior contributes to the variance in com-
putation demands by the engine.

ODE supports a number of parameters that model the material prop-
erties of simulated objects, such as the coefficients of friction and
the elasticity of collisions. In our experiments, we cover a wide
range of materials ranging from elastic balls to rigid bricks.

3 PhysicsBench

In order to suggest architectural improvements to enable real-time
physics simulation, we need to first characterize the computational
load of the real-time physics engine kernel. Due to the lack of
prior work, this requires the creation of a representative suite of
benchmarks that covers a wide range of situations in future interac-
tive entertainment applications. It is important to note that current
games do not employ significant amount of physics simulation due
to existing hardware platforms’ limitations. With the introduction
of next generation consoles and physics accelerators, applications
are starting to integrate physics into the game-play. Our work ex-
amines future IE applications employing physics simulation. This
section covers the details and reasoning in PhysicsBench’s creation.

3.1 High Level Considerations

PhysicsBench covers a wide range of typical IE situations that in-
volve object interaction. Our scenarios represent typical game-play

situations for the most popular genres based on sales of current gen-
eration platforms [Everything and Nothing ; MagicBox b; Mag-
icBox a]: simulation (The Sims), sandbox (Grand Theft Auto), rac-
ing (Grand Turismo), fps (Half-life), rts (Starcraft), mmog (World
of Warcraft), rpg (Diablo), and sports (FIFA) . The benchmarks in-
clude high-velocity vehicles, fighting humans, object to human col-
lisions, object to object collisions, exploding structures, and fairly
complex battle scenes. They are designed to test the scalability of
the simulation with different distribution of interactions: stacking
vs a large battle scene.

Because of time constraints some of the benchmarks represent
scenes of realistic complexity (interactions) but not necessarily re-
alistic motions. The visual representation of the scenes shows the
geometries used for collisions, not the ones used for visual display.
We are only interested in the simulation load, not the graphics load.

More complex situations can be constructed by mixing multiple
benchmarks as shown below. Because of the distributed nature of
the physics load as it applies to IE applications, the combined com-
putational load can be roughly extrapolated from the results of the
individual scenarios. Since the use of real-time physics in applica-
tions is an active area of research and development, PhysicsBench
will continue to evolve and be augmented with new scenarios and
new physical interactions.

3.2 Benchmarks

The benchmarks involve virtual humans, cars, tanks, walls and
projectiles. The virtual humans are of anthropomorphic dimen-
sions and mass properties. Each character consists of 16 segments
(bones) connected with idealized joints that allow movement simi-
lar to their real world counterpart. The car consists of a single rigid
body and four wheels that can rotate around their main axis. Four
slider joints model the suspension at the wheels. The walls are mod-
eled with blocks of light concrete. The projectiles are single bodies
with spherical, cylindrical or box geometry. In all benchmarks, the
simulator is configured to resolve collisions and resting contact with
friction.

In addition to representing realistic application scenarios, we aim
for broad coverage on the low-level parameters that affect computa-
tion load as shown in Figure 1. Table 1 summarizes the quantitative
differences between benchmarks.

The benchmarks are as follows:

e 2-Cars: Two cars driving - two cars that are steered to run in
parallel then collide. One car goes over a wooden ramp.

e 10-Cars: Ten cars driving - to evaluate how the load changes
with scale, we extend the 2-Cars scenario to ten cars.

e CrashSk: Car crashing on two people - a car with four wheels
crashing into two virtual humans.

e CrashWa: Extreme-speed Car crashing on wall, tank shooting
projectiles - a high speed car (velocity 200Mph) crashing into
a wall, while a tank shoots varying shape projectiles towards
the wall. The wall consists of a large number of blocks.

e Environ: Complex environment scene with wall, tank, car,
monster, and projectiles - Similar to previous benchmark. Ad-
dition of tank firing projectiles and a centipede monster.

e 100CrSk: Car crashing on two people replicated 100 times.

e Battle: Battle scene I - One group of 10 humans attacked by
tank. 2 groups of 4 and 6 humans crashing into each other.

e Fight: Fighting Scene, 2 groups of 5 humans - two groups of
five humans that come in contact in pairs and eventually form
a number of piles.

e Battle2: Battle scene II - a relative complex battle scene. A
tank behind the far wall shoots projectiles in different direc-
tions. A car crashes on the right wall while two groups of five
people are fighting inside the compound. The walls eventually
get destroyed and fall on the people.

Figure 2: Benchmarks 2-Cars, 100CrSk, Fight, and Battle2 from
top to bottom. Images in raster order.

These scenarios can capture some extremely complex interactions.
The computational load of 2-Cars, for example, relates to a wide
range of two objects interactions that arise in games. These include
car racing, airplanes that crash in midair, rocket and plane collision,
tank-to-tank collision and even simple ships colliding. Fight cap-
tures the computational complexity of a wide range of human group
activities that involve progressive interaction such as action, sports
games and urban simulation scenes.

3.3 Comparison Against Other Workloads

On average, PhysicsBench is composed of 34% floating point cal-
culations, 25% integer calculations, 6% branches, 5% stores, and
30% loads. The relatively large amount of both integer and float-
ing point calculations shows a fundamental difference between
PhysicsBench and the integer heavy SPEC INT and MiBench, as
well as the floating point heavy SPEC FP. Collision detection (sec-
tion 2) makes up an average 7% of all executed instructions, ranging
between 2% and 20% for the various benchmarks.

The graphics workload includes the computations needed to draw
a single frame after all motion parameters have been computed and
applied to the associated graphics primitives (object geometries).
For IE applications all geometric primitives are approximated with
polygonal meshes and most often meshes of quadrilaterals or tri-
angles. To produce the final image, all polygons go through a
set of well defined stages that include: geometric transformations,
lighting calculations, clipping, projections, and finally rasterization.
Most of these stages perform calculations based on a polygon’s ver-
tices. Each vertex is defined by four floating point numbers. All of
these stages treat each polygon independently of the others. For re-
alistic scenes, there are thousands of polygons involved. Therefore
the typical graphics load is highly parallel and pipelined. Modern
graphics cards have multiple hardware pipelines capable of treating
massive numbers of polygons. Certain research groups have man-
aged to use graphics hardware to accelerate specific physics-based
formulations such as computational fluid dynamics. The grid-based

[Phy-sics]

[Collision Detection]

[# of Is.lands] [Island C:Jmplexity] [TemporaI.Behavior] [Acct}racy] [# of S.paces] [Space C;mplexity] [Inter-Spa.ce Comm]

Joint Type

Space Type
GeomType

Figure 1: Low-level Parameters Affecting Computation Load

Benchmark Number of Islands Island Complexity Temporal Behavior Number Inter-space
(Max, Min, Avg, Dev) of Spaces Comm
2 Cars 2,2,2,0 simple, 5 obj + 4joints constant 1 NA
10 Cars 10, 10, 10,0 simple, 5 obj + 4 joints, few contacts stable, few collisions 1 NA
Car Crash Sk 3,1,2,0.65 from 2 complex 1 simple to one large complex fast changing 1 NA
Car Crash Wall 105,99, 101, 1.4 complex stack, simple car, stable, abrupt change 1,3 range from
simple cannon, sphere projectiles none to high
Environment 337, 196, 245, 46 complex stack, monster, fast changing 1,10 high
simple car, cannon, projectiles
Car Crash Sf x100 300, 100, 220, 64 same as Car Crash Sk stable, fast change 100 none
Battle I 120,2,93, 18 groups of multiple complex skeletons, stable, fast change 1,3 none
standalone skeletons, projectiles
Fight 10,7,8, 1.1 complex skeletons interacting 4 stable, 6 change 1,10 moderate
Battle 1T 156, 113, 134, 18 multiple complex stack, complex skeletons, fast changing 1,15 high
simple car, simple cannon, projectiles

Table 1: Parameters Affecting Computation Load

nature of such approaches can be supported, albeit in awkward
ways, by the graphics hardware. However, this type of adaptation
is not appropriate for constrained rigid body formulations.

Certain applications in the SPEC CPU 2000 FP suite make use
of similar numerical methods, but the constraints imposed by
games and the particular instruction mix of PhysicsBench distin-
guish these applications from the SPEC suite. The real-time con-
straint of games requires high performance to allow the use of
real-time physics simulation. Also, the relaxed accuracy require-
ment allows multiple levels of approximations and optimizations,
such as higher error thresholds, restricted size matrices, constraint
violations, higher time-steps, interpenetrations, approximate iter-
ative techniques etc. Furthermore, the high cache hit-rates of
PhysicsBench contrasts with scientific applications’ large memory
working-set.

Embedded application suites like MiBench [Guthaus et al. 2001]
are also quite different from PhysicsBench. Embedded real-
time schedules are typically easily satisfied by low-power, lower-
performance single-core processors. Another major difference is
the relatively small amount of floating point instructions seen in
these applications.

4 Physics Performance

In this section, we explore the performance of PhysicsBench on a
real processor.

4.1 Methodology

The real-time physics engine used in this study is the Open Dynam-
ics Engine (ODE), described in Section 2. We selected ODE be-
cause it is inherently designed to support the requirements and ex-
ploit the characteristics of constrained rigid body dynamics as they
apply to interactive entertainment (IE) applications. ODE has been
widely used in both research and commercial applications such as
computer games and 3D authoring tools.

PhysicsBench includes tests using both the big-matrix and the iter-
ative solvers. In this paper, we focus on enabling real-time physics
simulation by accelerating the iterative solvers (QuickStep), the
faster of the two approaches.

The PhysicsBench suite consists of two sets of source code. The
first set contains graphics code to allow for visual correctness in-
spection, and the second set contains only user input and physics
simulation code for performance evaluation. We compiled bina-
ries for the x86 ISA using gcc version 3.4.5 at optimization level
-02 (recommended by ODE), using single precision floating point
and the following flags: -ffast-math, -mmmx, -msse2, -msse, -
mfpmath=sse and -march=pentium4. These options enable full SSE
support to exploit SIMD parallelism.

While the workloads’ level of physical interaction varies between
different points in time, we will initially focus on the peak compu-
tation demand during frames of high activity. All benchmarks are
warmed up for 3 frames to execute past setup code as well as warm
up processor resources, and then we execute 5 frames. We have de-
signed the benchmarks so that significant activity is captured within
these 5 frames after warm-up (i.e. the actual collision of a car and
skeleton, the crumbling of a wall, etc).

We model a uniprocessor as the baseline for our study — the pre-
dominant execution hardware for current gaming platforms and

the architectural target of most current physics engines, including
ODE. Physics data frequently communicates with the core engines
of IE applications [Havok ; Wu 2005], requiring short latencies for
data transfers to and from core engine threads that execute on the
general-purpose CPU.

As described in the introduction and [Wu 2005], the physics engine
is interdependent on other software components of the application.
These include Al, game-play logic, audio, IO, and graphics render-
ing. We allocate 10% of each 1/30th of a second frame for comput-
ing physics simulation. While there is no standard for this time al-
location, we feel that future complex applications using a real-time
physics engine will undoubtedly be using advanced algorithms for
other core components. Therefore, to provide low variance on the
frame rate we need to aim for a more aggressive time allocation.

For this real processor study, we used a 2.4GHz Intel P4 Xeon CPU
with 512KB L2 cache, with support for SSE/2 instructions.

We consider two performance metrics: Frame Rate (frames per sec-
ond), and the % of frames that were computed within 10% of our
30 frames/sec constraint. The first metric is the harmonic mean
over all frames executed, giving some indication of how close we
are getting on average to meeting the frame constraint. The second
metric gives an indication of whether or not all frames were com-
puted in time. Ideally, we would like this metric to be as close to
100% as possible to provide stability and realism.

We base our performance metrics on frames rather than instruc-
tions, as frames are a more natural fit for games — particularly
since the performance goal is measured in frames per second. Each
benchmark requires different amount of instructions per frame as
shown in Figure 3. The data points with a Q suffix refers to Quick-
step, and data points without the suffix refers to Normalstep. Quick-
Step requires significantly less instructions than Normalstep.

4.1.1 Parallel Physics Simulation

Collision Detection
4

Generate Islands
4
Per Island
Physics Simulation

7~

Loop on # Islands

Figure 4: Core Physics Simulation Loop

pace
ollision Detection

ub_Space_
ollision Detection

Sub_Space_0
ollisi - .

Figure 5: Parallel Implementation of Physics Simulation Loop

As shown in Figure 4, the high level core physics simulation loop
has three dependent logical steps: collision detection, island cre-
ation, and per island physics simulation. Collision detection finds
all object pairs that interact with one another. Then, islands are
formed by interconnected objects. Finally, the engine computes the
new positions for all objects at the island granularity. The physics
simulation for all of the islands is done serially — and, on average,

this component consumes approximately 92% of the total physics
simulation time.

Therefore we first explore the limits of parallel physics simulation
by creating one thread for every island. This parallelization process
involves farming off the threads to either logical or physical pro-
cessors. The initial data communication requirement is dictated by
the number of bodies and joints for each island spawned away from
the original thread. Because every island is independent of other
islands, only the final position data of objects needs to be commu-
nicated back to a central thread at the end of each simulation step.

With parallel physics simulation, the % of cycles taken up by col-
lision detection becomes much more significant (20% on average,
maximum of 55%). Therefore, we also parallelize collision detec-
tion through parallel spaces on top of ODE’s spatial hash broad-
phase collision detection [Smith].

Figure 5 shows our implementation of the core physics loop with
both collision detection and physics simulation in parallel. Groups
of frequently interacting objects are inserted into the same sub-
space, and only the subspaces are directly inserted into the root
space. Note the bidirectional arrows, representing two-way com-
munication between collision threads, interconnecting the root
space with subspaces. During collision detection, the root thread
handles any collisions across subspaces, while each subspace han-
dles collisions within its domain.

To evaluate the potential of this optimization, we capture the up-
per bound on performance by assuming an unlimited supply of ho-
mogeneous cores and ignoring the overhead from sources such as
thread creation, thread migration, data migration, and setup codes.

4.2 PhysicsBench Results

Figure 6 presents results for actual runs of PhysicsBench on the
architecture in section 4.1. It is clear why current IE applications
rarely use realistic physics simulation to dynamically generate con-
tent. In this suite of physics-only tests, our test processor can only
satisfy the demands of the simple scenarios described by 2-Cars,
10-Cars, and CrashSk. In situations where physical interactions can
be partitioned cleanly as in 100CrSk, tremendous speedup can be
obtained from the use of parallel threads. Battle and Fight see ben-
efit from parallel threads, but are still unable to achieve frame rates
high enough to satisfy the time constraint for any of their frames.
The remaining benchmarks have little parallelism to exploit, and
therefore see little or no improvement in frame rate. For example,
CrashWa contains a large complex island simulating a brick wall.
The wall’s bricks apply contact forces on one another, and this can-
not be parallelized unless these bricks are pushed away from one
another. In scenarios containing one extremely complex island, the
frame rate is dictated by the processing of this island, even with
parallelization.

For parallel physics simulation, the maximum island count for each
benchmark indicates the maximum number of cores we would need
to achieve the improvements shown earlier. As shown in Table 1,
the maximum island count in the suite is 337. However, we may
need far fewer cores to achieve parallelization benefits since there
exist simple islands which can be serialized on one core, overlap-
ping the execution of more complex islands. We present the re-
source requirements using optimal load balancing in Table 2. The
data shows that most benchmarks with high island counts can actu-
ally be satisfied with less than 5 cores. The outlier, 100CarSk, can
also be satisfied with a few cores, but we parallelized it into 100
worlds to show the opportunity for effective massive parallelization
given non-interacting virtual spaces.

1000000000

1

10000000

1000000

100000 =

Log Scale inst/Frame

10000

N o & X <3 & . &
S SR & & c}?"’é\ & & T o
Figure 3: Instructions Per Frame for PhysicsBench
OPentium 4 Xeon M |deal Parallel P4 Xeon
300 L 3 L 3 r 100%
r 90%
250 - 80%
2 5 T 3
a - 60% 2
£ 15 - 50% @
s L)
i - 40% §
100 - 30% ©
50 r 20%
- 10%
0%
2-Cars 10-Cars CrashSk CrashWa Environ ~ 100CrSk Battle Fight Battle2
Figure 6: PhysicsBench Performance.
Benchmark 2-Cars 10-Cars | CrashSk | Environ | CrashWa
Number of Cores 2 9 3 4 3 nisms [Calder et al. 1999] can effectively limit the degradation of
Benchmark 100CrSk | Battle Fight Battle2 mispredictions. Recent work shows some benefit for floating point
Number of Cores 100 19 4 3 value predictions [Tuck and Tullsen 2005] using multi-threaded ex-

Table 2: Resource Requirement for Full Parallelization
5 Physics Acceleration

Even though our idealized parallel physics simulation is very effec-
tive, we are still some distance away from satisfying the demands
of PhysicsBench applications CrashWa, Environ, Battle, Fight, and
Battle2. In this section, we consider techniques to meet the 30 fps
constraint.

Because error tolerance is a main differentiating feature of the IE
workload, we will explore the trade-off of accuracy for performance
to develop novel optimizations. This will be done at both the archi-
tectural and algorithmic levels. Errors in physics simulation can
result in different geometric positions and orientations, as well as
constraint violations. This latter error can be more severe, and could
include objects passing through one another, elongation of the ob-
ject, or joints separating or bending in incorrect ways.

One main limiting factor in trading accuracy for performance is the
need for deterministic behavior. This is important for both applica-
tion verification and coherent behavior across different clients.

5.1 Fuzzy Value Prediction [Architectural]

Prior work has demonstrated the effectiveness of using last value
prediction at reducing instruction latency [Lipasti et al. 1996]. Last
value prediction is a speculative technique that breaks true data de-
pendencies by using the last value produced by a given instruction
as a prediction for the input to its dependent instructions. Values
are predicted as each instruction is decoded by indexing a table
by the program counter. The value prediction is verified when the
instruction actually completes, and the dependent instructions are
re-executed if a misprediction has occurred. Traditional value pre-
diction verifies by exact binary comparison. Confidence mecha-

ecution. Fuzzy instruction reuse [Alvarez et al. 2005] has been fur-
ther proposed to reduce power usage by floating point units. This
latter technique is non-speculative, and cannot break data depen-
dencies.

Exact value prediction can break true data dependencies and does
not impact the accuracy of the physics simulation. However, we
can trade some accuracy to improve the value prediction rate. We
propose Fuzzy value prediction (FVP), where floating point value
prediction is allowed to err within a certain bound without resulting
in a misprediction and subsequent recovery. The main motivation
for fuzzy value prediction is that real-time physics simulation for
gaming workloads already introduces small errors by using single-
precision floating point, large step sizes, and approximation meth-
ods in solving the equations. During verification, the predicted and
executed values are subtracted and the magnitude of the error is
checked. The quantities involved in the simulation are macroscopic
and follow the metric system. An error, for example, in position of
10~ meters is of microscopic scale and visually negligible. This
optimization is unique to graphics related workloads, since other
applications typically require precise state, especially for floating
point calculations.

We evaluated FVP using thresholds ranging from 10~° to 10712,
Similar behaviors were observed between applying FVP to collision
detection only, forward step only, and across all physics simulation
computation. While the error FVP tolerates for individual oper-
ations is relatively small, the physics engine can produce “blown
up” results in the form of infinity or NaN. This occurs even when
using a threshold of 10712,

Motivated by FVP’s behavior and prior work on perceptual metrics,
we present an algorithmic approach to trade accuracy for perfor-
mance, while maintaining the deterministic behavior preferred by
the industry.

5.2 Fast Estimation with Error Control [Algorith-
mic]

Fast Estimation with Error Control (FEEC) describes a high-level
frame-work consisting of 2 logical threads and 2 evaluation meth-
ods. This technique leverages 2 observations about IE applications.
First, different consumers (in terms of software components) re-
quire different accuracy for the same input data. Second, differ-
ent consumers consume the same input data at different real-time
schedules.

To address the need for fast result turnaround and the importance of
avoiding large errors that can drastically impact the quality of the
solution, we consider decoupling these two components into 2 log-
ical threads. These logical threads can be described as the (1) slow
precise thread and the (2) fast estimation thread. Each thread uti-
lizes its own evaluation method for the same computation. The data
produced by the fast estimation thread is fed to critical dependent
components while the data produced by the precise thread is fed
back to the physics engine for both threads at the frame-boundary.
This feedback of precise data is critical in containing errors since
each frame’s errors are 100% corrected for next frame’s computa-
tion.

We call this approach fast estimation with error control (FEEC)
since the precise physics simulation thread is allowed to continue
in parallel with the rest of the interactive entertainment application
and effectively limit the error rate of the estimation thread.

This is an effective approach in leveraging contexts in a CMP envi-
ronment: some subset of cores can continue to refine a physics so-
lution while other cores handle other game engine components. In
cases where other components (such as Al) might require feedback
from the physics engine, solutions can be provided on demand, de-
pending on the time constraints of the different game engine com-
ponents.

Various estimation methods can be utilized with FEEC. In this pa-
per, we evaluate one estimation method, namely LCP solver itera-
tion reduction.

5.2.1 Reducing Iteration Count

The LCP solver ODE employs, QuickStep, uses an iterative ap-
proach where during each iteration (a) each body in an Island is
essentially considered a free body in space and solved indepen-
dently of the others (b) a constraint relaxation step progressively
enforces the constraints by some small amount. The constraint sat-
isfaction increases with the number of iterations. According to the
ODE manual, 20 iterations is considered the minimum for consis-
tent robust simulation. As we will show later in this section, the
error rate for low iteration counts can be quite severe.

While dependent software components require physics simulation
to provide a solution within some fraction of a frame’s time, there
is no reason why physics simulation cannot continue to run after
returning a solution on a separate thread/core.

The iterative nature of QuickStep implies that a solution can be ob-
tained at the iteration granularity, by taking the result of the last
completed iteration. However, simply reducing the QuickStep it-
eration count can drastically increase simulation errors which ac-
cumulate and “blow up” calculations. As described in section 3,
visually acceptable errors are dependent on the situation and are of
much larger magnitude than what the physics engine can tolerate.

Consider running QuickStep for only a single iteration to provide
estimated results to the critical dependent components — and then

for the remainder of the 1/30th of a second, we continue the physics
simulation loop for the same time-step. The eventual refined solu-
tion from this precise thread is fed back as input to the next frame
of the physics loop to correct all errors.

This estimation method shortens physics simulation’s critical path
by altering the control flow of the LCP solver to generate a fast
solution for critical dependent components. At the same time, all
errors fed back into the physics engine are 100% eliminated, as
compared to running the full 20 iterations, by the end of each frame.
Thus, errors are never allowed to propagate beyond a frame’s worth
of time.

We verified both numerically and visually that the errors using
FEEC with iteration reduction are imperceptible. As will be shown
in our results, over the entire course of the simulation they are
numerically equivalent to using a 19 iteration QuickStep without
FEEC. The position and orientation data produced by FEEC were
used as input to reconstruct images for visual inspection.

After one iteration, the \ Fast
estimated solution is ©) Estimation
forwarded to the dependent (3) 1/30th of Thread
components. >
(@) ra
« | second
The precise solution °
Frame 1 from the 20" /
iteration is sent to
the next round of ©), Fast I'q
physics simulation 2 Estimation
for both threads @) | 730" of Thread
(@) a
A\ « | second
The solution from one iteration °
Frame 2 is sent to the dependent @/

components.

Figure 7: Fast Estimation with Error Control (FEEC)

The parallel results in section 4 demonstrated that while many
benchmarks cannot achieve 300 fps, all but one were able to achieve
30 fps. Therefore, for our FEEC study, we will assume that all
threads can achieve 30 fps with a 20 iteration QuickStep, but only
send the results after the first iteration to critical dependent compo-
nents. The results of the full 20 iteration run will be passed to the
start of the next physics simulation. For this technique, we will re-
port errors based on the result of the first iteration (i.e. what would
be seen by critical dependent components).

The FEEC approach is illustrated in Figure 7. The right side repre-
sents the high-level FEEC framework, and the left side represents
the use of iteration reduction with FEEC. The Y-axis represents
time, and two frames’ worth is represented. The green arrows rep-
resent the fast estimation thread, and the red arrows represent the
precise thread. Each circle on the left represents one iteration of the
LCP solver for QuickStep.

5.3 Methodology

Although we used the same binaries as section 4.1 in our simula-
tions, we used PTLsim [Yourst], a cycle accurate simulator sup-
porting the full x86 instruction set, to allow architectural modifica-
tion and to avoid the system-level nondeterminism that can occur
in real system modeling (i.e. variability in system load, OS interac-
tion, etc). PTLsim also models the translation of x86 instructions
into micro-ops, similar to the translation in current x86 CPUs. We
modified PTLsim to support value prediction. We use the x86 in-
struction PC concatenated with a micro-op ID to index the value
prediction table. The micro-op ID is a simple 4-bit counter, since
PTLsim generates up to 16 micro-ops per x86 macro-instruction.

700 T * * * . * L 4 - 100%
O Frame Rate ___] _ -+ 90%
600 . o o o] o o + 80% B
£500 % Frames Satisfied - 70% B
T 400 + + 60% &
[}
2 — +50% B
S800 + +40% §
200 + 30% L
] + 20% =
100] 10%
0 oot oo —ole > > *> FoToto oot 0%
oo |lo|w|a | ool |a | oo |lo|w | o | oo |lo|w|a | oo |lo|v|a |
TEEHSEE FEFEE SpESEE FEHEEEE FEsad
CrashWa Environ Battle Fight Battle2
Figure 8: Performance of FEEC and fuzzy value prediction.
Position Orientation
100 | O<icm O1-10cm 010-100cm E>100cm Meoor NaN 100 O< 5% 5-25% 25-50% > 50% B ooor NaN
90% 1 [0% 1 [| B
80% 1 80% 7 |
70% A || 70% | ®
60% 1 — — — — 60% 1 — — — — 1 |
50% 1 50% - — g
40% — — — — 4% — — — T °
30% 1 30% —]
20% 1 20% 1
10% 1 10% 1
0% ; ; : : 0% —
$E§ GPEE $EP GPEE £EY§ gy gEg pEy gsEp DRy
100% = = = = 100% - = s = w 2 o 2 o 2 w
90% | 90% 1 —
80% — — —1 —1 80% —
70% 70%
60% | 60% 5
50% | | - | 50% | Z
40%]]] | 40% =
30% 30%
20% 20% | — — — —
10% | 10%
0% ¥ Y — 0%
CrashWa Environ Battle Fight Battle2 CrashWa Environ Battle Fight Battle2
Figure 9: Error for FEEC relative to a 20-iteration QuickStep.
This ID uniquely identifies micro-ops that are generated from the
same x86 instruction. The ID (starting at 0) is assigned in order to
each micro-op.
From the data in figure 6, we see that the computational demand
Frequency 3 GHZ of complex PhysicsBench tests is above the performance of a con-
Issue 8-way out-of-order temporary design. To evaluate FEEC and FVP, we choose a more
Issue window size 4 16-entry Clusters aggressive processor design, with both a high frequency and wider
Branch Predictor 64K Gshare resources. Table 3 presents the simulation parameters used in this
4K 4-way BTB section.
Instruction L1 Cache 32KB 4-way
Latency 2 cycles To better characterize the error in geometric position or constraint
Data L1 Cache 16KB 4-way violations, we classify errors into one of five categories according
Latency 2 cycles to the magnitude of the error. For position, the categories are: be-
Tnst Window 192 entries low 1 cm, between 1-10 cm, between 10-100cm, more than 100
Load/Store Queue size 144 entries cm, and infinity or NaN. For orientation, the categories are based
L2 Cache 256KB 8-way on percentages of 2xPI: below 5%, between 5-25%, between 25-
Latency 7 cycles 50%, above 50%, and infinity or NaN. The last category for both
L3 Cache 2MB 16-way measures shows cases where the error has blown up. Note that in
Latency 16 cycles all cases, every constraint and every object position will map to one
Functional Units per Cluster || 2,2,2,2 of these categories, even if there is an exact match (i.e. the position
(Int, Int, Mem port, FP) error is 0 cm). This ensures that we are always comparing the same
Mem Latency 160 cycles number of possible errors for a given benchmark.

Table 3: Parameters for our architectural configuration.

5.4 Results

Figure 8 shows the frame rate (primary axis, bars) and % frames
satisfied (secondary axis, diamonds) for QuickStep with 20 itera-

tions (20Iter), QuickStep with 19 iterations (19Iter), Fast Estima-
tion with Error Control (FEEC), Fuzzy Value Prediction (fuzzy to
107° meters) (FVP6), Exact Value Prediction (EVP), and FEEC
with FVP6 (F+F). FEEC has a dramatic effect on Environ, Battle,
and Fight - all three applications are able to completely satisfy their
frame constraints. CrashWa and Battle prove especially difficult to
satisfy. On average, FEEC improves performance over 20Iter by
220% with minimal error as described below.

Considering the hardware overhead of value prediction, this ap-
proach seems less attractive than FEEC when there are plenty of
core contexts available to continue to run physics simulation. FVP6
alone is able to see more frames satisfied for Fight and improves
Battle2’s frame-rate by 24%. When combined with FEEC, FVP6
degrades the frame-rate of three tests and marginally improves the
rest. The degradation mainly comes from the formation of larger
islands due to the errors introduced. The in-depth study of this be-
havior will be future work. In the rest of this section, we focus on
the errors generated by FEEC.

Despite FEEC’s performance advantage, this same benefit could be
obtained by reducing the iteration count directly. Therefore, we
need to compare the errors seen by FEEC to a single iteration with
Quickstep.

Figure 9 shows the error breakdown for the FEEC approach. Re-
sults are shown in a grid of four figures: the first row of two fig-
ures represents geometric error, and the second row represents con-
straint error. The first column represents position and the second
column represents orientation. In each figure, three architectures
are shown: QuickStep with 19 iterations, QuickStep with 1 itera-
tion, and FEEC. The figures are oriented such that the benchmarks
and architectures line up vertically — so the geometric and constraint
position errors for CrashWa for Iter19 are vertically aligned.

These results clearly demonstrate that FEEC is able to achieve er-
rors comparable to Iter19, sometimes doing better and sometimes
doing worse. In all cases, there are few cases where the computa-
tion blows up for either Iter19 or FEEC — unlike Iter] which has a
substantial number of the highest class of errors. Due to the severe
errors introduced with Iterl, its performance data is meaningless in
that image data created is not usable. This is verified visually with
image reconstructions.

6 Summary

Interactive entertainment applications are rapidly gaining signifi-
cance from both technical and economical point of views. In this
paper, we explore a core content-creation mechanism — real-time
physics simulation — that will be central to future immersive work-
loads. First, we present a suite of benchmarks, PhysicsBench, to
represent this new workload. Then, we explore PhysicsBench on
a real world system. After showing the significant computational
power required to satisfy PhysicsBench’s frame demands, we de-
tail three paths of architectural exploration to help achieve these
requirements with existing hardware.

Parallel execution of both collision detection and physics simula-
tion components enables significant speedup to satisfy the require-
ments for several benchmarks. With the addition of Fast Estima-
tion with Error Control (FEEC), current processors can begin to
satisfy the constraints of even complicated scenarios. This tech-
nique provides a unique opportunity to leverage multiple cores by
allowing physics simulation to continue in parallel with other game
engine tasks. Despite the promise of breaking true data dependen-
cies, fuzzy value prediction is not able to significantly accelerate

the majority of workloads we explored.

Given the rapid change and wide range of future real-time physics
simulation, we will continue to refine and augment PhysicsBench.
Future work will examine techniques to exploit the available mas-
sive fine-grain parallelism, i.e. parallelizing the computation of one
massive island. This exploration will look at both single chip and
discrete chip solutions such as Cell [Hofstee 2005], Xenon [Mi-
crosoft], GPU [Havok], and PPU [AGEIA]. More complex esti-
mation methods for FEEC will also be evaluated.

From the findings of this paper, we expect highly parallelized
real-time physics engines in the near future to enable more re-
alistic applications. Furthermore, the recent push toward chip-
multiprocessors will enable game programmers to exploit the avail-
able parallelism in creating large immersive experiences.

Acknowledgments

The work in this paper was supported by NSF CAREER grant
No. CCR-0133997 and NSF grant No. CCF-0429983. We thank
Intel Corp., Microsoft Corp., ATI Corp. and Alias Corp. for their
generous support through equipment and software grants. We also
thank Eric Wood for simulation infrastructure support.

References

AGEIA. Physx product overview. www.ageia.com.

ALVAREZ, C., CORBAL, J., AND VALERO, M. 2005. Fuzzy memoization for floating-
point multimedia applications. In IEEE Transactions on Computers.

BARAFF, D. 1997. Physically Based Modeling: Principals and Practice. SIGGRAPH
Online Course Notes.

CALDER, B., REINMAN, G., AND TULLSEN, D. 1999. Selective value prediction. In
26th Annual International Symposium on Computer Architecture, 64-74.

CNET. Playstation 3: the next generation. http:/news.com.com/2100-1040-
866288.html.

EVERYTHING, AND NOTHING.
www.everythingandnothing.org.uk.

World wide selling software. In

GUTHAUS, M., RINGENBERG, J., ERNST, D., AUSTIN, T., MUDGE, T., AND
BROWN, R. 2001. Mibench: A free, commercially representative embedded
benchmark suite. In IEEE 4th Annual Workshop on Workload Characterization.

HARRISON, J., RENSINK, R. A., AND VAN DE PANNE, M. 2004. Obscuring length
changes during animated motion. ACM Trans. Graph. 23, 3, 569-573.

HAVOK. http://www.havok.com/content/view/187/77.
HOFSTEE, P. 2005. Power efficient architecture and the cell processor. In HPCAI1.
INITIATIVE, S. G. http://www.seriousgames.org/.

LIPASTI, M., WILKERSON, C., AND SHEN, J. 1996. Value locality and load value
prediction. In Seventh International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, 138-147.

MAGICBOX. Japan platinum videogame chart. In www.the-magicbox.com.
MAGICcBoOX. Us platinum videogame chart. In www.the-magicbox.com.

MATTHEWS, B., WELLMAN, J., AND GSCHWIND, M. 2004. Exploring real time
multimedia content creation in video games. In 6th Workshop on Media and
Streaming Processors.

MICROSOFT. Xbox 360. http://www.xbox360.com/.

NINTENDO. Revolution. http://www.nintendo.com/newsarticle?articleid=5aa863 1e-
d4a0-45d9-a88¢-e5931b807091.

OLUKOTON, K., NAYFEH, B., HAMMOND, L., WILSON, K., AND CHANG, K. 1996.
The case for a single-chip multiprocessor. In ASPLOS-VII.

REITSMA, P. S. A., AND POLLARD, N. S. 2003. Perceptual metrics for character
animation: sensitivity to errors in ballistic motion. ACM Trans. Graph. 22, 3.

SHAPIRO, A., PIGHIN, F., AND FALOUTSOS, P. 2003. Hybrid control for interactive
character animation. In Proceedings of the 11th Pacific Conference on Computer
Graphics and Applications.

SMITH, R. Open dynamics engine. http://www.ode.org.

TUCK, N., AND TULLSEN, D. 2005. Multithreaded value prediction. In HPCAI1.

U.S. ARMY. The official us. army game: America’s army.
http://www.americasarmy.com/.

V. KOKKEVIS, S. OSMAN, E. L. 2006. High-performance physics solver design for
next generation consoles. In Game Developers Conference.

Wu, D. 2005. Physics in parallel: Simulation on 7th generation hardware. In Game
Developers Conference.

YOURST, M. T. Ptlsim user’s guide and reference: The anatomy of an x86-64 out of
order microprocessor. In http://www.ptlsim.org.

ZORDAN, V. B., MAJKOWSKA, A., CHIU, B., AND FAST, M. 2005. Dynamic
response for motion capture animation. ACM Trans. Graph. 24, 3, 697-701.

