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An ambitious goal in the area of physics-based computer animation is the creation of virtual

actors that autonomously synthesize realistic human motions and possess a broad repertoire

of lifelike motor skills. To this end, the control of dynamic, anthropomorphic figures subject

to gravity and contact forces remains a difficult open problem. We propose a framework for

composing controllers in order to enhance the motor abilities of such figures. A key contribution

of our composition framework is an explicit model of the “pre-conditions” under which motor

controllers are expected to function properly. We demonstrate controller composition with

pre-conditions determined not only manually, but also automatically based on Support Vector

Machine (SVM) learning theory. We evaluate our composition framework using a family of

controllers capable of synthesizing basic actions such as balance, protective stepping when

balance is disturbed, protective arm reactions when falling, and multiple ways of standing up

after a fall. We furthermore demonstrate these basic controllers working in conjunction with

more dynamic motor skills within a two-dimensional and a three-dimensional prototype virtual

stuntperson. Our composition framework promises to enable the community of physics-based

animation practitioners to more easily exchange motor controllers and integrate them into

dynamic characters.

ii



Dedication

To my father, Nikolaos Faloutsos, my mother, Sofia Faloutsou, and my wife, Florine Tseu.

iii



Acknowledgements

I am done! Phew! It feels great. I have to do one more thing and that is to write the
acknowledgements, one of the most important parts of a PhD thesis. The educational process of
working towards a PhD degree teaches you, among other things, how important the interaction
and contributions of the other people are to your career and personal development. First,
I would like to thank my supervisors, Michiel van de Panne and Demetri Terzopoulos, for
everything they did for me. And it was a lot. You have been the perfect supervisors. THANK
YOU! However, I will never forgive Michiel for beating me at a stair-climbing race during a
charity event that required running up the CN Tower stairs. Michiel, you may have forgotten,
but I haven’t!

I am grateful to my external appraiser, Jessica Hodgins, and the members of my supervi-
sory committee, Ken Jackson, Alejo Hausner and James Stewart, for their contribution to the
successful completion of my degree.

I would like to thank my close collaborator, Victor Ng-Thow-Hing, for being the rich-
est source of knowledge on graphics research, graphics technology, investing and martial arts
movies. Too bad you do not like Jackie Chan, Victor.

A great THANKS is due to Joe Laszlo, the heart and soul of our lab’s community spirit. Joe
practically ran our lab during some difficult times. He has spent hours of his time to ensure the
smooth operation of the lab and its equipment. I am also grateful to Joe for tons of inspiring
discussions, and for performing all kinds of stunts that I needed to see for my thesis work. His
performance has been ...forever captured in this thesis.

I would also like to thank all the DGP lab members for creating an amazing research envi-
ronment. Thanks Eugene Fiume, Michael Neff, Glenn Tsang, Meng Sun, Chris Trendal, David
Mould, Corina Wang, Ryan Meredith-Jones, Anastasia Bezerianos, Paolo Pacheco, monica
schraefel, Alejo Hausner, Sageev Oore, David Modjeska. Glenn, thanks for being the BZFlag
darklord and for getting upset when I called you a “scavenger”, I loved it.

A lot of thanks is due to the Greek gang’s past and present members: Periklis Andritsos,
Theodoulos Garefalakis, Panayiotis Tsaparas, Vassilis Tzerpos, Spyros Angelopoulos, Stergios
Anastasiadis, Angeliki Maglara, Rozalia Christodoulopoulou, Anastasia Bezerianos, Georgos
Katsirelos, Georgos Chalkiadakis, Georgos Giakoupis, Giannis Papoutsakis, Giannis Velegrakis,
Tasos Kementsietsidis, Fanis Tsandilas, Mixalis Flouris, Nora Jantschukeite, Themis Palpanas,
Giannis Lazaridis, Giannis Kassios, Anna Eulogimenou, Verena Kantere, and whoever I am
forgetting. Theo, thanks for laughing with my jokes. Panayioti, thanks for proving that time
travel is possible if you are late enough. Vassili, thanks for the giouvarlakia that you cooked
long time ago. Perikli, thanks for cooking pastitsio. Themi, thanks for not cooking. Lazaridaki,
one day I WILL touch your basketball. Special thanks to my office mates, Rozalia and Periklis,
for putting up with my gym bag.

Thanks to my old friends in Greece, Penny Anesti, Gwgw Liassa, Yiannis Tsakos, Athanasios
Stefos and Aleksandros Xatzigiannis. Yianni, it is time to tell you that that day in kindergarten
I was not crying. I, strategically, pretended.

Our ex-graduate administrator, Kathy Yen, has made the early parts of my student life so
much easier. Kathy, thank you very much for everything. Thanks also to our current graduate
administrator, Linda Chow, for all her help.

Finally, I would like to thank my family, my partner in life Florine Tseu, brother emeritus
Piotrek Gozdyra, Michalis Faloutsos, Christos Faloutsos, Christina Cowan, Maria Faloutsou,
Antonis Mikrovas, Christos Mikrovas, Aleksis Kalamaras and most of all my father, Nikolaos
Faloutsos, and my mother, Sofia Faloutsou. Guys, you have made this possible. Christo,

iv



thanks for all the advice! Michalis and Piotrek, thanks for everything! I would also like to
thank Katherine Tseu, Irene Tseu, Dureen Tseu, for everything they have done for me. Thanks
also to my mutts, Missa and Petra, for guarding our house from ferocious squirrels and for not
eating my PhD thesis.

v



Contents

1 Introduction 1
1.1 Autonomous Characters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Summary of Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4.1 Our virtual characters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4.2 Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.5 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.6 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.7 Thesis structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Previous Work 12
2.1 Biomechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 Robotics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3 Computer Animation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4 Controller composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.5 Simulated control systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.5.1 Commercial animation software . . . . . . . . . . . . . . . . . . . . . . . . 18
2.5.2 Robotics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 Composition Framework 20
3.1 Composing controllers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2 Our composition framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.3 Controller abstraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.4 Pre-conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.5 Post-conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.6 Expected performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.7 Arbitration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.8 Transitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.9 Determining pre-conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.10 Manual approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.11 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4 Learning pre-conditions 29
4.1 Machine learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2 Learning the pre-conditions as a machine learning problem . . . . . . . . . . . . 30
4.3 Choosing a classification method . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

vi



4.4 Support Vector Machines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.5 Applying SVMs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5 Simulation 38
5.1 Physics-based simulation of articulated figures . . . . . . . . . . . . . . . . . . . . 38

5.1.1 Numerical solution of the equations of motion . . . . . . . . . . . . . . . . 39
5.2 Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.3 Design methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.4 Our control structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.5 Supervisor controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.5.1 Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.5.2 Command interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.6 Implementing the composable API . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.7 Default Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.8 Everyday Actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.8.1 Balancing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.8.2 Falling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.8.3 Stand-to-sit and sit-to-crouch . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.8.4 Rising from a supine position . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.8.5 Rolling over . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.8.6 Rising from a prone position . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.8.7 Kneel-to-crouch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.8.8 Step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.8.9 Protective step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.8.10 Crouch-to-stand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.8.11 Double-stance-to-crouch . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.8.12 Walk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.9 Stunts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.9.1 The kip move . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.9.2 Plunging and rolling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.10 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6 Dynamic Animation and Control Environment 65
6.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
6.2 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
6.3 Component abstraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6.3.1 Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
6.3.2 Simulators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
6.3.3 Actuators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
6.3.4 Ground actuator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
6.3.5 Musculotendon model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
6.3.6 Geometries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6.4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
6.5 Who is DANCE for? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

vii



7 Results 79
7.1 Robot sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
7.2 Skeleton sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
7.3 Multiple characters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
7.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

8 Conclusions and Future Work 84
8.1 Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
8.2 Multiple controllers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
8.3 Training set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
8.4 Expected performance and pre-conditions. . . . . . . . . . . . . . . . . . . . . . . 86
8.5 Additional testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
8.6 Future: Intelligent agents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

A SVMlight parameters 88

B SD/Fast description file for our 3D character 90

C SD/Fast description file for our 2D character 93

D DANCE script for the tackle example 96

Bibliography 98

viii



List of Figures

1.1 Layers of an intelligent virtual character. . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 An overview of the system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 A dynamic “virtual stuntman” falls to the ground, rolls over, and rises to an

erect position, balancing in gravity. . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Dynamic models and their degrees of freedom (DOFs). . . . . . . . . . . . . . . . 5
1.5 Controllers for the 2D character. . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.6 Controllers for the 3D character. . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.1 An abstract visualization of potential transitions between controllers for walking
and running. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 Degrees of continuity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3 Motion curve blending. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.4 Two level composition scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.5 Controller selection and arbitration during simulation. . . . . . . . . . . . . . . . 24
3.6 Controllers and typical transitions for 3D figure . . . . . . . . . . . . . . . . . . . 27
3.7 Controllers and typical transitions for 2D figure . . . . . . . . . . . . . . . . . . . 27

4.1 Training set and actual boundary for a 2D problem. . . . . . . . . . . . . . . . . 30
4.2 Two dimensional SVM classifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.1 An articulated character. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.2 Controlling an articulated character. . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.3 A stand-sit-stand pose controller. . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.4 A few sensors associated with the 3D model. . . . . . . . . . . . . . . . . . . . . 43
5.5 Manual and learned approximations of the success region. . . . . . . . . . . . . . 45
5.6 Critically damped balance controller. . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.7 Falling in different directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.8 Sitting and getting up from a chair. . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.9 Rising from a supine position on the ground and balancing erect in gravity. . . . 55
5.10 Taking a step. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.11 The kip move performed by both a real and a virtual human. . . . . . . . . . . . 60
5.12 Ouch! . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.13 Plunge and roll on a different terrain. . . . . . . . . . . . . . . . . . . . . . . . . 62
5.14 Different crouching configurations. . . . . . . . . . . . . . . . . . . . . . . . . . . 64

6.1 The architecture of DANCE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
6.2 Articulated figures in DANCE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
6.3 Working with articulated figures in DANCE. . . . . . . . . . . . . . . . . . . . . 69
6.4 Dynamic free-form deformations in DANCE. . . . . . . . . . . . . . . . . . . . . 70

ix



6.5 A two-link ...saltshaker. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.6 Working with articulated figures in DANCE. . . . . . . . . . . . . . . . . . . . . 74
6.7 A complex muscle actuator, courtesy of Victor Ng-Thow-Hing. . . . . . . . . . . 75
6.8 Class hierarchy in DANCE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

7.1 The terminator sequence, left to right and top to bottom. . . . . . . . . . . . . . 80
7.2 A dynamic “virtual stuntman” falls to the ground, rolls over, and rises to an

erect position, balancing in gravity. . . . . . . . . . . . . . . . . . . . . . . . . . . 82
7.3 Two interacting virtual characters. . . . . . . . . . . . . . . . . . . . . . . . . . . 82
7.4 Articulated and flexible characters. . . . . . . . . . . . . . . . . . . . . . . . . . . 83

8.1 A sequence of controllers chosen by a planner. . . . . . . . . . . . . . . . . . . . . 85

x



Chapter 1

Introduction

1.1 Autonomous Characters

An ambitious goal that is shared between a number of different scientific areas is the creation
of virtual characters that autonomously synthesize realistic human-like motions and possess
a broad repertoire of lifelike motor skills. Computer graphics, robotics, and biomechanics re-
searchers are all interested in developing skillful human characters that can simulate a real
human in terms of visual appearance, motor skills and ultimately reasoning and intelligence.
Developing a simulated character of human complexity is an enormous task. Humans are ca-
pable of performing a very wide variety of motor control tasks ranging from picking up a small
object, to complex athletic maneuvres such as serving a tennis ball, and many others, Schmidt
and Wrisberg [94]. Determining appropriate motor control strategies so that a simulated char-
acter can reproduce them is surprisingly difficult even for everyday motions such as walking.

Geometry

Physics

Motor Control

Behaviour

Reasoning

Kinematic 
Techniques

Figure 1.1: Layers of an intelligent virtual character.

A simulated human character can be described in terms of a number of hierarchical layers as
presented in Figure 1.1. At the bottom of the hierarchy is the most tangible layer that simply
models the character’s visual appearance using suitable geometric representations. The Physics
layer models the dynamic and physical properties of the character such as, muscle and body
structure. It also provides the relation between the kinematic state of the character and the
applied forces. The Motor Control layer is responsible for the coordination of the character’s
body so that it can perform desired motor tasks. The Behavior layer implements behaviors that
are based on external stimuli and the character’s intentions and internal state. Examples of
such behaviors are “Eat when you are hungry” and “Move away from danger.” The top layer,
Reasoning, models the ability of a character to develop autonomously new behaviors based on
reasoning and inference. It is worth noting that the classic kinematic animation techniques such

1



Chapter 1. Introduction 2

as the ones used by the film industry, directly connect the behavior and the geometry layers,
Figure 1.1. Characters are animated in a fashion similar to puppeteering or using precomputed
motions. In contrast, the foundation of physics-based and robotic techniques is the motor
control layer, which attempts to model the way real creatures coordinate their muscles in order
to move about.

It is clear that the goal of developing skillful simulated characters is highly interdisciplinary
and broad. The next section describes the specific problem we are trying to solve and where
our work lies within the above hierarchy.

1.2 Problem Statement

The work in this thesis involves the motor control layer shown in Figure 1.1. Our goal is to
work towards the development of virtual characters that have a wide portfolio of motor control
skills. At the same time, we aim to implement an animation toolbox that allows practioners to
build upon and re-use existing research results.

Developing complex, skillful, simulated characters is an enormous task. Complex characters
such as humans, are capable of performing a great range 1 of sophisticated motions that can
be very dynamic and highly optimized. Clearly, a divide-and-conquer technique is a promising
way to tackle the problem. Developing robust parameterized motor control for such characters
has been an active area of research both in robotics and in computer animation. However, the
results are still limited. In addition, the isolation and separation of research results limits the
progress in the area. Typically, research groups use their own custom software and characters
and it is therefore difficult to share and reuse results. Because of the difficulty of producing good
results there is a clear need for cooperation in the area. To realize a useful level of cooperation
we need (a) a conceptual framework that allows the integration of multiple motion controllers
in one functional set; and (b) a software system that can serve as the common platform for
research in the area. These problems are the focus of this work.

1.3 Methodology

Our methodology is based on the idea of incrementally expanding the character’s skills. We
start with the basic motor skills, such as balancing upright, and work our way outwards towards
more complex motions. Our framework allows researchers to implement controllers using their
own techniques and add them in our system, thus realizing an incremental scheme where the
character’s repertoire of skills expands with every added controller.

We propose a simple framework for composing specialist controllers into more general and
capable control systems for dynamic characters. In our framework, individual controllers are
black boxes encapsulating control knowledge that is possibly gleaned from the biomechanics
literature, derived from the robotics control literature, or developed specifically for animation
control. Individual controllers must be able to determine two things: (1) a controller should
be able to determine whether or not it can take the dynamic character from its current state
to some desired goal state, and (2) an active controller should be able to determine whether
it is operating nominally, whether it has succeeded, or whether it has failed. Any controller
that can answer these queries may be added to a pool of controllers managed by a supervisor

1Schmidt and Wrisberg [94] provide a categorization of abilities that humans have in various degrees in order
to perform everyday or athletic motions.
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User Interaction

Simulator and

Physical model

Display

Supervisor Controller

Pool of Controllers

Control Framework

Figure 1.2: An overview of the system.

Figure 1.3: A dynamic “virtual stuntman” falls to the ground, rolls over, and rises to an erect
position, balancing in gravity.

controller whose goal is to resolve more complex control tasks. The supervisor controller does
not need to know specific information about each available controller, which allows controllers
to be added in or removed from or at run time. Figure 1.2 shows a schematic representation of
our system.

An important technical contribution within our controller composition framework is an ex-
plicit model of pre-conditions. Pre-conditions characterize those regions of the dynamic figure’s
state space within which an individual controller is able to successfully carry out its mission.
Initially, we demonstrate the successful composition of controllers based on manually deter-
mined pre-conditions. We then proceed to investigate the question of whether pre-conditions
can be determined automatically. We devise a promising solution which employs Support Vec-
tor Machine (SVM) learning theory. Our novel application of this technique learns appropriate
pre-conditions through the repeated sampling of individual controller behavior in operation.

As a test bed for our techniques, we are developing a physically simulated animated character
capable of a large repertoire of motor skills. An obvious application of such a character is the
creation of a virtual stuntperson: the dynamic nature of typical stunts makes them dangerous
to perform, but also makes them an attractive candidate for the use of physics-based animation.
The open challenge here lies in developing appropriate control strategies for specific actions and
ways of integrating them into a coherent whole.
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We demonstrate families of composable controllers for articulated skeletons whose physical
parameters reflect anthropometric data consistent with a fully fleshed adult male. One family
of controllers is for a 37 degree-of-freedom (DOF) 3D articulated skeleton, while a second
family of controllers has been developed for a similar 16 DOF 2D articulated skeleton. While
the 3D skeleton illustrates the ultimate promise of the technique, the 2D skeleton is easier to
control and thus allows for more rapid prototyping of larger families of controllers and more
careful analysis of their operation. As evidenced by the number of past and present papers
on controlling 2D walking and jumping, in the robotics literature, the control of broad skilled
repertoires of motion remains very much an open problem even for 2D articulated figures.
Having fewer degrees of freedom saves significant amounts of time, both during simulation and
during the learning of the pre-conditions. In general, control and machine learning techniques
for complex simulated human characters and high dimensional spaces are faced with the well-
known curse of dimensionality [20], therefore using a simplified version of a problem improves
greatly the efficiency of the algorithms used. The composition framework we are proposing
makes no assumptions of dimension and has no knowledge of how the participating controllers
work. Therefore it can handle both the two dimensional and the three dimensional case.

Figure 1.3 illustrates the 3D dynamic character autonomously performing a complex control
sequence composed of individual controllers responsible for falling reactions, rolling-over, getting
up, and balancing in gravity. The upright balancing dynamic figure is pushed backwards by
an external force; its arms react protectively to cushion the impact with the ground; the figure
comes to rest in a supine position; it rolls over to a prone position, pushes itself up on all fours,
and rises to its feet; finally it balances upright once again. A subsequent disturbance will elicit
similar though by no means identical autonomous behavior, because the initial conditions and
external forces will usually not be exactly the same. Control sequences of such intricacy for
fully dynamic articulated figures are unprecedented in the physics-based animation literature.

Our framework is built on top of DANCE, a software system that we have developed jointly
with Victor Ng-Thow-Hing. We provide both the composition module and the base software
system for free for non-commercial use with the hope that it will become the main tool for
research in the area. In that case, practitioners will be able to share, exchange and integrate
controllers. We believe that this can significantly advance the state of the art in physics-based
character animation which is currently hampered by the segmentation and isolation of research
results.

1.4 Summary of Results

This section provides an overview of our experiments and the results we are able to achieve
with our method. We first describe our dynamic virtual characters and then their control.

1.4.1 Our virtual characters

Fig. 1.4 depicts our 2D and 3D articulated character models. The red arrows indicate the
joint positions and axes of rotational degrees of freedom (DOFs) which are also enumerated
in the table. The 3D skeleton model has 37 DOFs, six of which correspond to the global
translation and rotation parameters. The table in Fig. 1.4 lists the DOFs for the skeleton and
a 2D “terminator” model. The dynamic properties of both models, such as mass and moments
of inertia, are taken from the biomechanics literature (see Winter [109]) and correspond to
a fully-fleshed adult male. In particular, the total weight of each model is 89.57 kilograms.
The movement of the rotational degrees of freedom of the models is restricted by the physical
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Y
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Z

Y

X

Z

Joint Rotational DOFs Rotational DOFs
3D skeleton model 2D terminator model

Head 1 1
Neck 3 1

Shoulder 2 1
Elbow 2 1
Wrist 2 -
Waist 3 1
Hip 3 1
Knee 1 1
Ankle 2 1

Figure 1.4: Dynamic models and their degrees of freedom (DOFs).



Chapter 1. Introduction 6

Joint Axis Lower limit Upper limit
Waist x -45 90
Waist z -55 55
Waist y -50 50
Neck x -50 90
Neck z -60 60
Neck y -80 80
Head x -45 45
Right shoulder z -90 90
Right shoulder y -80 160
Right elbow y 0 120
Right elbow x -90 40
Right hand z -90 90
Right hand y -45 45
Right thigh x -165 45
Right thigh y -120 20
Right thigh z -20 20
Right knee x 0 165
Right foot x -45 50
Right foot z -2 35

Table 1.1: The joint limits of the 3D model.

limits of the human body. After using our own intuition and researching the literature we have
decided to use the joint limits indicated in Table 1.1.

The equations of motion for both models are generated by SD/Fast [49] software, as de-
scribed in Section 6.3.2. The script files used by the SD/Fast simulator compiler are given in
Appendix B and Appendix C. They include all the details pertaining to our two dynamics
models such as the mass, moments of inertia and dimensions of each body part.

1.4.2 Control

To test our framework we have implemented a number of composable controllers for a two
dimensional and a three dimensional dynamic human model. The controllers for both models
implement everyday motions such as taking steps and interesting stunts. The protective and
falling behaviors that our simulated characters can perform when pushed along any arbitrary
direction are of particular interest. The following controllers have been developed for the two
dimensional character:

1. Balance. Maintains an upright stance using an inverted pendulum mode.

2. Walk. Takes a user-specified number of slow, deliberate steps.

3. Dive. Dives forward at a specified takeoff angle.

4. ProtectStep. When unbalanced it tries to take a step to maintain an upright stance.

5. Fall. Uses the arms to cushion falls in both forward and backward directions.

6. ProneToKneel. Takes the character from a prone position to a kneeling position.
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7. SupinetoKneel. Takes the character from a supine position to a kneeling position.

8. KneelToCrouch. Takes the character from a kneeling position to a crouch.

9. DoubleStanceToCrouch. When the character is standing with one foot in front of the
other it brings both feet side by side.

10. CrouchToStand. When the character is crouching, i.e. standing with its legs together but
not straightened, this controller will straightened up the character and bring him to an
upright stance.

11. Sit. Move from a standing position to a sitting position.

12. SitToCrouch. Move from a sitting position to a crouch.

13. DefaultController. Attempts to keep the character in a comfortable default position when
no other controller can operate.

For the three dimensional character we have developed the following controllers:

1. Balance. Maintains an up right stance using an inverted pendulum model.

2. Step. Takes one step forward for a specific starting state.

3. Dive. Dives forward at a specified takeoff angle.

4. ProtectStep. When unbalanced it tries to take a step to maintain an upright stance. It
usually fails to maintain balance, but helps reduce the impact of the fall.

5. Fall. When falling it tries to absorb the shock using the arms. It is capable of handling
falls in any direction.

6. SupineToCrouch. Takes the character from a supine 2 position to a crouch.

7. ProneToCrouch. Takes the character from a face down prone 3 position to a crouch.

8. RollOver. Takes the character from a supine to a face down prone position.

9. CrouchToStand. When the character is standing with its legs together but not straight-
ened this controller straights the character.

10. Kip. A technique employed by gymnasts and martial artists to return to a standing
position from a supine position.

11. Sit. Move from a standing position to a seated position.

12. SitToCrouch. Rise from a sitting position to a crouch.

13. StandToAllFour. Takes the character from a standing position to a position on the hands
and knees.

14. DefaultController. Attempts to keep the character in a comfortable default position when
no other controller can operate.
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(a) Slow steps (b) Supine to kneel.

(c) Prone to kneel. (d) Kneel to crouch.

(e) Taking a protective step when pushed back-
wards.

(f) Wide stance to crouch.

Figure 1.5: Controllers for the 2D character.
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(a) Stand in place (b) Stand to all fours.

(c) Prone to crouch. (d) Crouch to stand.

(e) Roll over. (f) Suicidal dive.

(g) Protective steps in various directions. (h) Sit down.

(i) Sit to stand. (j) Fall in various directions.

(k) Supine to crouch. (l) Two interacting 3D characters.

Figure 1.6: Controllers for the 3D character.
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Figures 1.5 and 1.6 show characteristic snapshots of the motions produced for 2D and the 3D
models respectively.

1.5 Applications

Physics-based autonomous characters that can be directed to perform interesting motor tasks
are an alternative to kinematically based animation methods. The physics-based aspect of
these characters allows easier and more accurate modeling of the physical contact and col-
lisions. Employing physical simulation avoids the repeatable and predictable motions that
kinematic methods tend to produce. In addition, the realism and automation associated with
physics-based techniques, can be very convenient for ballistic motions that involve collisions. In
particular, the motions produced by our falls controllers when the character falls under gravity
are physically accurate and completely automated.

Autonomous simulated agents that can be instructed to perform difficult or dangerous stunts
are probably one of the best immediate applications for the film industry. A prime example of
such motions is the dive-down-the-stairs sequence depicted in Figure 1.6 (f). Virtual actors have
been used already in feature films. The movie Titanic by Paramount Studios and Twentieth
Century Fox is one of the first movies to employ kinematically-driven digital actors to depict
real people in a crowd scene.

Autonomous physics-based agents capable of performing sequences of complex motor tasks
are also very important for the next generation of computer games. Parameterized kinematic
motions are the most common method for animating interactive agents in the gaming industry.
However, they are limited to precomputed variations of a nominal motion and they cannot
model well physical contact and interaction. Sophisticated games that involve complex group
behaviors, athletic skills and physical contact can potentially benefit from the use of physics-
based skillful agents.

Biomechanics and robotics research have an ongoing interest in understanding and modeling
the human body and motor control skills. Our control framework can also be potentially the
basis for simulation and modeling in these areas, allowing researchers to combine and build
upon existing results.

Education in simulation, control and animation techniques can significantly benefit from
inexpensive and versatile tools. The DANCE software system is an open source tool that can
be used easily in a classroom. It is freely available, portable, extensible and modular, allowing
students to experiment with a variety of interesting problems. It can be used as the common
platform that allows students to use existing results, share their results, collaborate on projects
and visualize their work. DANCE’s modular and plugin architecture renders it particularly
suitable for collaborative projects and fun classroom competitions.

DANCE and its plugins have been used for research in graphics, biomechanics and robotics
and for applications such as human simulation, virtual puppeteering, digitized muscle data
visualization, implementation of inverse kinematics techniques for human animation and flexible
object simulation. We believe that it can become the common platform for research in these
areas facilitating collaboration and the re-use of existing results.

2At a supine position the character lies on his/her back facing up.
3At the prone position the character lies on his/her belly facing down.
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1.6 Contributions

The main contributions of this thesis are summarized as follows:

• We propose and implement a framework for controller composition based on the concepts
of pre-conditions, post-conditions, and expected performance.

• We implement a software system that implements this framework, and we offer it to the
research community. It includes modules that perform collision detection4 and resolution
for arbitrary polygonal objects.

• We investigate the use of support vector machines for the classification of multi-dimensional
state spaces for animation purposes.

• We implement physics-based controllers for reactive falling behaviors, interesting stunts,
and everyday motions for a 2D and a 3D dynamic model.

• We demonstrate the successful use of our framework in composing these multiple con-
trollers together to allow for 2D and 3D human models to exhibit integrated skills.

A minor contribution of this thesis is that we provide the research community with a freely
available software for simulating a 36-DOF dynamic human model 5.

1.7 Thesis structure

The remainder of this thesis is organized as follows. After reviewing related prior work in
Chapter 2, we present the details of our control framework in Chapter 3. We then investigate
the question of determining pre-conditions in Chapter 4. Chapter 5 describes the controllers
we have implemented and Chapter 6 presents our software system. Chapters 7 presents the
details of the example in Figure 1.3 along with several other examples that demonstrate the
effectiveness of our framework. Chapter 8 concludes this thesis and discusses avenues for future
research opened up by our work.

4Based on the RAPID collision detection library.
5Symbolic Dynamics Inc. has agreed to the free distribution of the equations of motion of the model.
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Previous Work

The simulation and animation of human characters is a challenging problem in many respects.
Comprehensive solutions must aspire to distill and integrate knowledge from biomechanics,
robotics, control, and animation. Models for human motion must also meet a particularly
high standard, given our familiarity with what the results should look like. Not surprisingly,
a divide-and-conquer strategy is evident in most approaches, focusing efforts on reproducing
particular motions in order to yield a tractable problem and to allow for comparative analysis.

Biomechanics, robotics and animation research share a number of common goals and prob-
lems with respect to understanding and modeling the human motor control system. They
approach these problems from different angles. Biomechanics research focuses on medical ac-
curacy and detail, robotics focuses on building skillful machines and animation focuses on
developing virtual humans. This chapter presents an overview of relevant results in these areas
and elaborates on the similarities and the differences between robotics and animation research.

2.1 Biomechanics

The biomechanics literature provides a variety of sophisticated models and data. A great body
of work in this area involves producing anthropometric parameters for the average human. Such
information includes static parameters such as the dimensions and the absolute and relative
weights of the body parts of the average human, Winter [109]. Anthropometry is also concerned
with dymamic parameters such as the maximum and minimum torques that the average human
can exert with his/her muscles. Komura et al. [59] propose a method for the calculation of the
maximal acceleration and force that a simulated model exhibits during arbitrary motions. This
method can be used to enforce physical limits on the accelerations and forces associated with
simulated motions.

The biomechanics literature is also a useful source of predictive models for specific motions,
typically based on experimental data supplemented by careful analysis. These models tar-
get applications such as medical diagnosis, the understanding and treatment of motor control
problems, the analysis of accidents and disabilities, and high-performance athletics. Computer
simulation is becoming an increasingly useful tool in this domain as the motion models evolve
to become more complex and comprehensive. Given the challenge of achieving high-fidelity mo-
tion models for individual motions, there have been fewer efforts towards integrated solutions
applicable to multiple motions. The work of Pandy [82] is one such example.

The human body is capable of performing a wide range of motor control tasks, ranging from
standing in place, to challenging athletic maneuvres such as a high bar kip. One of the most

12
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fundamental tasks that humans are able to perform is stand in place (quiet stance). Even such
a simple task involves a number of subtle motor control issues. Fitzpatrick et al. [30] investigate
the reflex control of postural sway during human bipedal stance. They find that reflex feedback
related to ankle movement contributes significantly to maintaining stance and that much of
the reflex response originates from lower limb mechanoreceptors that are stimulated by ankle
rotation. Fitzpatrick et al. [32] discuss how the stiffness at the ankle joints is used as a response
to gentle perturbations during standing. Fitzpatrick and McCloskey [31] compare the role
of different sensor mechanisms that can be used by humans to detect postural sway during
standing. They conclude that, during normal standing, proprioceptive input from the legs
provides the most sensitive means of perceiving postural sway. Gatev et al. [34] investigate
strategies that people use to maintaining balance during quiet stance and subject to gentle
perturbations. They discover that subjects increased their use of the hip joints as the width
of the stance became narrower. In addition, they find evidence which suggests that the slow
and small sway that is present during quiet stance might be important to provide updated and
appropriate sensory information helpful to standing balance.

Understanding the response of the human body to large external disturbances is very im-
portant for clinical studies and for identifying ways to prevent falls among the elderly. At
the same time it is an important action for robotic and animation applications that involve
autonomous agents. Large disturbances can induce significant velocity on the center of mass.
Recent research work in biomechanics tries to understand the relationship between the velocity
and the position of the center of mass and how it affects the response of a human subject. Pai
and Patton [81] determine which velocity–position combinations a person can tolerate and still
regain balance without initiating a fall. Their work employs a two segment inverted pendulum
model and focuses on anterior movements. Pai and Iqbal [80] use a simple inverted pendulum
model to compute similar feasible regions in the case of slipping on floors with varying friction
and forced sliding.

When a person is unable to remain standing in place under the influence of an external
disturbance, he/she implements a stepping behavior in an attempt to terminate the movement
and regain balance. Romick-Allen and Schultz [93] report a variety of strategies that people
use to maintain balance, including arm swing and stepping. Surprisingly, they conclude that
human subjects standing on a moving platform, respond to an anterior acceleration of the
platform with shoulder flexion that initially promotes rather than arrests the fall. Do et al. [24]
investigate the biomechanics of balance recovery during induced forward falls focusing on the
first step that subjects take to regain balance. This first step was characterized by two phases,
a preparation phase and an execution phase. The preparation phase that ends with the toe-
off precedes the actual step execution and its duration is invariant with respect to the initial
conditions. Wu [114] studies the velocity characteristics of involuntary falls and concludes that
during a fall the magnitudes of the horizontal and vertical components of the velocity of the
center of mass increase simultaneously up to 2-3 times that of normal velocities.

When a stepping response is not sufficient to regain balance, human subjects employ a falling
behavior which aims to cushion the impact with the ground. The behavior of choice depends
on the direction of the fall, the age of the subjects, their athletic abilities and their personal
preferences. Kroonenberg et al. [105] identifies the characteristics of voluntary falls from stand-
ing height focusing on sideways falls. They compute the velocity of the wrist and the hip just
before impact and they investigate ways to decrease the severity of the impact. Smeesters [97]
determines the fall direction and the location of the impact for various disturbances and gait
speeds assuming passive simulated falling. One of her results shows that fainting during slow
walking is more likely to result in an impact on the hip. In contrast, fast walking seems to
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prevent sideways falls.
The biomechanics of every day motions have been studied extensively for clinical and simu-

lation purposes. Papa and Capozzo [85] investigate the strategies used in sit-to-stand motions
using a telescopic inverted pendulum and for a variety of speeds and initial postures. Even a
relatively simple motion such as the vertical jump requires a great deal of research before it
can be fully understood and reproduced by simulation and automated control techniques, as
studied by Pandy et al. [84], Pandy and Zajac [83], Spägele et al. [98] and others. McMahon [71]
investigates the running gaits of bipeds and quadrupeds focusing on the effect of compliance.
Athletic motions have been studied extensively for purposes of increasing performance and in-
jury prevention. The kip motion, described in Bergemann [11] is a prime example of such an
athletic maneuvre.

This literature survey is necessarily incomplete given the large volume of publications on
the biomechanics of all types of motion.

2.2 Robotics

Robotics and animation research have a significant overlap. Robotics uses simulation and
visualization of animated models to test control algorithms and proposed robotic structures
before constructing the actual robots. Most of the techniques developed in one area can be
used in the other and vice versa. Therefore the division between research results between
the two areas is relatively arbitrary. This section focuses on results that have been used on
actual robots and not on the robotic techniques that are more commonly presented as part of
the animation literature. These will be addressed later. However, there are some differences
between animation and robotics. The most important one is that real robots are associated
with a number of real world constraints such as the following:

• Power source. Robots need a power source and therefore their design must include one.

• Ground. Dust, humidity etc. affect the friction coefficient of the ground which is not
perfectly homogeneous in the first place.

• Noise. Feedback is based on sensors which have noise in their measurements.

• Hardware defects, unknown or difficult–to–model parameters.

Working in simulation allows us to make a wide range of assumptions and design decisions for
the character and its environment that can facilitate our results. In contrast, robots have to
function in the real world over which we have limited control. In addition it is much easier to
tune or alter a simulated character or its environment than a robot which takes a great amount
of time and effort to assemble.

Robotics research has made remarkable progress in the successful design of a variety of
legged robots. Some of the better known examples include Raibert [88] and, more recently,
anthropomorphic bipedal robots such as the Honda [65], the Sarcos [55] and the Sony [66]
robots. Despite their limited motion repertoires and rather deliberate movements, these robotic
systems are truly engineering marvels.

Walking gaits are the focus of most research work involving humanoid and animal-like
robots. The Honda robot is capable of walking, turning, ascending and descending stairs and
a few other simple maneuvres in controlled environments. The Massachusetts Institute of
Technology Leg Lab has produced a variety of bipedal robots such as Troody the dinosaur [60].
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Troody, the Honda and the Sony robots are capable of performing relatively slow walking
gaits. Gienger et al. [35] propose a bipedal robot model capable of jogging. Their controller is
based on linear feedback and uses lookup tables for the optimal positioning of the feet. Inoue
et al. [56] present a method that stabilizes a humanoid robot in mobile manipulation. As a
result the humanoid robot autonomously steps or keeps standing, coordinating with the arm
motion to achieve a position that maximizes its stability along with its ability to perform a
task. Huang et al. [51] present an interesting method for bipedal robot walking over varying
terrain and under external disturbances. They combine an off-line generated walking pattern
with real-time modification to produce a robust planar walk that can adapt to changes in
the ground properties and external disturbances. Chew and Pratt [19] investigate the use of
machine learning in a bipedal walk. In particular, their method uses reinforcement learning
to learn the positioning of the swing leg in the sagittal plane. In addition, they consider the
balance on the sagital plane separately from the frontal one and they treat them separately.
This allows existing planar walking algorithms to be combined with their balancing algorithm
for the frontal plane.

While most of the research on humanoid robots focuses on particular motor tasks such as
walking, a significant amount of research in robotics investigates ways to produce non-humanoid
robots with complex behaviors. By using robots that are inherently easier to move about such
as wheeled robots researchers can focus on the problem of integrating sensor information and be-
havior patterns to develop robots that are capable of performing complex tasks. An interesting
example is the RoboCup project that involves robots competing in soccer [92]. Arkin [2] pro-
vides a good summary of behavioral architectures explored in the context of robotics. Among
them, perhaps the most relevant to our work is the subsumption architecture proposed by
Brooks [12]. The subsumption architecture advocates the simultaneous existence of prioritized
modular behaviors. Behaviors are independent and there is very little communication between
them. Each behavior keeps its own model of the world and has its own goals. Most of the
behaviors are based on a stimulus-response principle. More complex behaviors subsume lower
ones and they can suppress them when appropriate. The lower behaviors have no knowledge of
the higher ones, allowing complex behaviors to be constructed incrementally. The subsumption
architecture has been used successfully on variety of robots [2].

Burridge et al. [15] propose a sequential behavior composition method based on the funneling
approach, where each behavior brings the system within the feasible region of another behavior
until a goal is reached. Behaviors learn their feasible region through a sampling and learning
approach. Learning the feasible region is similar to the approach we use to automatically
compute the pre-conditions of our controllers. Using their technique they develop a robotic
paddle that can dynamically juggle a ball. The practicality of extending this method to high-
DOF dynamic models of human motions is unclear.

2.3 Computer Animation

Computer animation is to a large extent unencumbered by the exacting fidelity requirements of
biomechanical models and the mechanical limitations of robotic systems. This has spawned a
great variety of kinematic and dynamic models for character motion [4, 5, 16]. Motion capture
solutions are very popular because they can accurately capture all the subtleties of the human
motion. However, motion capture methods have several limitations:

• They depend greatly on a specific subject and they cannot be easily generalized for other
models.
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• Not everything can be motion captured. Some examples include dangerous stunts and
dinosaur motions.

• Kinematic motion cannot be easily used for interactive characters that must support
physical interaction such as collisions.

Blending, warping and other motion curve manipulation techniques, Witkin [111], Bruder-
lin [13], Gleicher [36], have been used to alter original motion capture data. Although these
techniques produce satisfactory results in the short term, physics-based approaches reveal more
about the physics, planning, and control of such motions and they therefore serve as a basis for
more general solutions. Dynamically simulated characters were first proposed over 15 years ago
[3, 108] and since then have progressed in sophistication in a variety of directions. Controllers
have been successfully designed for specific human motions. Hodgins et al. [46] implement a
variety of athletic motions such as running, vaulting, and cycling. Their controllers are based
on finite state machines and use feedback to properly balance the character. Wooten and
Hodgins [112] implement a virtual diver that is capable of performing elaborate aerial maneu-
vres. A planar walking controller capable of handling variable terrain is implemented by van
de Panne et al. [104]. The controller interpolates between pre-computed lookup tables that
contain optimal control solutions. An elaborate walking controller for a full 3D human model
is developed by Laszlo et al. [62]. The controller is based on a local stabilization technique that
adds closed–loop feedback to open–loop periodic motions. Grzeszczuk and Terzopoulos [42]
develop a neural network controller that can learn the physics of a motion and then produce a
relatively accurate kinematic version of it.

Motion synthesis for complex models is a very difficult task. It is therefore natural that a
great amount of research investigates ways to automatically synthesize motions. The spacetime
constraints method proposed by Witkin and Kass [110] and its variants (Cohen [21], Liu [63])
allows the animator to specify what the simulated character should do and to a limited extent
how. An optimization process computes the trajectories of the character’s degrees of freedom
such that the user–specified constraints are satisfied. The physical laws participate in the
optimization process as soft constraints. The computational expense of the optimization process
restricts these methods to relatively simple character models. Popovic et al. [87] present a
technique that allows the interactive manipulation of physics-based simulation of rigid bodies.
The user can interactively specify constraints over the motion of the participating bodies or
simply drag them to desired positions. In response, the system computes the required physical
parameters and the resulting trajectories. This technique is limited to the simple objects and
it does not seem to scale well for complex articulated characters. Chenney and Forsyth [18]
propose a method for controlling the motion of multiple bodies in collision intensive situations.
Their method is based on sampling the solution space for plausible solutions that satisfy user
specified constraints. This method is also limited to simple bodies.

Instead of synthesizing trajectories, a different approach is to synthesize controllers which
coordinate the motors of the simulated characters to produce specific motions. Controller-based
methods provide a convenient and realistic separation between the control and the dynamics of
the character. Controllers represented as finite state machines are automatically produced using
a stochastic generate–and–test approach by van de Panne et al. [102]. Similarly, controllers that
consist of networks of sensors and actuators are automatically produced by van de Panne and
Fiume [100]. Ngo and Marks [79], use a genetic approach to automatically evolve controllers
that are represented by sets of stimulus-response rules. Grzeszczuk and Terzopoulos [41] using a
stochastic optimization process to teach fish models how to swim. Automatic motion synthesis
based on generate–and–test methods cannot be used for complex characters and highly dynamic
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motions. The search space is so large that it cannot be handled by the current methods. Laszlo
et al. [61] propose an interactive method of synthesizing controllers for arbitrary characters
including 2D humanoid models. This method implements a performance-based approach to
physics-based control that exploits the user’s intuition and knowledge about motion planning.

The differences between motion synthesis methods that are based on motion capture tech-
niques and those that are based on physical simulation lead researchers to investigate hybrid
methods that combine the advantages of both. A nice overview of such results can be found in
the SIGGRAPH 2000 course notes [48]. Playter [48] explains how Boston Dynamics Inc. [53]
uses a combined motion capture and physics-based control method to develop a planar run-
ner. The controller is based on Raibert’s [88] state machine. A motion playback module is
used to synchronize the reference trajectories with the actual motion. Posture, speed and hop-
ping control are used to maintain balance. The resulting trajectories are used to drive the
servo-mechanisms at the joints of the character.

2.4 Controller composition

Dynamically simulated articulated characters equipped with an integrated, wide-ranging reper-
toire of motor skills currently remain an unachieved goal. Some positive steps in this direction
are evident, however. Tu and Terzopoulos [99] develop an integrated repertoire of motor con-
trollers for biomechanically animated fish. Grzeszczuk and Terzopoulos [41] develop dynamic
controllers that can be sequenced using an overlapping and blending technique. Funge et al. [33]
use a similar method to compose swim controllers for a “merperson.” A higher level planning
module based on cognitive modeling and predicate logic determines automatically the sequenc-
ing of the swim controllers. The work by van de Panne et al. [103] proposes a methodology for
controller design and integration applicable to simple figures. Finite state machine controllers
that implement gaits for simple figures can be parameterized producing variations of the orig-
inal gaits, van de Panne et al. [101]. Linear combinations of these parameterized controllers
produce intermediate variations and transitions between gaits. The work of Wooten [113] is
the most relevant as an example of a sequence of successive transitions between several con-
trollers for human motions such as leaping, tumbling, landing, and balancing. The controllers
are manually sequenced and transitions happen when the end state of one controller is within
the region of starting states of the next controller in the sequence. Hodgins [44] develops algo-
rithms for walk-to-run and run-to-walk transitions for a 2D biped. However, it is seems that the
proposed methods cannot be applied to the 3D case. Maes and Brooks [68] propose a method
for coordinating behaviors that know when they should be active. Using a method similar
to reinforcement learning a six legged robot learns to coordinate its legs to produce a stable
walk. Two touch sensors and a sensor that measures the horizontal distance traveled provide
positive and negative feedback based on which each behavior learns when it should be active.
There is one behavior associated with each of the 12 degrees of freedom of the legs. A digital
biomechanics laboratory is proposed by Boston Dynamics, Inc. [53] as a tool for simulating a
wide range of human motion. This currently remains ambitious work in progress.

The concept of pre-conditions, which is central to our work, has been used before in the
control and artificial intelligence literature. Precedents of pre-condition evaluation exist in
terms of estimating the stability of a given system or determining the region of attraction of
a dynamical system. Such regions can be computed analytically for linear systems. For more
complex system this is usually done through extensive and exhausting point sampling most
often to create two dimensional illustrations which depict appropriate regions of stability or
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attraction.
Our work is aimed at creating dynamic human characters with broadly integrated action

repertoires. Unlike previous work focusing on specific athletic movements, our methodology is
to begin with a core set of simple actions, including balancing, small steps, falling reactions,
recovery from falls, standing up from a chair, and others.

2.5 Simulated control systems

There is a variety of systems that have been developed to facilitate the control of articulated
figures in the scope of robotics and animation. Reichler and Delcomyn [91] present a nice
overview of the different methods and software available for robotics research.

2.5.1 Commercial animation software

There is a great number of commercial animation packages such as Maya, 3D Studio Max,
Poser 4, Rhino, Houdini, SoftImage etc. Some of them are script based or implement plugin
APIs, Falling Bodies[52], Mathengine [70], Havok [54]. We believe that a common research tool
based on a commercial package is not likely to happen because commercial software presents
the following problems:

• Price. High-end software packages can be too pricey for students, researchers and hob-
byists.

• Lack of generality. Software packages may incorporate the state-of-the-art, but often do
not allow modifications that are essential for research that goes beyond the state-of-the-
art.

• Lack of portability. Most commercial products run on specific platforms and porting is
under the control of the company.

• Lack of industry standard. None of the commercial products is currently the industry
standard.

• Closed environments. Some commercial packages come with their own simulator, integra-
tion method, or collision detection technique which cannot be changed.

• Exclusive simulator. To our knowledge most animation packages do not allow multiple
simulators.

• Technical issues. Some commercial packages consume a lot of resources and can run only
on high-end machines.

2.5.2 Robotics

Reich et al. [90] implement an environment for complex biomechanical simulation. Apparently
their implementation is focused on specific biomechanical models and it does not provide APIs
that can be used to extend the functionality of the system.

Reichler and Delcomyn [91] present an interesting system for the dynamic simulation of
legged robots. Their system uses a high level configuration language that acts as a bridge
between simulation components. It can be used to efficiently describe robots, their actuators,
sensors and controllers in a uniform fashion. A generalized referencing scheme allows control
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structures and user-interface elements to communicate with each other. Under this scheme
most components are black boxes with inputs and outputs that can be wired to each other.
Users can extend the software using C++ programming. The aim of this work is to provide a
common system for the rapid prototyping of controllers for legged robots and it is limited to a
specific simulator, although the high level language could be used on top of other simulators.
The use of Euler integration is a potentially limiting factor. It seems that this system is geared
towards simpler robots and to our knowledge it has not been used for human locomotion.

Dynamic animation tools are available mostly in the form of libraries that provide the
equation of motion for articulated figures. Such systems focus on providing efficient dynamic
code and they can be turned into plug-in simulators for our system. Mathengine [70], Havok [54]
and SD/FAST [49] are examples of such dynamic tools.

The Robotics Toolkit for Matlab, Corke [22] and the Robotica for Mathematica, Nethery [76]
examples of toolkits that run on top of commercial mathematical packages. They provide
functions and objects that can be assembled together to a construct a simulation experiment.
However, they do not seem to provide an interface for attaching sensors or actuators.

Our system, presented in Section 6, aims to provide a free and open tool that can support
a wide range of environments through generic APIs for animation research. To our knowledge
such a system does not exist.
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Composition Framework

The work in this chapter attempts to answer the following question: Given two controllers,
one designed for walking by a group A and one designed for standing-in-place by group B,
how can we produce a composite controller such that the associated simulated character has
the combined functionality, i.e. walk and stand-in-place? Composing controllers that have
been designed separately is an interesting issue in animation and robotics. It is also a difficult
problem to solve.

3.1 Composing controllers

We assume that a character is equipped with a number of controllers and each controller
is capable of performing a specific motor task. The problems are (a) how to decide which
controller should be applied at each point in time and (b) each time a new controller is chosen
to assume control, how do we transition to it successfully. The first problem can potentially
be solved in a variety of ways, ranging from randomly picking controllers to elaborate planning
processes. Approaches to the second problem, transitioning successfully to a new controller can
be classified in three categories as described in Wooten [113]. Assuming n different controllers
the most complete method requires n2 transition controllers that can take the system from
the end state of one controller to the start state of another controller. A simpler solution
is to implement 2n transitions: n from every controller to a common intermediate state and
n transitions from the intermediate state to each of the n controllers. Alternatively, we can
eliminate transitions altogether by making sure that the end state of a controller falls within
the start states of another controller. However, the last two methods may not be appropriate
for all cases. The above discussion and most of the previous work in the area assumes that
transitions happen at specific entry points, mainly from the “end” state of one controller to
the “start” state of another controller. However, this is not the general case. Some controllers
such as those designed for walking and running, do not have well-defined “start” and “end”
states. In dynamic environments unexpected things can happen that do not let a controller
complete its operation and require immediate transition to other controllers. Thus the number
of transitions can be generally higher than n2. Figure 3.1, shows possible transitions between
Controller A and Controller B within an abstraction of the character’s state space. Two of the
transitions are realized by separate controllers. When the character is in a state within the
region of overlap, then we can immediately switch to either controller. Our system allows for
such dynamic transitions as we will see below. Section 3.8 explains in detail how our framework
deals with transitions between controllers.

20
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Figure 3.1: An abstract visualization of potential transitions between controllers for walking
and running.
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Figure 3.3: Motion curve blending.
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An important technical difference exists between composing motions kinematically and dy-
namically. In the kinematic case, the primitives of motion are curves that specify the position of
the character’s degrees of freedom in time. The composition process must make sure that these
primitives are composed smoothly and that both the velocity and the position of the character’s
degrees of freedom are continuous. In the physics-based (dynamic) case, the primitives of mo-
tion are curves that specify the forces that the character’s actuators (muscles) exert over time.
When we switch between controllers, in the worst case, there is a finite discontinuity (step) in
the forces, which translates to a step discontinuity in the acceleration of the character’s degrees
of freedom. Since acceleration is the first and second derivative of the velocity and the position
respectively, we are guaranteed that velocity and position are respectively zero and first order
continuous, see Figure 3.2. Our composition framework can work with both kinematic and
dynamic controllers. However, unless the kinematic controllers themselves make sure that they
take over smoothly, we would have to implement an interpolation scheme that blends between
kinematic controllers. Figure 3.3 depicts the three different degrees of continuity along with a
typical blending scheme for control curves.

From the above discussion, it is clear that composing controllers requires a module that acts
as an arbitrator between the available specialist controllers. The resulting composed controller,
which includes the arbitrator, must be able to activate the appropriate controller at each point
in time and choose among controllers that can possibly do the same thing but in a different
way, or in a different style. For example, there is more than one way to get up from a prone
position; these motions can be radically different and can be implemented by separate specialist
controllers. The arbitrator must be able to resolve such cases.

3.2 Our composition framework

Typically, a composition scheme has two levels as shown in Figure 3.4. The lower level con-
sists of the available controllers that implement specific motor control skills. The upper level
coordinates the use of the lower level appropriately. The main issue in such a scheme has to do
with the way the intelligence of the system is distributed between the two levels. The flow of
information and the interaction between the two levels determines the properties of our scheme
such as scalability, expandability and ease of use. In other words, the composition scheme
can be centralized or distributed in varying degrees depending on the desired properties. Our

Controller 1 Controller N

Supervisor Controller

Upper level intelligence

Lower level intelligence

Figure 3.4: Two level composition scheme.

scheme is largely distributed. We choose to push the intelligence to the lower level in a way
that achieves the following properties:

• Scalability. Our framework can handle a large number of low level controllers.

• Expandability. The system can incorporate new low level controllers at run time.

• Simplicity. The composition method is straightforward and easy to implement. It does
not appreciably burden the controller design task.
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• Generality. The composition scheme does not restrict the design of individual controllers.
Each controller can be as primitive or as sophisticated as its designer wishes.

These properties are important for any composition scheme that aims to become a unifying
framework for work in this area. Practitioners need the freedom to design controllers with
the desired complexity and with the preferred architecture. If a system restricts either the
complexity or the way a controller operates, then practitioners may not use it.

Our framework follows the two level composition scheme shown in Figure 3.4. Within this
framework we consider individual controllers as black boxes which are managed by a simple
supervisor controller. When no controller is active, the supervisor polls the pool of controllers
querying each whether it can handle the transition of the dynamic character from its current
state to the desired goal state. Individual controllers return an integer confidence/suitability
score when queried in order to bid for becoming the active controller, as detailed in Section 3.7.

3.3 Controller abstraction

A controller within the pool of available controllers can be as simple as a constant force, or
as complex as a structured hierarchy of multiple levels of control abstraction. For example, as
more controllers are added to the system, we may wish to group all the walking and running
controllers together into a cluster that can be treated as one controller. This grouping may
happen at various levels, where the first level corresponds to the parameterization of controllers.
In any case, instead of trying to design a single super-controller, knowledge about how to control
the dynamic character is left for designers to encapsulate within their control algorithms, since
they are best equipped to determine the conditions under which their algorithms are able to
operate.

Regardless of the encapsulation, our composition method requires the definition of pre-
conditions, post-conditions and expected performance for each controller. Pre-conditions are
a set of conditions over the state of the character and the environment. If these conditions
are met then the controller can operate and possibly enable the character to satisfy the post-
conditions. The post-conditions define a region of final states that the character can reach
after the successful execution of the controller. In other words the controller realizes a mapping
between a domain of input states to a range of output states for the character. Because of
unexpected changes in the environment this mapping may not always succeed, which motivates
the notion of expected performance. The controller should be able to evaluate its performance
in order to detect failure at any point during its operation. To do this, the controller must at
all times have knowledge of the current and expected state of the character or the environment.

Defining the pre-conditions, post-conditions, and expected performance for complex char-
acters, motions, and environments is not a straightforward task. However, we believe that the
effort required to generate these specifications is a fair and necessary price to pay to achieve
the benefits of composability. Controllers that adhere to these specifications can form a pool
of available controllers managed by the supervising controller. Fig. 3.5 presents an overview of
how the supervising controller works and its interaction with the individual controllers at every
time step of the simulation.

Before we elaborate on pre-conditions, post-conditions, and expected performance in sub-
sequent sections, let us define the following quantities and symbols: The state q = [x ẋ]′ of a
figure is the vector of generalized positions x and velocities ẋ, where the dot indicates a time
derivative. The position and velocity of the center of mass are denoted as c and ċ respectively.
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if( no active_controller )
for all controllers i =1: N

if( controller[i].can_handle() == true)
put controller[i] into candidates

end if

active_controller = arbitrate(candidates)
else

status = active_controller.getStatus()
endif

end for

At every time step:

{
Expected Performance

Preconditions
PostConditions

Controller

Supervising controller

Figure 3.5: Controller selection and arbitration during simulation.

The base of support of a figure (often called the support polygon) is denoted as S. It is repre-
sented by a polygon that surrounds the foot or feet that are in contact with the ground at any
given time.

3.4 Pre-conditions

In general, pre-conditions are relationships and constraints involving a number of different
parameters. We have used the following parameters in our work:

• The initial state qi of the figure. Most of our controllers can operate within a small region
of the state space which we denote R(qi).

• Environmental parameters. These include the contact points between the character and
the ground, as well as the normal of the ground and the amount of friction at the contact
points. In the following we denote conditions (generally indicated by the letter C) on the
environment parameters as Ce.

• The balance of the figure. Usually, this is indicated by the relative position and velocity
between the figure’s center of mass c and the base of support. Typically, if the projection
of c along the gravity vector g does not intersect the base of support S, the figure is
considered to be unbalanced. We denote the balance conditions as Cb(S,g, c, ċ).

• A target state qt, or in general a target region of the state space R(qt), which can be
provided by the user.

Pre-conditions consist of unions of instances of the above conditions and are denoted

P = C(R(qi),R(qt), Cb, Ce). (3.1)

The determination of pre-conditions is crucial to the success of our composition framework
and will be examined in detail in Section 3.9.

3.5 Post-conditions

Successful operation of a controller brings the character from an initial state, as defined by
the pre-conditions, to a desired state or a desired region R(qo) in the state space. This region
along with balance Cb and possibly environmental constraints Ce form the post-conditions of a
controller:

O = C(R(qo), Cb, Ce). (3.2)
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3.6 Expected performance

Our framework permits the automatic selection of the appropriate controller based on the
information provided by the controllers themselves. Only the individual controllers can detect
whether they are operating normally or they are going to fail. Failure in our case means that
the controller cannot meet its post-conditions O. A sudden change in the environment or badly
designed pre-conditions can make the controller fail. The sooner a controller can detect failure
the sooner another more appropriate controller can take over. This is important for making
a character behave naturally. For example, the character should not attempt to continue a
walking gait if it has lost its balance and it is falling. In our implementation, the expected
performance E consists of expressions similar to those of the pre-conditions P. In particular if
the controller successfully completes its task in the time interval [t1, t2] then:

E(t1) ∈ P and E(t2) ∈ O.

It is worth noting that the expected performance conditions vary for different parts of the
motion. For example, the first phase of a motion might be balanced while the second phase
may be unbalanced.

3.7 Arbitration

There is often the case that more than one controllers are suitable for the current state of the
character. For example, there are many ways to get up from a prone position. In addition, a
controller can often handle the current state of the character but have a different goal than the
one desired. For example, upper stance is suitable for both the balance and the walk controller.
However, the controllers have clearly different goals one of which might match the goal specified
by the user. Our supervisor controller has no knowledge of what the controllers can do and
therefore cannot decide what to do in such case on its own. It is up to the individual controllers
to guide the supervisor controller towards this decision through some simple communication.
In the current implementation, when a controller is asked to bid for control based on its pre-
conditions it returns a confidence score equivalently encoding suitability or priority which is an
integer number in the following ranges: 0 if its pre-conditions are not met, [1 − 10] if it can
handle the current state only and [11 − 20] if it can handle the current state and achieve the
current goal. Under this scheme controllers that can meet the given goal take precedence over
controllers that can just do something for the current state. The exact value of the confidence
number in a given range is arbitrarily defined. A heuristic rule that we follow is to give low
confidence numbers to controllers that are general and can handle a large number of states. For
example, the fall controller can handle a larger number of falling states and has lower priority
compared to the protective-step controller. Thus, when the protective-step controller thinks it
can handle the current state it takes precedence over the fall controller. For controllers designed
by different developers, priorities can potentially be assigned or remapped to different ranges
as desired.

Considering the nature of a motion can help assign an appropriate priority to the associated
controller. For our purposes we classify human motions in the following categories:

• Reactions. They refer to reflex or largely unconscious reactions such as attempting to
maintain balance.

• Actions. These are motions that we perform only consciously. They often have a clear
goal.
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• Quiscent states. Standing in place or sitting on a chair is more of a state than an action.
Such motions do not have a specific duration or a clear end-goal.

Actions typically have higher priority than reactions or states. However, the associated action
controllers bid for control only when the user specifies a target state that falls within their
pre-conditions. Most controllers associated with states bid for control even when the goal is not
matching their own. For example, if the user requests that the character jumps in the air and
there is no controller that can perform the jump it makes sense that the character continues
to sit or stand. Although typically they do not conflict with each other, reaction controllers
have higher priority than the state ones. The above categorization of motions is arbitrary and
only serves as a reference. Controller developers can assign priorities according to their own
intentions.

3.8 Transitions

Transitions between controllers are not explicitly modeled as they would be in a finite state
machine. They occur implicitly in response to the evolution of the motion over time, as the
system state traverses the ‘regions-of-competency’ of the various controllers. Nevertheless,
typical patterns of controller activation occur given that most controllers are designed for specific
situations. Fig. 3.6 shows the family of controllers designed for the 3D dynamic character and
their typical transition patterns. For example, the controllers and transitions used in achieving
the motion shown in Fig. 1.3 is given by balance → fall → default → rollover → prone-to-
standing → balance. Fig. 3.7 similarly shows the family of controllers designed for the 2D
dynamic character and their typical transition patterns. Note that not all possible transitions
are shown in either of Figs. 3.6 and 3.7. For example, the prone-to-standing → fall transition can
occur if the figure is given a sufficiently strong push while rising. Most of the transitions which
are not shown but are still practically feasible are of this nature, dealing with falling behaviors.
It is worthwhile noting that the fall controller always responds to the specific direction of the
current fall.

Any transition involves one controller being deactivated and another being activated. A
controller can become deactivated (and thereby eliciting a transition) for one of three reasons.
First, it may itself give up control by declaring success in reaching its post-condition, as is
the case for a standup controller which has successfully returned the character to a standing
position. Second, user intervention may elicit a transition. The controllers designed for sitting
or balanced standing will retain control until intervention by a user (or by a higher level planner)
forces a desired transition. Thus, when the 2D character is balanced a user-driven process must
choose among the next plausible actions, namely one of sit, walk, or dive (see Fig. 3.7). Third,
a controller may detect failure, as will be the case for unpredictable events such as a push or an
unforeseen obstacle causing a trip. The transitions in Figs. 3.6 and 3.7 are labeled according
to the type of controller deactivation which typically spawn the given transition patterns.

3.9 Determining pre-conditions

For controllers associated with complex dynamic characters, quantifying the exact region of
the state space and the general conditions that determine success or failure of the controller is
in general a non-trivial matter. This is due to the high dimensionality of the state space and
the irregular shape that the pre-conditions region has. In this thesis, we address this problem
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Figure 3.6: Controllers and typical transitions for 3D figure

Figure 3.7: Controllers and typical transitions for 2D figure

via manual and automatic approaches, in turn. The manual approach allows the designer to
incorporate his or her knowledge within the controller, whereas the automatic approach is based
on machine learning techniques.

With both approaches it is generally impossible to compute a strictly conservative ap-
proximation of the pre-conditions. Either the time required to compute the approximation is
prohibitive or the size of the model produced impossible to store and work with. In general
both methods will result in an approximation of the pre-conditions. There are certain impli-
cations of having pre-conditions that are overly generous. Controllers will be invoked only to
fail often. Conversely, an overly conservative approximation means that a controller will be
chosen less often than it perhaps should be, and therefore it will be more difficult to design
other controllers to work in conjunction with it. We aim to build reasonable approximations of
the pre-conditions. Some small underestimation will not cause significant problems while some
small overestimations will cause the controller to fail to execute its task in rare circumstances.
With a sufficiently large pool of controllers, the arbitration scheme can provide reasonable
means to recover once the failure occurs.

3.10 Manual approach

For certain cases, suitable pre-conditions for specific controllers may be found in the biome-
chanics literature [24, 81]. For example Pai and Patton [81] present a comprehensive study of
balance in the sagittal plane and identify the conditions under which a human can compensate
for postural disturbances and maintain balance without stepping. Certain controllers function
as intermediate stages between other controllers. If controller B is the intermediate step between
A and C then the post-conditions of A must be a subset of the pre-conditions of B and similarly
the post-conditions of B must be subset of the pre-conditions of C. In general, to ensure that
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controller A can transition to controller B, we have to make sure that the post-conditions of
A are a subset of the pre-conditions of B. If this is not the case then there are three ways to
remedy the problem:

1. Refine the control of A to enforce a tighter set of post-conditions.

2. Refine the control of B to enlarge its pre-conditions such that they include the post-
conditions of A.

3. Do both.

In some cases the pre-conditions are computed by manual experimentation. For example a
simple balance controller for a standing human model based on an inverted pendulum model,
Fitzpatrick [32], has intrinsic stability that can tolerate small disturbances. After the controller
has been designed, repeated testing under disturbances of increasing magnitude can yield an
approximation of the pre-conditions and the post-conditions.

In any case, the designer of a controller presumably understands the way the controller
operates, and thus is able to provide high level conditions on its success or failure. For example,
the designer of a walking controller knows if the controller can operate when the walking surface
has minimal friction properties. Also, human motion is governed by notions such as comfort, and
only the designer can take this into account. For example, people that are pushed while standing
might take a step instead of employing an equally successful inverted pendulum approach just
because it may be more comfortable to do so. Similarly, reactions to slipping and unbalance
and protective behaviors are largely age dependent [50].

Alternatively, the expected performance can be computed by sampling the trajectory of key
parts of the character during a test run of the controller. During its operation the controller
can verify that the current trajectories match the expected motion to within some allowable
margin of error. However, choosing an acceptable error margin is not trivial. We did not use
this method in our experiments.

Chapter 4 discusses an alternative way to compute the pre-conditions of controllers. The
proposed method is based on point sampling the state space and it employs a machine learning
method to produce an approximation of the pre-conditions region. Our controllers and their
manual pre-conditions are described in Chapter 5. Chapter 7 discusses our results using both
manual and learned pre-conditions.

3.11 Discussion

The selection and arbitration processes are distributed to the specialist controllers in our frame-
work and this has several consequences. There is no “brain” in the system that makes decisions
in a centralized way. Most of the processing and the intelligence of the systems resides in the
individual controllers that come armed with the knowledge of what they can do and when they
can do it. This feature is both an advantage and a limitation. The advantage comes from the
fact that controllers can be easily added to the system, even at run time. In contrast with pre-
vious work, our composition framework does not know what the controllers can do; it finds out
dynamically and as the need arises. However, at some point our system will need a centralized
brain or planner that will decide what is the desired goal of the character at each point in time.
Although a motion planner is beyond the scope of this thesis, the current system has many
features that would be useful for building a motion planner. A more elaborate discussion on
the limitations of our system is presented in Chapter 8.
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Learning pre-conditions

In this chapter, we introduce a semi-automatic, machine learning approach to determining
pre-conditions, which is based on systematically sampling the performance of controllers. Our
method uses a machine learning algorithm attributed to Vapnik [107] known as Support Vector
Machines (SVMs), which has recently attracted much attention, since in most cases the per-
formance of SVMs matches or exceeds that of competing methods. The next section discusses
background information on machine learning which is based on [20].

4.1 Machine learning

For a variety of complex problems, there is no mathematical model that describes how to
compute a desired output from a set of inputs. In addition, in some cases that computation
may be very expensive to perform. An alternative approach to solve these problems is to make
the computer learn the input/output relationship from examples. This is the same approach
used to teach children to distinguish sports cars from the rest [20]. By seeing a sufficient
number of sports cars, they learn to recognize them without being given a concrete definition
of “sportiness.” The approach of using examples to create programs is called the learning
methodology. When the examples are input/output pairs, the learning methodology is called
supervised.

If no noise is present, the pairs of input/output are samples of a function mapping between
the input and the output. The learning approach aims to provide an approximation of that
function. The function we attempt to model is called the target function and the output of the
learning method is the solution of the problem. The solution is usually chosen from a family
of known functions which form the hypothesis space. For example the hypothesis space might
consist of the polynomials of third degree. The hypothesis space is one of the most important
ingredients of the learning methodology. The algorithm that takes as input the training data
and selects one function from the hypothesis space is called the learning algorithm. When the
function we wish to model is a binary function the problem is called binary classification. For
the case of classification the solution is called the decision function. The ability of the machine
learning methods to model the training data is called fitting while modeling data that is not
part of the training set is called generalization.

Machine learning is a very attractive approach that can handle a wide variety of problems.
The use of examples for learning is a very familiar and intuitive approach that can avoid
expensive computations. At the expense of collecting the training data machine learning can
avoid expensive modeling computations that might be required by other approaches. However,
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Figure 4.1: Training set and actual boundary for a 2D problem.

as with every method, machine learning has a number of drawbacks:

• Efficiency. A number of issues might affect the efficiency of a learning algorithm, for
example the problem of local minima.

• Size of output. The size of the output might become too large in some cases, and therefore
impractical to use.

• Overfitting. If the training set contains too few examples, a rich hypothesis space might
lead to poor generalization.

• Parameter tuning. Learning algorithms often depend on a variety of parameters whose
value is chosen based on heuristic criteria. Thus, the associated systems might be hard
to use and potentially unreliable.

4.2 Learning the pre-conditions as a machine learning problem

The focus of this chapter is an automated method of approximating the region in the state space
of the character for which a given controller can successfully operate. We call this region the
region of competence. The state space of a humanoid character is a bounded, continuous space of
high dimension. Modeling a controller’s region of competence within this space generally cannot
be done in an analytic way. We therefore formulate the problem as a machine learning problem.
For each controller, we need to train a machine that when given an arbitrary initial state of the
character, will predict whether the controller will succeed or fail. This is a typical classification
problem. For any given controller, the state space of the character can be separated into two
classes, one that leads to success and one that leads to failure. We want to train a machine
that can assign an arbitrary state to one of these classes. To employ classification techniques
we first have to produce a sufficiently large set of known examples, called the training set which
will be used to train a classifier. Figure 4.1 depicts a two dimensional projection of the state
space, the two classes of states (success, failure), the boundary between the classes and sample
states that are part of a training set. The next sections describe how we produce the training
set and our choice of classification method.
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4.3 Choosing a classification method

There is a wide variety of machine learning techniques that can provide a classifier for our
application. Unfortunately, there is no one method that is considered the best one for all cases.
Each method has different properties that make it suitable for a particular kind of application.
Knowing the domain of an application, that is knowing the form of the problem we are trying to
solve using machine learning, is probably the best guide in choosing a suitable machine learning
technique. In our case the main properties and requirements of our application are:

• Off-line learning. We can produce our training set and therefore train our classifier in
advance.

• Size of the training set. We need to provide a large number of training examples in order to
include enough samples around the boundary between the two classes. The classification
algorithm should be able to handle a large number of high dimensional input examples.

• Response time. The classifier will be part of an interactive system which means that the
response time of the classifier must be short.

• Size. There will be one classifier for each controller present in the system, thus the memory
signature of the classifier must be relatively small.

• Ease of use. The classification algorithm must have intuitive parameters that we can use
to adjust its behavior.

• Lack of structure. We do not have an intuition about the shape of the boundary. Our
experiments have shown that it varies radically among controllers and that, generally, it
has an irregular shape.

• Generalization. We need a classifier with strong generalization power and therefore one
that has a sufficiently small hypothesis space.

The classification algorithm we have chosen to use satisfies the above requirements and exploits
to some extent the properties of our particular class of problems. We present this algorithm in
the next section.

4.4 Support Vector Machines

SVMs are a method for fitting functions to sets of labeled training data. The functions can
be general regression functions or they can be classification functions. In our application, we
use simple classification functions with binary outputs which encode the success or failure of a
controller.

Burges [14] provides an excellent tutorial on SVMs and Christanini and Shawe-Taylor [20]
provide an extensive description of SVMs and other kernel methods. Mathematically, we are
given l observations, each consisting of an d-dimensional vector xi ∈ �d, i = 1, . . . , l and the
associated “truth” yi ∈ {−1, 1} provided by a trusted source. Here, yi = 1 labels a positive
example—in our application, the observed success of a controller applied when the dynamic
figure is in state xi—while yi = −1 labels a negative example—the failure of the controller
applied to state xi. The set of observations {xi, yi} is called the training set. The SVM is a
machine whose task is to learn the mapping xi �→ yi from a training set. The SVM is defined by
functional mappings of the form x �→ f(x, α), where α are parameters. A particular choice of α
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Figure 4.2: Two dimensional SVM classifier.

generates a “trained” SVM. In a trained SVM, the sign of the decision function f(x) represents
the class assigned to a test data point x. In our application, a properly trained SVM predicts
if a controller will succeed (f(x) > 0) or fail (f(x) < 0) on a given state x of the dynamic
character.

How does one train an SVM? In the simplest case of a linear SVM with separable training
data, there exists a decision boundary separating positive from negative examples which takes
the form of a “separating hyperplane” in �d. The SVM training algorithm computes the sepa-
rating hyperplane with the largest margin d+ +d−, where d+ (d−) is the shortest distance from
the separating hyperplane to the closest positive (negative) example. SVM training requires
the solution of a quadratic programming optimization problem involving a Lagrange multiplier
αi for every data point in the training set. Those data points in the solution with corresponding
αi > 0 are called support vectors.

The support vectors are critical elements of the training set. They lie closest to the sep-
arating hyperplane. If other observations in the training set are moved (subject to certain
restrictions) or removed and SVM training is repeated, the same separating hyperplane will
result. To use a trained SVM, we simply determine on which side of the decision boundary a
given test data point x lies and assign the corresponding class label to that point. The linear
SVM is easily generalized to nonseparable training data.

Furthermore, it is straightforward to generalize the theory to encompass nonlinear SVMs for
which the decision boundaries are no longer hyperplanes (i.e., the decision function are no longer
linear functions of the data). The trick, in principle, is to map the data to some higher (possibly
infinite) dimensional space in which the linear theory can be applied. This is easily done by
introducing kernel functions K(xi,xj), such as the polynomial kernel K(x,y) = (x · y + 1)p,
or the Gaussian or radial basis function (RBF) kernel K(x,y) = exp(−|x − y|2/2σ2). For the
mathematical details, we refer the reader to [14].

Figure 4.2 shows a 2-dimensional case involving two classes separated using three kinds of
kernels. The linear kernel produces a linear decision boundary (left), the polynomial kernel pro-
duces a non-linear one (center) while the radial kernel produces an enclosing decision boundary
(right). The support vectors are circled. These images have been produced by the SVT applet
from Bell-Labs [10].
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4.5 Applying SVMs

To apply the SVM technique to the problem of determining controller pre-conditions, we train a
nonlinear SVM classifier to predict the success or failure of a controller for an arbitrary starting
state. Thus, the trained SVM demarcates the boundary of regions in the figure’s state space
wherein the controller can successfully do its job. Training sets comprising examples {xi, yi}
are generated by repeatedly starting the dynamic figure at a stochastically generated initial
state xi, numerically simulating the dynamics of the figure under the influence of the controller
in question, and setting yi = +1 if the controller succeeds or yi = −1 if it fails.

The distribution of the stochastically generated initial states is important. The sample
points should ideally be located close to the boundaries which demarcate the acceptable pre-
condition region of state-space. However, these boundaries are in fact the unknowns we wish
to determine and thus we must resort to a more uniform sampling strategy. Unfortunately,
the high dimensionality of the state-space precludes regular sampling. We thus adopt the fol-
lowing stochastic process to generate a suitable distribution of initial states: First, a nominal
initial state is chosen, based upon the designer’s knowledge of the controller. A short-duration
simulation (typically 0.3s) is then carried out from this initial state while a randomized pertur-
bation process is executed. This currently consists of applying an external force of random (but
bounded) magnitude and random direction to the center-of-mass of the pelvis. Simultaneously,
the character’s joints are perturbed in a stochastic fashion by setting randomized offset target
angles for the joints and using the character’s PD joint controllers to drive the joints towards
these perturbed positions. The perturbations are in the range of [-1.0, 1.0) radians. The com-
bined effect of the random force, the reaction forces from the ground and the momentum that
the motion of the character induces, results in a wide range of perturbed states from both sides
of the boundary. While the perturbation strategy is admittedly ad-hoc, we have found it to be
effective in sampling the pre-condition space, as is validated by the online use of the learned
pre-condition models. Section 8.3 discusses ways of producing the training set that we might
explore in the future.

We employ T. Joachims’ SVMlight software which is available on the WWW [57]. The
software can accommodate large training sets comprising tens of thousands of observations and
it efficiently handles many thousands of support vectors. It includes standard kernel functions
and permits the definition of new ones. It incorporates a fast training algorithm which proceeds
by solving a sequence of optimization problems lower-bounding the solution using a form of local
search. It includes two efficient estimation methods for error rate and precision/recall. The
software provides various parameters that the user can adjust to control the behavior of the
classifier. For example, a command line option allows the user to define the cost-factor by
which training errors on positive examples outweigh errors on negative examples. Appendix A
shows the complete list of parameters that SVMlight supports and their default values. For our
experiments we use the default values for all parameters, except for the kernel one for which
we use option “1” (polynomial).

4.6 Results

The SVM training phase can take hours in our application, but this is done off-line. For example,
on a 733 MHz PIII computer, the SVM training time for a training set of 8,013 observations
is 2,789 seconds using the polynomial kernel, 2,109 seconds using the linear kernel, and 211
seconds using the radial kernel. For a training set of 11,020 observations, the training time
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Controller Size of train set #positive Size of test set #positive
DStanceToCrouch 8999 3155 9110 3260
ProneToKneel 4200 3965 4223 4008
SupineToKneel 2234 2234 1879 1879
CrouchToStand 6926 3707 14272 7594
Balance 17317 6997 20393 2683
Walk 11020 1760 8658 1453
StandToSit 1100 458 1286 559
StandToStep 16999 4445 17870 4570
KneelToStand 6000 1063 11998 2806

Table 4.1: Training and test set sizes.

Controller SVM(+) SVM (-) Total NN (+) NN (-) Total
DStanceToStand 84 89 87 72 86 81
ProneToKneel 100 51 94 97 26 93
SupineToKneel 100 - 100 100 - 100
CrouchToStand 100 100 100 98 98 98
Balance 63 91 88 42 90 84
Walk 91 98 98 78 96 93
StandToSit 63 75 70 59 68 64
ProtectStep 48 90 79 49 81 72
KneelToStand 74 88 85 65 84 79

Table 4.2: Comparison between learned SVM and NN pre-conditions.
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is 8,676 seconds using the polynomial kernel, 3,593 seconds using the linear kernel, and 486
seconds using the radial kernel. Table 4.1 shows the size of the training and test sets that we
have used, and indicates the number of successful (positive) examples in each set. It is worth
noting that the SVM code we use works iteratively. The training time is not constant with
respect to the size of the training set. It depends mainly on the shape of the boundary and
to our knowledge convergence is not guaranteed. Once trained, the SVM classifier can provide
answers on-line in milliseconds which is essential for interactive applications. An interesting
feature of the method is that the classification algorithm produces an approximation of the
boundary based only on the support vectors. The number of support vectors in most of our
experiments is much smaller than the number of training data points. For example, a training
set of size 10,000 can be reduced to 700 support vectors. Part of the efficiency of the classifier
stems from this reduction.

Through systematic experimentation, we have evaluated the performance of our automatic,
SVM-based algorithm for learning controller pre-conditions. We compared the performance of
the SVM algorithm to that of a nearest neighbor (NN) classifier, Duda [26]. Given a training
set, the nearest neighbor classifier returns, for an arbitrary state x, the same succeed/fail label
as the label of the observation in the training set that is closest to x. The distance between
observations is computed using a Euclidean norm, dist = |x − xi|. All observations are in rads
or rads/sec. NN classifiers should perform particularly well in cases where the feasible area
in the state space is highly fragmented and localized. Note that the NN method requires zero
training time, but that it provides an answer in O(n) time where n is size of the training set.
However, this response time can be improved by building appropriate data structures.

Table 4.2 summarizes the percentage success rates of learned pre-conditions for a variety
of controllers that we use later in our demonstrations. The “(+)” indicates results that cor-
respond to test sets that consist exclusively of positive (successful) examples, while the “(-)”
sign corresponds to results for test sets that consist of negative examples. To compute accuracy
rates, we trained the SVM and NN pre-condition learning algorithms using randomly sampled
observations collected from each of the controllers. Then we generated test sets of novel obser-
vations and compared their true success/fail status against that predicted by the trained NN
and SVM pre-conditions to obtain the accuracy percentages listed in table. The results show
that the SVM algorithm consistently outperforms the NN classifier. For the results shown in
the table, the SVM algorithm employed polynomial kernel functions. We ran a similar set of
experiments using Gaussian RBF kernel functions, but the accuracies were consistently lower
than those obtained with polynomial kernel functions. Note that for the supine-to-kneel con-
troller the training set contains no negative results. The process through which we produce the
training sets, Section 4.5, failed to produce negative cases. This is due to the strong stability
of the supine position.

Machine learning methods often have to use noisy example sets since for some applications
the collection of the example data happens through noisy sensors. This would be the case if we
were using our method on a robot. In our case, noise is not an issue since we deal with simulated
data which is free of noise. However, it is informative to know how our method would work in
the presence of noise as well as irrelevant sensory data. In a first experiment, we increase the
size of the character’s state by one element both in the training and the test sets. The values of
this element come from randomly sampled white noise of magnitude 1.5 rads. The results for
three controllers are shown in Table 4.3. Columns three and four show the number of support
vectors in the model for the clean and the noisy case respectively. It is clear that although the
added noisy element has some effect, the effect is relatively small. They are an indication that
SVM-based methods are able to ignore an irrelevant element in the state of the character.



Chapter 4. Learning pre-conditions 36

Controller Succes no noise % #Sup. vecs Success with noise % #Sup. vecs
DStanceToStand 87.29 1604 86.68 1660
Walk 96.73 738 96.17 862
CrouchToStand 99.77 41 99.73 54

Table 4.3: SVMs ignore an additional noisy element.

Our second experiment involves adding noise of different magnitudes to every element in
the training set. Table 4.4 shows the percentages of success and the number of the support
vectors for three controllers. Note that the performance of the double stance-to-crouch controller
increased after adding noise of magnitude 0.01. A possible explanation for this might be that
the noise reduces a mild overfitting effect (see Section 4.1) and increases the generalization
ability of the classifier.

It is interesting to note the correlation between the support vector machine and the NN
results. Although, we do not have a rigorous theoretical explanation for that, we think it is due
to the fact that both methods work in a similar way. They model clusters using a polynomial
scheme. The larger these clusters are, the fewer opportunities for misclassification. Most
classifications methods favor domains that consist of smooth clusters because the simpler the
class boundaries are, the better they can be modeled by the hypothesis space of the classifier.

The next chapter discusses the controllers we have developed, and their composable API.
Section 5.6, in particular, describes the way we combine the manual method and the SVM-
classifier to improve the modeling of the pre-condition region.
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Noise Success (SVM) % # Sup. vecs Success (NN)
0.00 87.29 1604 80.97
0.01 87.48 1625 81.05
0.10 87.23 1811 80.87
1.00 81.86 3719 65.70

(a) DStanceToCrouch

Noise Success (SVM) % # Sup. vecs Success (NN)
0.00 99.77 41 98.05
0.01 99.59 66 97.91
0.10 98.83 394 95.79
1.00 58.98 3611 31.11

(b) CrouchToStand

Noise Success (SVM) % # Sup. vecs Success (NN)
0.00 96.73 738 92.78
0.01 96.69 826 92.68
0.10 93.81 1717 89.85
1.00 53.68 4073 67.61

(c) Walk

50

55

60

65

70

75

80

85

90

95

100

0 0.2 0.4 0.6 0.8 1

S
u

c
c
e

s
s
 p

e
rc

e
n

ta
g

e

Noise

Success percentage vs Noise

DStanceToCrouch
CrouchToStand
Walk

(d) SVM success percentage vs noise.

Table 4.4: SVMs performance at the presence of noise.
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Simulation

Human and animal characters are widely used in animation applications. Video games, science
fiction movies, animated movies such as PIXAR’s Toy Story all feature a variety of animated hu-
manoid characters. Such characters are modeled using kinematic or dynamic articulated figures.
We begin this chapter with background information about physics-based animation techniques
and control of animated characters. We then describe the specific composable controllers that
we have developed to test our composition framework.

5.1 Physics-based simulation of articulated figures

An articulated figure is a collection of rigid links connected with joints. Usually there is a clear
hierarchy between the links, each link is connected to one parent link while a parent link may
have more than one child links. Each pair of parent-child links connects through a unique joint
that defines the motion of the child link with respect to its parent. In most cases the joints
are purely rotational allowing a maximum of three rotational degrees of freedom for each link.
The highest link in the hierarchy is called the root link and has a total of six degrees of freedom
that corresponds to its position and orientation in space. Figure 5.1 shows an articulated figure
that represents a human skeleton. Because of the clear hierarchy and relation between the
links it is often convenient to describe the state of an articulated character using a reduced
coordinate system that is defined by the position of the root link and the orientation of each
link with respect to its parent (see Featherstone [29] and SD/Fast [49]). Alternatively we could
use a Cartesian coordinate system that considers the world position and orientation of each
link separately (see Baraff [6] and Mathengine [70]). However, the reduced coordinate system
approach is more convenient for simulation and for implementing control algorithms. It is the
therefore the approach we use in this thesis. The collection of all degrees of freedom, q of the
character coupled with their velocities q̇ represent the state of the character. The state of the
character as a function of time uniquely describes the motion of the character.

The motion of an articulated figure is described by a set of second order differential equa-
tions. These equations result from the application of Newton’s law and relate the acceleration
of the degrees of freedom, q̈, of the system with the forces that act on it. Systems that model
active characters, such as humans, are subject to both external forces that come from their
environment and internal muscle forces.

The equations of motion of an articulated figure have the general form:

M(q(t))q̈(t) + C(q(t), q̇(t)) =
∑

JT
TFi +

∑
l

JT
Rτext,l +

∑
k

JT
Rτj,k, (5.1)

38
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World Cordinate system

T global position of the root

R global orientation of the root

Degrees of freedom q = [ T R θ1 ... θn]

State  q = [ q q ]

θi

Figure 5.1: An articulated character.

where q represents the vector of reduced coordinates, M is a symmetric, positive definite
mass matrix, C are gyroscopic forces, J is the Jacobian matrix, F are the external forces, τext

the external torques and, in the case of an active system, τj are the torques exerted by the
system’s actuators (muscles). Featherstone [29] and Marion [69] present a detailed description
of the dynamics of systems such as articulated bodies. Equation 5.1 represents a system of non-
linear second order differential equations that has no analytical solution for complex articulated
characters. For such cases the system is discretized with respect to time and solved numerically.

5.1.1 Numerical solution of the equations of motion

The standard way of solving a complex dynamical system such as the one described by Equa-
tion 5.1 is to consider the motion of the system in a series of small time intervals. Within each
time interval the vector of accelerations q̈ is computed as many times as the integration method
requires. The accelerations can be computed by transforming Equation 5.1 into a linear system
Mq̈ = b and solving for the accelerations. The total applied force b is computed given a model
of the environment and the internal actuation of the character. Integrating the computed ac-
celerations twice yields the positions and velocities of the degrees of freedom at the end of each
time interval.

The size of the time interval, typically called time step, has a direct effect on the accuracy of
the simulation; a smaller time step provides a better approximation of the continuous motion
of the system and hence more accurate results. There is a clear trade off between accuracy
and efficiency. Often a relatively large time step may cause instability and oscillations. In
certain cases, the choice of integration method can allow for larger time steps and increase the
efficiency of the system. Lately, implicit and semi-implicit integration methods have been used
in a variety of applications [99, 9] to allow for larger time steps. However, they cannot be easily
applied in cases where the external forces have an impulsive nature, for example in the case of
collision reaction forces.
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Controller
System x =f(u,x)

(Mq = τj + b)

Controller Input
System output y:

Position q

System Input u:

Joint torques  τj

Feed back loopSensors

State x = [q q]
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Figure 5.2: Controlling an articulated character.

5.2 Control

Kinematic techniques allow the user to directly specify the value of the character’s degrees of
freedom over time. Therefore the concept of animating a character is reduced to producing the
motion curves that the degrees of freedom of the character will follow precisely. Physics-based
techniques simulate the real world where the motion of an object is determined as the result
of applied forces. In this case, animating a simulated character requires computing the muscle
torques that the character must exert at its joints in order to perform a desired motor task.
This is a difficult control problem. To deal with this problem we borrow ideas and notation from
control theory, Dorf [25]. Given a dynamic system with a set of input parameters u, a set of
output parameters y, a set of state parameters x and initial values x0 for the state parameters,
a controller is an algorithm or function that produces the input parameters that will drive the
output parameters to desired values. A standard way to mathematically represent the control
of a dynamic system is as follows:

ẋ(t) = f(x(t),u(t)), (5.2)
y(t) = g(x(t),u(t)), (5.3)

x(t0) = x0. (5.4)

where f is the mathematical model of the system and g is the control function, i.e the function
that computes the output from the state and the input parameters. Generally, it is not easy
to invert g. In our case, the system under control is an animated character described by
Equation 5.1, the input parameters are the muscle torques τj, the output parameters describe
the position of the character i.e. its degrees of freedom y = q, and the state of the character is
x = [q q̇]T .

Control techniques that do not require feedback on the state of the system are called open-
loop while those that monitor the state of the system are called closed-loop. Figure 5.2 shows a
graphical representation of a system and a controller. The dotted line shows the state feedback
loop that is used in the closed-loop case. It is often the case that controllers cannot directly
observe the state of the system, in which case they estimate it from sensory input. In addition,
sensors can provide additional information about the environment and the system under control,
such as contact points, the location of obstacles and the orientation and slope of the terrain.

5.3 Design methods

Determining motor control strategies for human motor tasks and describing them in an algo-
rithmic way so that a simulated character can reproduce them, is surprisingly difficult even for
everyday motions such as walking. Wooten’s thesis [113] is a good example of how much effort
it takes to design robust controllers for athletic maneuvres.
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The biomechanics literature is a good source of information about the motor control of the
human body in any level of detail. However, the focus of biomechanics is understanding and
analyzing the human motion for purposes of increasing athletic performance, avoiding injuries,
rehabilitation etc. Although, the associated studies rarely reveal how such analyses can be
transformed into robust controllers they provide information that can be used in the design of
control strategies for simulated characters. We will see how such information has been used in
subsequent sections of this chapter.

In addition to the biomechanics literature, our own intuition is a good starting point towards
designing controllers for simulated characters. After all, we can personally perform most of the
motor tasks that we wish the simulated characters to reproduce. A number of the controllers we
present in the next sections were developed based on observations of human subjects performing
the tasks repeatedly, such as illustrated in Figure 5.11.

The simplest and most common method for developing controllers involves much trial and
error. Using this technique, a first version of a controller is developed, usually by hand. The
controller is then repeatedly tested and manually refined until its performance is satisfactory.
The control problem can often be formulated as an optimization problem. The character is
required to perform a task while minimizing a cost or maximizing an objective function. It has
been shown that optimization-based control can be used to automatically synthesize controllers
capable of making active simulated creatures locomote [39, 96, 41, 100]. Controller-based motion
synthesis is often addressed using probabilistic optimization methods because they are easy to
implement, are suitable for searching large spaces, and can avoid local sub-optima. With
this method, controllers are repeatedly generated and subsequently evaluated using forward
simulation. The motion synthesis problem is thus tackled by searching the space of possible
controllers for those that produce suitable motions. Common search methods for the stochastic
motion synthesis problem are genetic algorithms [96, 39], and simulated annealing [58, 100, 27,
41]. The techniques based on probabilistic search work well for developing relatively stable
motions such as crawling gaits. However, they have not been shown to work for highly unstable
motions, such as bipedal walking.

5.4 Our control structures

Many different methods have been developed to deal with the control of dynamic graphics
objects [115, 45, 72, 100, 41, 99, 62]. Finite state machines (FSM) are one of the most popular
structures for the control of gait. The pose controller is a type of finite state machine which is
suitable for the control of articulated figures [102]. The technique was originally based on cyclic
graphs but it has been extended to acyclic graphs in order to achieve non-periodic motions [101].
Most of our controllers follow the pose controller paradigm as explained in Section 5.5.

A pose controller is a finite state machine (FSM) with timed and event-based transitions.
Each state of the FSM corresponds to a particular configuration (pose) of the character and it
remains active for a specified time interval or until a sensor triggers an event-based transition.
For the rest of the document, we will use the term pose to refer to a state of the pose controller
FSM since the term state also refers to the character’s state [q q̇]T . Each pose defines the
desired value for the character’s degrees of freedom q. A set of proportional derivative controllers
transforms these values into rotational spring forces as follows:

τ = Ks(q − qdes) − Kdq̇ (5.5)

where Ks and Kd are diagonal stiffness and damping matrices respectively, qdes are the desired
values of the character’s degrees of freedom specified by the pose and q̇ is the velocity of the
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Figure 5.3: A stand-sit-stand pose controller.

character’s degrees of freedom. Figure 5.3 shows the pose controller that implements a stand-
sit-stand motion described in Section 5.8.3. It consists of four poses A,B,C,D. Transitions A →
B and C → D are timed, while B → C is sensor based.

For some of our controllers, we use continuous control, meaning that the control parameters
are tightly coupled with some of the feedback sensors. The balance controllers are such an
example. We discuss sensors in Section 5.5.1.

We have designed several controllers based in part on experimental studies of how humans
detect loss of balance [81] and analysis of protective and falling behaviors [24]. The resulting
parameterized controllers have been enhanced with appropriate pre-conditions, post-conditions,
and expected performance and have been integrated using our arbitration-based supervising
controller.

With the exception of the supervisor controller, most of our controllers are designed specifi-
cally for the two models that we use in our experiments and they may not scale well for different
models that vary in dimensions and weight. Similarly, most of them are sensitive to the ground
model and may fail if a slightly different one is used. These are limitations of the controllers
themselves and not of the composition method.

5.5 Supervisor controller

The supervisor controller implements the top level of the hierarchical composition scheme shown
in Figure 3.4. At each time step it first checks whether it needs to initiate a bidding process;
if the user-specified target state has changed or if there is no active controller other than a
default one, a bidding process is executed. During this process all available controllers determine
whether their pre-conditions are satisfied in which case they bid for control of the character. The
supervisor controller selects the bidding controller that returns the highest priority and registers
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Figure 5.4: A few sensors associated with the 3D model.

it as the active controller. It then calls the method of the active controller that implements its
control strategy. This method returns to the supervisor controller a status parameter and target
values for all or a subset of the character’s degrees of freedom along with associated stiffness
and damping parameters. If the status parameter indicates that the controller has failed then a
new bidding process is executed1. The target values and the stiffness and damping parameters
are used by a set of proportional-derivative controllers to calculate the actual control torques.
Alternatively, the active controller can choose to apply torques directly to the character and
return no values for the supervisor’s proportional-derivative controllers. In the case where no
available controller bids for control, the supervisor controller activates the default controller.
The latter is a generic controller that tries to do something sensible with the character when
no specialist control can take over. We describe this controller in more detail later.

As the central control unit of a character, the supervisor controller is responsible for main-
taining the joint limits of a character. We use a method based on exponential springs to ensure
that rotations of the character’s body parts do not exceed the user specified limits. If a rota-
tional degree of freedom qi, exceeds its allowable range of (qlow

i , qhigh
i ), the exponential springs

produce the following forces:

if (qlow
i − qi) > ε → Flow = kl

s(e
ke

s(qlow
i −qi) − 1) − kdq̇i, (5.6)

if (qi − qhigh
i ) > ε → Fhigh = kl

s(e
ke

s(qi−qhigh
i ) − 1) − kdq̇i, (5.7)

depending on the limit that has been violated. Exponential springs are widely used in a variety
of control problems. In our current implementation we have found that the values, kl

s =
10.0, ke

s = 1.0, kd = 10.0 of the exponential spring constants produce satisfactory behavior.

5.5.1 Sensors

Feedback is very important for the motor control of complex characters such as humans. Con-
trollers need to know sufficient information about the environment such as contact points, the

1An additional check ensures that the system does not fall into an infinite loop when a badly designed
controller bids for control and immediately fails.
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slope of the terrain, the position of obstacles, etc. At the same time they need information on
the state of the character, where he is facing, whether he is balanced, etc. Most of the infor-
mation on the character can be computed from the state parameters. However it is often more
convenient to use higher level sensors that are more intuitive and which can be computed once
per time step and shared among controllers. In the current implementation, each controller has
full access to the internal data structures of DANCE including all the information associated
with any character or object in the system. This allows the controllers to define arbitrary sen-
sors that keep track of necessary information such as state parameters for feedback loops and
the state of the environment. For efficiency, the supervisor controller calculates a number of
common sensor values that are available to all specialist controllers:

• Support polygon. The support polygon, S, is defined by the convex hull of the feet and it
is crucial for the balance of the character.

• Center of mass information. The position c, velocity ċ, acceleration c̈, and relative
position of the center of mass with respect to the geometric center of the support polygon.

• Hip center of mass information. The position ch, velocity ċh, acceleration c̈h, and relative
position of the hip’s center of mass with respect to the geometric center of the support
polygon.

• Contact information. Whether the feet, head, hip and thighs are in contact with the
ground.

• Orientation. The facing, vf , and up, vu, vectors of the hip indicate the direction that the
hip faces and how far it leans respectively.

Figure 5.4 shows the support polygon, the facing vector and the up vector relative to the 3D
skeleton model.

5.5.2 Command interface

Some of our controllers bid for control of the character autonomously when their pre-conditions
are met, such as the controller that takes a protective step in response to loss of balance. Other
controllers attempt to become active only at the users request. Each controller is associated
with a string that defines its goal. For example, the walk controller for the 2D robot model
is associated with the string “walk n” where n is the number of steps that the character must
take. Our system does not prevent controllers from using the same string if so desired. Such
conflicts are resolved by the priority scheme described in Section 3.7. The user registers one
goal at a time by interactively entering a command string to the supervisor controller. The
new goal increases the suitability score of the designated controller and forces the supervisor
controller to run the selection process that finds the most suitable controller. The selection and
arbitration process could be implemented by a high-level planner. Section 8.1 discusses how we
might investigate this direction in the future.

5.6 Implementing the composable API

Chapters 3 and 4 present two techniques that can be used to model the pre-conditions of
composable controllers, one being a manual specification and the other using a semi-automated
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Figure 5.5: Manual and learned approximations of the success region.

application of machine learning. The technique based on manually defined analytical pre-
conditions is convenient when the operation of the controller depends on conditions that can
be represented in closed form, such as the position of the center of mass with respect to the
support polygon, contact points. These conditions define regions with regular shapes within
some projection of the state space. On the other hand, the classifier based on machine learning
provides a more flexible and semi-automatic way of computing the region of success within
the full state space of the character. However, if we do not add explicit information about
the environment to the training set of the classifier, the latter will fail to capture important
environmental conditions. Therefore, it seems that the best way to model the pre-conditions of
a composable controller is to combine the two techniques in a way that leverages the advantages
of both. We have decided to use the manual pre-conditions first to prune out large parts of the
state space and ensure that contact and balance conditions are properly captured. Within the
remaining region we apply a support vector machine classifier that results in a more accurate
prediction. Figure 5.5 shows an abstraction of how the different regions might look like in the
state space. The square line represents the approximation obtained by the manual approach,
the boundary produced by the classifier is shown as a solid line and the dotted line represents
the actual region of success.

We use the learning technique only for the pre-conditions of the controllers associated with
the two dimensional robot model. The use of the support vector machine classifier for the three
dimensional case is straightforward but more computationally expensive. This is mostly due to
the much greater dimensionality of the three dimensional case compared to the two dimensional
one. In particular, the former is 2.65 times larger than the latter. A much larger state vector
has a significant effect on the efficiency of the dynamics simulation which is needed to produce
the training set for the learning process. The 3D dynamics simulation runs, on average, 3-7
times slower than the 2D one.

The next sections present the controllers we have implemented and describe in detail their
analytical composable APIs. Table 5.1 shows the number of poses (states) of each controller.
Controllers that do not follow the pose controller (finite state machine) paradigm are marked
with “C”. The table shows also whether the controllers implement sensor-based (“S”) or time-
based (“T”) transitions between poses.
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Controller #poses (3D) Transitions # poses (2D) Transitions
Balance C N/A C N/A
Fall 3 T & S 3 T & S
ProtectiveStep 4 T & S 5 T & S
Step 9 T & S - -
Plunge 3 T & S 6 T & S
SupineToCrouch 10 T & S - -
SupineToKneel - - 10 T & S
ProneToCrouch 12 T & S - -
ProneToKneel - - 6 T & S
RollOver 11 T & S - -
CrouchToStand C N/A C N/A
Kip 9 T & S N/A N/A
StandToSit 3 T 3 T & S
SitToCrouch 1 T & S 1 T & S
StandToAllFour C N/A - -
DStanceToCrouch - - 6 T & S
Slow Steps (Walk) - - 6 T & S

Table 5.1: Number of poses and pose transition types.

5.7 Default Controller

The default controller is activated when no other controller requests control of the character.
Its goal is to perform a sensible action in any given situation. In the absence of a better
understanding of the situation, the most sensible thing to do is to keep the character in some
comfortable position. We currently distinguish between two different situations, standing in
place and lying on the ground. In the first case, the controller attempts to maintain the
character’s upright stance using moderate force while keeping the arms loose. If the character
is leaning more than a given threshold then it is considered to be in a lying position, in which case
the controller makes the character assume a relaxed pose. Thus far, these two strategies have
worked well, in the sense that they bring the character smoothly into a perceived comfortable
position.

The default controller faces the difficult task of encompassing all situations for which we
haven’t yet designed appropriate controllers. It is therefore the starting point of future im-
provements.

5.8 Everyday Actions

A skillful simulated human character should be able to perform all the motor tasks that humans
are able to do. However, even very common tasks such as walking require the sophisticated
control of body dynamics. As stated earlier, we focus on a subset of everyday motions starting
with the most simple one–standing in place. In the event of a loss of balance, the character
should react naturally either with a restorative motion or with a protective falling behavior,
as is appropriate in the specific circumstance. Affording a dynamic articulated figure natural
reactions to a loss of balance or an impending fall, plus the ability to rise up subsequent to a
fall, is an essential step towards believable, autonomous characters.
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Figure 5.6: Critically damped balance controller.

5.8.1 Balancing

Balancing during quiescent stance is a complex biomechanical control phenomenon that depends
on different factors, such as the distance between the feet, and the presence of (or lack of)
visual feedback, Day [23]. A considerable body of research aims to understand the sensory
information (van der Kooij [106]), and reflex responses that humans use to maintain quiet
stance (Fitzpatrick [32]). The strategies that people employ as a response to disturbances
during quiet stance are generally divided into hip strategies and ankle strategies depending on
whether the hips or the ankles are the dominant regulators of the postural stability. Gatev [34]
provides a comprehensive analysis of balance strategies during quiet stance focusing on ankle
control. Most researchers in biomechanics seem to agree that ankle strategies are more likely
to occur in response to small disturbances, while hip strategies occur in response to larger
disturbances.

Our balance controller is responsible for maintaining a natural standing posture. It is based
on an inverted pendulum model that uses the ankles to regulate the body sway [32]. Despite the
fact that the body of the character is not as rigid as the inverted pendulum hypothesis suggests,
the approximation works well in practice. Our balance controller uses an ankle value of 0.06
radians as the equilibrium position. This value has been chosen experimentally. Figure 5.6
shows the horizontal trajectory of the center of mass in the sagital plane that the balance
controller produces when the character’s starting state places the center of mass close to the
heels. The critically damped behavior of the balance controller is apparent.

For this controller, the articulated body must be in a balanced upright position, the velocity
and acceleration of the center of mass should not exceed certain threshold values as explained
by Pai [81], and both feet must maintain contact with the ground at all times. The controller
can tolerate small perturbations of the posture and the velocity/acceleration of the center of
mass by stiffening the ankle joints. For larger accelerations of the center of mass, the controller
actively actuates the ankle joint to reduce the acceleration of the center of mass. The post-
conditions are similar to the pre-conditions. The expected performance is exactly the same as
the pre-conditions. In mathematical form using the notation defined in Section 3:

P :
Velocity: |ċ| < 0.3 m/sec.
Balance: projection(c) ∈ S.
Posture: (upright) (1/n)

∑
i

√
(qi − q0,i)2 < 0.1 rad,



Chapter 5. Simulation 48

Figure 5.7: Falling in different directions

where i = (thigh, knee, waist), q0 = 0,
and n is a normalization parameter.

Contact: feet on ground.
O :

Velocity: |ċ| < 0.05 m/sec.
Balance: projection(c) ∈ S.
Posture: (upright) (1/n)

∑
i

√
(qi − q0,i)2 < 0.1 rad,

where i = (thigh, knee, waist), q0 = 0,
and n is a normalization parameter.

Contact: feet on ground.

We enhance the behavior of our balance controller in a simple fashion by kinematically simu-
lating the character’s visual attention. In particular, we apply Perlin noise, Perlin [86], to the
degrees of freedom of the neck that makes the character look around in its environment.

Because of the relative simple task that this controller has to accomplish and the inher-
ent stability of the simple ankle strategy that we employ, the balance controller can be used
successfully on slightly different terrains and characters. Nevertheless, the controller could be
enhanced to employ more complex strategies especially as responses to larger external distur-
bances. For example, an animated character should attempt to maintain balance by shifting its
weight, or bending at the waist. If the character cannot maintain balance, it must then resort
to taking a step or even initiate a fall behavior.

Wooten’s balance controller [113] implements a similar balance technique based on both hip
and ankle strategies.

5.8.2 Falling

The manner in which people fall depends upon a number of factors such as their physique,
their age and their training. Involuntary falling reactions are very common in everyday life,
especially among young children and the elderly. They are probably the most common reason
behind fracture injuries among the elderly. Hsiao and Robinovitch [50] show that, during a fall,
the elderly are more likely to impact their hip first as compared to younger adults falling under
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the same conditions. Our fall controller is designed with the average adult in mind. Its main
action is to absorb the shock of the impact using mostly the hands.

Wu [114] provides a way to distinguish falls from normal activities based solely on velocity
characteristics. The pre-conditions of our fall controller define a larger acceptable region in
velocity space than the one specified by Wu [114] because they are defined in accordance with
those of the balance controller. All situations that are beyond the capabilities of the latter
should be handled by the fall controller:

P :
Vertical Velocity: ċv < 0.3 m/sec.
Balance: projection(c) �∈ S.
Contact: hip not on ground, hands not on ground.

E :
If falling forward face down vf

y < 0.1.
If falling backward face up vf

y > −0.1.
Contact with the ground in 3 seconds.

O:
Either

Velocity: |ċ| < 0.3 m/sec.
or

head on ground.

The pre-conditions ensure that if the character is not balanced then the fall controller bids to
take over. The fall controller succeeds when the velocity and acceleration of the character are
brought close to zero or when the head touches the ground. The expected performance ensures
that the character keeps on falling towards the same direction. In addition, it requires (a) that
the character’s facing direction does not reverse, something which might happen when falling
from a great height and (b) that the character touches the ground within 3 seconds to ensure
that it is a fall from a short height.

Our implementation of the fall controller computes the direction of the fall and responds
accordingly. It can therefore handle a variety of pushes. Figure 5.7 shows snapshots of falls
in different directions. The second frame in Figure 1.3 also demonstrates the action of the fall
controller within a fall-and-recover sequence. The controller is relatively robust and it can be
used on different characters and ground models.

5.8.3 Stand-to-sit and sit-to-crouch

Sitting down on and rising from a chair are common actions. We have implemented a controller
that makes the character sit starting from an upright stance and another controller that prepares
the character for the reverse action by making it lean forward until he is in a crouch position.2

The resulting actions are illustrated in Figure 5.8. The pre-conditions, post-conditions and
expected performance of each controller are relatively simple:

Stand to sit controller:
P :

Velocity: |ċ| < 0.1 m/sec.

2We use the term crouch to refer to any balanced posture of the character for which the legs of the character
are symmetrically positioned.
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Posture: (upright) (1/n)
∑

i

√
(qi − q0,i)2 < 0.1 rad,

where i = (thigh, knee, waist), q0 = 0,
and n is a normalization parameter.

Balance: projection(c) ∈ S.
Contact: hip not on ground, hands not on ground.

E :
Up vector: vu

y > 0.7.

Requires that the character does not lean sideways, |vu
z | < 0.05.

O:
Up vector: vu

y > 0.7.
Velocity: |ċ| < 0.1 m/sec.
Requires that the character does not lean sideways, |vu

z | < 0.05.

Sit to crouch controller:
P :

Up vector: vu
y > 0.7.

Velocity: |ċ| < 0.1 m/sec.
Posture: sitting: (1/n)

∑
i |q[i] − q0| < 0.5 rad,

where i = (thigh, knee, waist),
q0 = [−1.5 1.5 0.0],
and n is a normalization parameter.

Balance: projection(c) �∈ S.
Contact: hip not on ground, hands not on ground.

E :
Up vector: vu

y > 0.7.
The character does not lean sideways, |vu

z | < 0.05.
Time of completion less than 4 seconds.

O:
Up vector: vu

y > 0.7.
The character does not lean sideways, |vu

z | < 0.05.
Balance: projection(c) ∈ Ss.

Here, Ss is subset of S shorter along the front-to-back axis, so as to ensure a more balanced
final posture. If the controller does not succeed in four seconds then something is assumed to
be wrong and the controller aborts. We have tested this controllers with chairs of height 40cm.

5.8.4 Rising from a supine position

Rising off the ground is a surprisingly difficult motion to simulate. It involves rapid changes of
the contact points and significant shifting of the character’s weight. In addition, the frictional
properties of the ground model greatly influence on the motion.

For the three dimensional model, the pre-conditions require that the character be lying
with his back flat on the ground, within some tolerance. The post-conditions require that the
character be balanced on its feet, with the feet side by side but not necessarily straightened
up. The expected performance makes sure that the character does not fall sideways and that
it completes its task within 20 seconds.

P :
Facing vector: vf

y > 0.97
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Velocity: |ċ| < 0.005 m/sec.
Contact: hip on ground.
The character does not lean sideways, |vu

z | < 0.05.
E :

The character does not lean sideways, |vu
z | < 0.05.

Facing vector: vf
y > −0.2.

Up vector: vu
y < 0.99 if the hip is not on the ground.

O:
Balance: projection(c) ∈ S.
Contact: hip not on ground.

A snapshot of a resulting motion is shown in Figure 5.9. This controller is very sensitive to the
character and the ground’s friction model, which has a coefficient of friction of 0.6.

For the two dimensional model, the pre-conditions are the same as for the three dimensional
case. However, the expected performance and the post-conditions require that the character
ends up in a kneeling position within an appropriate time period.

P :
Facing vector: vf

y > 0.97.
Velocity: |ċ| < 0.005 m/sec.
Contact: hip on ground.

E :
First phase:

Facing vector: vf
y > −0.2.

Up vector: vu
y < 0.99.

Second phase (kneel):
Up vector: vu

y > 0.7.

Hip not on ground.
Posture: kneeling: (1/n)

∑
i

√
(qi − q0,i)2 < 0.8 rad,

where i = (thigh, knee), q0 = [−1.43 2.92},
and n is a normalization parameter.

O:
Up vector: vu

y > 0.7.

Contact: hip not on ground.
Posture: kneeling: (1/n)

∑
i

√
(qi − q0,i)2 < 0.8 rad,

where i = (thigh, knee), q0 = [−1.43 2.92},
and n is a normalization parameter.

Velocity: |ċ| < 0.1 m/sec.

The resulting motion is depicted in Figure 1.5 (b). The controller works for grounds with
coefficient of friction equal or greater than 0.55.

5.8.5 Rolling over

When lying on their back, some people may choose to roll-over to a prone position before
attempting to stand. We have implemented a roll-over controller that can emulate this action.
The fourth frame in Figure 1.3 demonstrates the action of the roll-over controller. The pre-
conditions of the roll-over controller require that the character be in a supine position and that
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the center of mass not have noticeable motion. The post-conditions of the roll controller are
fairly simple; they include any prone position for which the character is extended and fairly
straight; i.e., no crossing of legs or arms, etc. The expected performance is simple and makes
sure that the character is facing down during the second part of the motion where it is expected
to do so. The controller has a limited time period to complete its task.

P :
Facing vector: vf

y > 0.5.

Up vector: vu
y < 0.3.

Velocity: |ċ| < 0.005 m/sec.
Contact: hip on ground.

E :
Up vector: vu

y < 0.5.

Velocity: |ċ| < 5.0 m/sec.
First phase:

Facing vector: vf
y > 0.0.

Second phase:
Facing vector: vf

y < 0.0.

O:
Facing vector: vf

y < −0.5.

Velocity: |ċ| < 0.1 m/sec.

The controller has been tested successfully for a few different starting states. One of its limi-
tations is the lack of synergy between different body parts. For example, when the right arm
tries to pass underneath the ribs the rest of the body does not move in a fashion that reduces
the weight on the arm. Therefore the arm actuators have to use more energy to compensate
for the increased friction force that acts on the arm.

5.8.6 Rising from a prone position

Frames 5–9 in Figure 1.3 demonstrate the action of a controller that enables our three dimen-
sional model to rise from the prone position. The pre-conditions require that the character be
lying face down but not on his arms. The post-conditions require that the character end up in
a crouching position.

P :
Facing vector: vf

y < −0.3
Up vector: vu

y < 0.5.

Velocity: |ċ| < 0.005 m/sec.
E :

Facing vector: vf
y < 0.5.

Up vector: vu
y < 0.99.

Velocity: |ċ| < 5.0 m/sec.
Time of completion less than 15 secs.

O:
Balance: projection(c) ∈ S.
Up vector: vu

y > 0.7.

The pre-conditions are similar for the two dimensional character. However, the expected per-
formance and the post-conditions are different, since the goal in this case is for the character
to reach a kneeling state.
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P :
Facing vector: vf

y < 0.

Up vector: vu
y < 0.5.

Velocity: |ċ| < 0.05 m/sec.
Contact: hip on ground.

E :
First phase:

Facing vector: vf
y < 0.0.

Contact: hands on ground or hip on ground.
Second phase:

Up vector: vu
y > 0.7.

Contact: knee on ground and hip not on ground.
Third phase:

Contact: Knees on ground and hip not on ground.
Posture: kneeling: (1/n)

∑
i

√
(qi − q0,i)2 < 0.8 rad,

where i = (thigh, knee), q0 = [−1.43 2.92},
and n is a normalization parameter.

Facing vector: vf
y > 0.0.

Up vector: vu
y > 0.0

O:
Facing vector: vf

y > 0.0.

Up vector: vu
y > 0.0

Contact: Knees on ground and hip not on ground.
Posture: kneeling: (1/n)

∑
i

√
(qi − q0,i)2 < 0.8 rad,

where i = (thigh, knee), q0 = [−1.43 2.92},
and n is a normalization parameter.

Velocity: |ċ| < 0.05 m/sec.

The motion produced by this 2D controller is shown in Figure 1.6 (c). The controller is not
very sensitive to friction and has been tested with a friction coefficient in the range of [0.4, 0.6].
Both controllers must reach their post-conditions within a limited time interval, otherwise they
fail.

5.8.7 Kneel-to-crouch

Currently, this controller has been implemented only for the 2D model. It is a pose controller
that takes the character from a kneeling position, such as the one produced by the previous con-
troller, to a crouching position. The pre-conditions, post-conditions and expected performance
are as follows:

P :
Facing vector: vf

y > −0.5
Velocity: |ċ| < 0.5 m/sec.
Contact: feet and knees on ground.
Posture: kneeling: (1/n)

∑
i

√
(qi − q0,i)2 < 0.5 rad,

where i = (thigh, knee), q0 = [−1.43 2.92],
and n is a normalization parameter.

E :
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(a) Stand to sit controller.

(b) Sit to crouch controller.

Figure 5.8: Sitting and getting up from a chair.

Velocity: |ċ| < 5.0 m/sec.
First phase:

Facing vector: vf
y > −0.5.

Contact: foot on ground, hip not on ground.
Second phase:

Up vector: vu
y > 0.5.

Contact: feet on ground and hip not on ground.
O:

Velocity: |ċ| < 0.1 m/sec.
Balance: projection(c) ∈ S.

A limitation of this controller is that any rising motion before the center of mass is placed above
the front foot, relies too much on the help of the back leg. A more natural approach would
be to first shift the center of mass above the front foot and then have the character rise. This
limitation makes the control very sensitive to the ground model.

5.8.8 Step

This is a simple controller designed for the three dimensional model that makes it perform a
single step. The final stage of the controller brings both feet together to achieve a standing
position. The motion is depicted in Figure 5.10. The pre-conditions require the character to
be in an upright stance, while the expected performance makes sure that the character remains
upright during the operation of the controller. The post-conditions require that the character
is upright as the controller completes its operation.

P :
Up vector: vu

y > 0.9.
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Figure 5.9: Rising from a supine position on the ground and balancing erect in gravity.

Figure 5.10: Taking a step.

Velocity: |ċ| < 0.005 m/sec.
Contact: hip not on ground.
Balance: projection(c) ∈ S.

E :
Up vector: vu

y > 0.9.

Velocity: |ċlat| < 1.0 m/sec,
|ċsag| < 0.08 m/sec.

O:
Velocity: |ċ| < 0.005 m/sec.
Balance: projection(c) ∈ S.

Here, ċlat and ċsag are the lateral and sagittal velocity of the center of mass, respectively. The
controller is very sensitive to the ground model and the character model and has been tested
only for a very narrow region of initial states.

5.8.9 Protective step

Human subjects whose balance is disturbed during quiet stance exhibit a variety of behaviors in
their attempt to maintain balance. The sort of behavior they exhibit depends on their physical
conditioning, personal preferences and the magnitude and duration of the disturbance. Pai and
Patton [81] have studied under what circumstances a subject can maintain balance without
stepping. Do et al. [24] have studied the biomechanical responses of human subjects to induced
forward falls. They concluded that an induced forward fall starts with an invariable preparation
process which is followed by an adaptable recovery one.
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Our controller for the three dimensional case is currently designed to produce the visual
effect. It is not sophisticated enough to actually maintain balance. However, it is designed to
take step in the proper direction. Its pre-conditions are complimentary to the pre-conditions of
the balance controller. At the same time they ensure the controller does not attempt to handle
situations that are not appropriate. The expected performance ensures that the controller
realizes its failure early so that a fall controller can take over. The post-conditions require that
the character reaches a balanced upright stance.

P :
Facing vector: vf

y > −0.6.

Up vector: vu
y > 0.7.

Velocity: |ċ| < 1.0 m/sec.
Contact: hip and hands not on ground.

E :
Contact: hip and hands not on ground.
Up vector: vu

y > 0.7.

Facing vector: vf
y > −0.6.

O:
Velocity: |ċ| < 0.05 m/sec.
Balance: projection(c) ∈ S.
Contact: hip and hands not on ground.

The three dimensional version of this controller is fairly robust in the sense that despite its
failure to regain the balance of the character, it produces a satisfactory visual effect for a
variety of situations, ground parameters, and human models. The motion produced can be
seen in Figure 1.6 (g).

The two dimensional version of the controller is similar. However, because the character
cannot fall to the side, the controller works successfully for a wide range of disturbances. The
response of the controller, i.e. the length of the step that the character takes, is parameterized
with respect to the velocity of the center of mass at the time that the controller takes over.
When the character is pushed backwards, the final phase of the controller makes the character’s
torso lean forward to facilitate a potential transition to another controller. The composable
interface of the two dimensional controller is as follows:

P :
Up vector: vu

y > 0.7.

Velocity: |ċ| < 1.0 m/sec.
Contact: hip and hands not on ground.
Posture: (standing up) (1/n)

∑
i

√
(qi − q0,i)2 < 1.0 rad,

where i = (thigh, waist), q0 = 0,
and n is a normalization parameter.

E :
Facing vector: if falling forward vf

y < 0.1,

if falling backward vf
y > −0.3.

Contact: hip and hands not on ground.
Up vector: vu

y > 0.7.

O:
Velocity: |ċ| < 0.05 m/sec.
Balance: projection(c) ∈ S.



Chapter 5. Simulation 57

Contact: hip and hands not on ground,
feet on ground.

Posture: (trunk leaning forward) vu
y vf

y < 0.

The motion produced by this controller can be seen in the last part of Figure 7.1. The protective-
step controller has a higher priority than the fall controller, which ensures that, when appro-
priate, the character will first attempt to maintain balance by stepping and then resort to a fall
behavior.

5.8.10 Crouch-to-stand

The crouch-to-stand controller achieves an upright stance starting at a variety of crouching
states for both the three dimensional and the two dimensional case. The two dimensional case
is more robust than the three dimensional one. However, both can fail even for states that
can be considered as being “between” states that the controllers can handle successfully. The
pre-conditions of both controllers ensure that the character is not already straight and that
there is little movement. The composable interface is as follows:

P :
Facing vector: vu

y > −0.6.

Up vector: vu
y > 0.7.

Velocity: |ċ| < 1.0 m/sec.
Contact: hip and hands not on ground,

feet on ground.
Posture: (not too straightened) (1/n)

∑
i

√
(qi − q0,i)2 > 0.3 rad,

where i = (waist, thigh, knee),
q0 = 0.
and n is a normalization parameter.

Balance: projection(c) ∈ S.
E :

Contact: hip and hands not on ground,
feet on ground.

Up vector: vu
y > 0.7.

Balance: projection(c) ∈ S.
Posture: (not too straightened) (1/n)

∑
i

√
(qi − q0,i)2 > 0.03 rad,

where i = (waist, thigh, knee),
q0 = 0.
and n is a normalization parameter.

O:
Velocity: |ċ| < 0.1 m/sec.
Balance: projection(c) ∈ S.
Contact: hip and hands not on ground,

feet on ground.
Posture: (straightened) (1/n)

∑
i

√
(qi − q0,i)2 ≤ 0.3 rad,

where i = (waist, thigh, knee),
q0 = 0.
and n is a normalization parameter.
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The resulting motions can be seen in Figures 1.6 (d) and 7.1.

5.8.11 Double-stance-to-crouch

This controller has been implemented for the two dimensional robot model only. It takes the
character from a double stance to a symmetric one (crouch). The resulting motion can be seen
in Figure 1.5 (f) and Figure 7.1. The main function of this controller is to place the center of
mass above the front foot and then bring the back leg to a symmetric position. The controller is
fairly robust and it has performed successfully for a variety of starting states. The composable
interface is as follows:

P :
Facing vector: vf

y > −0.7.

Up vector: vu
y > 0.7.

Velocity: |ċ| < 1.0 m/sec.
Contact: hip and hands not on ground,

feet on ground.
Posture: leg asymmetry: |qi − qj | > 0.2 rad,

where i = left thigh and j = right thigh.
Balance: projection(c) ∈ S.

E :
Contact: hip and hands not on ground,

one foot at least on ground.
Up vector: vu

y > 0.7.

Balance: projection(c) ∈ S.
Posture: leg asymmetry: |qi − qj | > 0.1 rad,

where i = left thigh and j = right thigh.
O:

Velocity: |ċ| < 0.1 m/sec.
Balance: projection(c) ∈ S.
Contact: hip and hands not on ground,

both feet on ground.
Posture: leg symmetry: |qi − qj | ≤ 0.1 rad,

where i = left thigh and j = right thigh.
Up vector: vu

y > 0.7.

5.8.12 Walk

Walking is an essential motion for a skillful simulated agent. Unfortunately it is also a difficult
motion to simulate in a robust fashion. Despite the large amount of research work on dynamic
walking, there are no solutions that are sufficiently general with respect to different models and
terrains.

Our controller for two dimensional walking implements a slow walking gait over flat terrain.
The idea behind this controller is to use the swing leg to bring the center of mass above the
pivot leg and then swing while the center of mass is statically balanced. When the swing leg
is in front of the body, the controller throws the character on the swing leg (now the front leg)
using the ankle of the back leg. Frames from an associated animation can be seen in Figure 7.1.
The user can specify how many steps the character must take. The controller maintains a
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step counter and when the required number of steps is reached, it signals success, leaving the
character in a double stance position (feet spread). The composable interface is as follows:

P :
Facing vector: vf

y > −0.5.

Up vector: vu
y > 0.9.

Velocity: |ċ| < 0.5 m/sec.
Contact: hip and hands not on ground,

feet on ground.
Posture: upright: (1/n)

∑
i

√
(qi − q0,i)2 < 0.1 rad,

where i = (thigh, waist, knee)
and n is a normalization parameter.

Balance: projection(c) ∈ S.
E :

Velocity: |ċ| < 1.0 m/sec.
Contact: hip and hands not on ground,

one foot at least on ground.
Up vector: vu

y > 0.7.

Balance: projection(c) ∈ S.
O:

Velocity: |ċ| < 0.1 m/sec.
Balance: projection(c) ∈ S.
Contact: hip and hands not on ground,

both feet on ground.
Up vector: vu

y > 0.7.

Required number of steps reached.

The controller is robust with respect to a narrow region of initial upright stance configurations
and it can tolerate small changes in the ground friction coefficient.

5.9 Stunts

In addition to everyday actions, our dynamic character should be able to perform a variety of
interesting voluntary actions dictated by the animator. Such actions can potentially include
physically dangerous stunts.

5.9.1 The kip move

The kip stunt, shown in Figure 5.11, is an athletic motion often seen in martial arts films. It
provides a very quick way to get up from a supine position. Variations of the kip are used
extensively in gymnastics, Bergemann [11]. The basic mechanics of the motion are not very
complex but the timing is crucial. The main idea behind the kip is to get the body airborne and
at the same time provide enough rotational momentum to allow the feet to be placed under the
center of the mass. We determined the mechanics of the kip by observing human subjects, as
shown in Figure 5.11. The maximum height of the center of mass during a kip varies between
subjects. Subjects with a gymnastics background tend to have a smoother and more gracious
motion such as the one performed by the human subject in Figure 5.11. Subjects with a martial
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Figure 5.11: The kip move performed by both a real and a virtual human.
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arts training tend to perform a sharper motion with less height and a landing posture closer to
the crouch posture of the simulated character.

The controller is based on a pose controller whose pre-conditions include a variation of
supine positions. The first pose of the controller makes sure that the character assumes a
position suitable for performing the kip. This include straightening the legs and arms. The
larger part of the motion is ballistic, which focuses the control mainly at the kick off and landing
phases. The last part of the controller applies continuous control to bring the stuntman to an
erect position from which the balance controller can take over. Alternatively, the kip controller
could finish with the character in a crouched position and let another controller perform the
crouch-to-stand action, such as the crouch-to-stand controller presented in Section 5.8.10. The
specifications below correspond to a kip controller that leads to a crouching position. The
expected performance of this controller is relatively simple because the motion is fast and
largely ballistic.

P :
Velocity: |ċ| < 0.005 m/sec.
Face up: vf

y > 0.97.
Posture: lying on back: (1/n)

∑
i

√
(qi − q0,i)2 < 1.5 rad,

where i = (thigh, knee, waist), q0 = 0
and n is a normalization parameter.

Contact: hip on the ground.
E :

Horizontal Velocity: |ċh| < 1.0 m/sec.
Requires that the character doesn’t lean sideways, |vu

z | < 0.05.
O :

Up vector: vu
y > 0.7.

Velocity: |ċ| < 0.1 m/sec.
Balance: projection(c) ∈ S.
Contact: feet on the ground, hip not on the ground.

Our kip controller is very sensitive to the ground model. Implementing a more robust version
of the controller would be an interesting short project. The rigid back of our articulated model,
was a limitation during the development of the kip controller. The kip requires the character
to roll on its back, and a flat back makes this difficult. Our controller spends more energy than
one would expect while performing the initial rolling back motion.

5.9.2 Plunging and rolling

Plunging down stairs or slopes is not a task that any human subject would like to perform for
the purposes of motion capture. Such dangerous stunts are better left to simulated characters.
Figure 5.12 shows the stuntman performing a suicidal dive down stairs. The character can be
instructed to lunge forward and upward at an angle specified by the user. When the hands
contact the ground or 2 seconds after the last pose becomes active, the controller assumes
success. This allows another controller to take over, and handle the impact with the ground,
for example a gymnastic controller that can absorb the shock in a specific fashion. If such a
controller does not exist then the default controller takes over and the character rolls above his
head. The plunge controller bids for control of the character only when dictated by the user. For
this reason and because the duration of the action is short, the pre-conditions, post-conditions
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Figure 5.12: Ouch!

Figure 5.13: Plunge and roll on a different terrain.
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and expected performance of this controller are relatively simple. The expected performance
ensures that the character falls with gravitational acceleration until its hands touch the ground.

P :
Velocity: |ċ| < 0.01 m/sec.
Face up: −0.5 < vf

y < 0.1.
Contact: feet on ground, hip not on ground, hands not on ground.
Balance: projection(c) ∈ S.

E :
Before take off:

Leaning forward less than the user specified angle.
After take off:

Acceleration: c̈v < −9.8 m/sec2.
Contact with the ground in 2 seconds.

O :
Contact: hands on ground.

Actions such as plunge and roll are well suited for a physics-based solution. The ballistic part
of the motion and the collisions with the ground are solved automatically by simulating the
effects of gravity and the collision forces. Although skilled animators are able to design accurate
kinematic solutions for such motions, it requires considerable effort and skill to produce kine-
matically the illusion of mass and the transfer of momentum. In addition, kinematic solutions
must be manually adjusted to novel terrains. In contrast, physics-based controllers can likely
be re-used for similar terrains. Figures 5.12 and 5.13 show the same plunge and roll controller
operating on two different terrains.

5.10 Discussion

The composable interfaces of the controllers presented in the previous section have been devel-
oped based in part on information from biomechanics, on our intuition, and on experimentation.
They have been applied successfully in our experiments as described in Chapter 7. The com-
putation of particular virtual sensors such as posture, kinematic characteristics of the center
of mass etc made the design of the above controllers easier. Often, there are redundant ways
to represent the same sensor information. For example, the length of the support polygon and
the angles at the leg joints, can both show whether the feet are in a symmetric position or not.
Choosing between redundant representations is up to the designers of the controllers.

It is worth noting that while the character is described by a well defined state vector which
is part of the feedback information that controllers use, the environment does not have an
equivalent state description. We do not currently have a definition of the state of the environ-
ment that can be combined with the state of the character and form an augmented state space
which can then serve as the domain of the pre-conditions. Determining the parameters that
completely define the state of the environment is a difficult task and is part of our future work.
The development of physics-based controllers has given us an opportunity to see how interesting
and complex the human body is. It is surprising how difficult it is to describe in a robust and
algorithmic fashion the muscle activations that realize these motions. It is interesting to note
that the difficulty of actually performing a motion and simulating it are unrelated. Consider
the following question: Which one of the following two controllers is it more difficult to design
by hand, the kip controller or the crouch to stand? Surprisingly the kip controller took four
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Figure 5.14: Different crouching configurations.

hours to implement, while the crouch to stand took two days. We attribute this difference to
the quick and ballistic nature of the kip in addition to its well-defined starting state. Most of
the effort went into designing the kick off stage. On the other hand, despite the fact that the
crouch to stand controller implements a common everyday motion that is performed in place,
the character must be balanced for the duration of the motion. At the same time the controller
has to handle drastically different initial configurations as shown in Figure 5.14.

The controllers that have been presented in this chapter are mostly designed to serve as
examples of the composition scheme. They can be improved in a variety of ways to become more
robust in terms of the initial configurations they can handle. We believe that our composition
framework along with the base system presented in Chapter 6, can form the basis of a common
animation system through which researchers and students can build upon and improve existing
results. Chapter 7 discusses the results that we were able to achieve using the above controllers
and the composition framework described in Chapter 3.



Chapter 6

Dynamic Animation and Control
Environment

This chapter describes the animation system that we have developed jointly with Victor Ng-
Thow-Hing. The Dynamic Animation and Control Environment (DANCE) is a flexible anima-
tion software package that we believe can become the common tool for animation research.

6.1 Motivation

Physics-based animation (PBA) has often been touted as a solution for automatically creat-
ing realistic motion. Yet this technique remains underutilized in many commercial animation
systems. Indeed, software packages[1] that feature 3-D dynamics often restrict the methods of
active force generation on the objects, allowing only passive simulation. Motion synthesis with
PBA often requires the animator to set up several physical parameters and passively watch the
resulting simulation. Usually, multiple iterations are required to achieve a satisfactory anima-
tion. This motivates the need to allow the animator to interactively control the simulation.

An interesting area of research in PBA is the design and construction of controllers that can
compute the active forces and torques required to control a character, either as an articulated
figure or a deformable object. Controllers have been created to produce a range of locomotive
tasks, such as swimming[99], running[47] and walking[62]. Although controllers are inherently
reusable, their actual implementations were often restricted and embedded in custom systems
built by various research groups for their own specific purposes. Other experimental systems
only allowed a limited number of different types of controllers to coexist, Tu [99]. The incorpo-
ration of new controllers into such systems often implied a large undertaking in code redesign
and development. The difficulty of sharing simulators and controllers is an impeding factor in
the advancement of physics-based animation techniques, especially considering the difficulty of
designing robust controllers for complex characters.

DANCE allows controllers to be built as separate programs that adhere to a specific interface
using standard object-oriented design. The end result is that an animation can be constructed
consisting of several controllers cooperating or competing with each other.

6.2 Features

The main feature’s of DANCE are:

65
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• Modularity. DANCE’s object-oriented and modular architecture allows the re-use of a
variety of components.

• Portability. The use of widely available libraries such as Tcl/Tk, OpenGL/GLUT allows
DANCE to run on Win95,Win98,WinNT, Win2000, IRIX, and LINUX systems. An
earlier version also ran on MacOS 8.

• Flexibility. DANCE’s plug-in architecture allows the user to load dynamically linked
objects at run time.

• Script-based interface. The full command set of the Tcl script language is available in
DANCE.

• Customizable user interface. The graphical user interface of DANCE is based on Tk and
it can be fully customized with Tk scripts.

• Multiple views.. The user can create any number of customized views of the scene. During
simulation the contents of the views can be saved as sequences of images to create movie
clips.

DANCE employs the following widely available libraries which are included with the DANCE
distribution1 for convenience.

Arcball Ken Shoemake[43] introduced the intuitive Arcball technique for rotating
camera views. The original sample code provided uses the venerable IrisGL
graphics API. This code has been modified to work with the standardized
OpenGL. In addition, new functions were added that allow the camera
matrix to be initialized to an arbitrary rotation matrix.

f2c Several numerical routines used by various plug-ins in DANCE were con-
verted from FORTRAN to C f2c which was created by AT&T, Lucent Tech-
nologies and Bellcore.

OpenGL 3-D graphics are handled by the OpenGL API, including selected functions
from the GLU library. OpenGL was chosen over other APIs because of the
cross-platform requirements of our design.

GLUT Mark Kilgard’s GLUT library provides the windowing system and the main
loop for DANCE. Mouse and keyboard events are also handled by the GLUT
callback mechanism. The version of the GLUT library used in DANCE
has been modified slightly to handle shared OpenGL display lists amongst
several windows.

Minpack The Minpack library provides useful routines for unconstrained optimiza-
tion. Several plug-ins use this library created by Jorge Moré, Burt Garbow,
and Ken Hillstrom at the Argonne National Laboratory.

RAPID RAPID provides the base for efficient collision detection and proximity tests.
RAPID’s authors can be contacted through S. Gottschalk from the Depart-
ment of Computer Science at Chapel Hill.

1DANCE is available at http://wwww.dgp.toronto.edu/DGP/software/dance/dance.html.
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Figure 6.1: The architecture of DANCE.

Tcl/Tk The scripting engine provided by the DANCE core is based on the Tcl lan-
guage provided by Scriptics Corporation. In addition, the choice of Tcl
enables graphical user interfaces to be created with Tk, which is an exten-
sion of Tcl.

TkCon The enhanced Tk Console written by Jeffrey Hobbs and with contributions
from numerous others serves as a great UNIX-like console window.

VCOLLIDE To track multiple body collisions, the team from the Department of Com-
puter Science at Chapel Hill created VCOLLIDE which works with RAPID.
The ArticulatedObject plug-in uses VCOLLIDE to keep track of all the ge-
ometry assigned to the links of every articulated object in DANCE.

VRMLView We use VRMLview, created by Systems in Motion, for previewing VRML
models for one of our geometry plug-ins.

6.3 Component abstraction

We aim to make DANCE the unifying platform in animation research where researchers can
build on top of the work of others or simply use it for whatever purpose serves them. Thus,
one of DANCE’s design goals is to provide application programming interfaces (APIs) that can
capture almost any virtual environment. During the design phase, we spent a significant amount
of time trying to identify and refine those components that provide the required flexibility
and generalization to achieve this goal. The resulting components are systems, simulators,
actuators, geometries and views. As shown in Figure 6.1 only the first four are plug-ins.

6.3.1 Systems

A system captures passive or active entities that can move or simply exist in a virtual environ-
ment. Such entities may represent characters, inanimate objects, particle systems, and generally
any kind of physical system. Systems typically have degrees of freedom, q, that coupled with
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Figure 6.2: Articulated figures in DANCE.

their velocities represent the system’s kinematic state, [q q̇]T . The System base class provides
a general API that allows researchers to implement a wide variety of systems. To date, the
following systems have been implemented as DANCE plug-ins.

Articulated figures

The ArticulatedObject plug-in provides a reduced coordinate, body-joint representation for
articulated systems without loops. It supports a wide range of joint types such as free, ball,
pin, gimbal and universal. Joints parameters and the associated degrees of freedom can be
directly manipulated by the user in a forward kinematics fashion. The user can interactively
assign geometry to the links for visual effect. During forward kinematics manipulation, limited
collision detection and resolution is provided for links with geometry. Figure 6.2 shows a
variety of systems that have been modeled using the ArticulatedObject plug-in. The user can
interactively design an articulated figure as shown in the work flow of Figure 6.3, dress it up
with geometry and animate it.

Flexible characters

Deformations play an important role in computer graphics, allowing mundane objects to as-
sume interesting new shapes. The free-form deformation (FFD) [95], essentially a geometric
spline deformation that is manipulable through a lattice of control points, is a popular tool for
modeling and animating nonrigid objects. Our formulation [27] generalizes conventional FFDs
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Figure 6.3: Working with articulated figures in DANCE.
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Figure 6.4: Dynamic free-form deformations in DANCE.

within a dynamic setting. Dynamic FFDs offer animators the opportunity to apply physical
dynamics to the creation of expressive, cartoon-like animators. Our dynamics FFD model con-
forms to DANCE’s System API and can share a virtual environment with other systems such
as articulated figures. Figure 6.4 shows examples of flexible characters within the associated
deformation lattice and frames from an animation created with DANCE.

Particle systems

Particle systems were first introduced in graphics by Reeves [89]. Since then, they have been
used in variety of applications ranging from modeling fire, explosions, rain, clouds and other
natural phenomena to modeling hair, fur, melting solids, deformable objects, landscapes and
textures.

The particle system implemented in DANCE models a relatively simple case. Particles are
generated from a flat source whose position can be animated. The particle direction and initial
velocity can be stochastically distributed around user specified values. Their birth rate and
life time are also specified by the user. Particles can have a variety of parameterized shapes
and mass properties. Using this particle system we have simulated rain, snow and a variety of
simple phenomena. Figure 6.5 shows a snapshot from a simulation involving two systems, a
two-link pendulum modeled using the ArticulatedObject plug-in and a particle system whose
source is attached to the lower link of the pendulum.

6.3.2 Simulators

The state of systems can change directly or under the influence of forces. The former method is
typical of kinematic techniques that compute the position and velocity parameters of a system
either procedurally or by manipulating parameterized motions curves [111, 13]. Physics-based
techniques simulate the physical interaction between a system and its environment. For such
techniques, motion is a result of applied forces. For these cases, the module that defines the
evolution of a system’s state through time is called a simulator. DANCE provides a simulator
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Figure 6.5: A two-link ...saltshaker.

API through the base class Simulator which can be used to model both kinematic and physics-
based simulators.

Conceptually each system can have its own simulator which, in the physics-based case, de-
scribes how the kinematic state of that system changes under the influence of forces. In the case
of interacting dynamical systems this creates consistency and synchronization problems since
action-reaction forces and contact information may be inconsistent between simulators [8]. Sys-
tems of the same type can be handled by a common simulator simultaneously which eliminates
the consistency problems. Our current implementation of multiple simulators uses a layered
approach which in some cases can have consistency problems. In the future we would like to
implement a method that handles multiple simulators properly and allows parallel simulation
on multiprocessor machines.

Articulated figure simulator

There is a vast amount of work within the robotics literature, dealing with the dynamics of
articulated systems. Featherstone [29] is a classic reference for articulated figure algorithms
while Goldstein [37] presents a detailed description of classical mechanics. Cerezo et al. [17]
present a comprehensive survey of animation and simulation techniques, new trends, groups
that are active in the area and extensive bibliographical data.

There is a variety of simulation software that can be used to simulate articulated figures.
Mirtich [74] developed an impulse-based simulator. Faure [28] implements an interesting it-
erative method that allows the user to balance accuracy with efficiency. Baraff [7] presents a
linear time version of Lagrange dynamics. Mathengine is a commercial simulator with a fo-
cus on gaming applications. SD/Fast is a commercial simulator generator that uses a reduced
coordinate formulation to produce very efficient simulation code.

Within DANCE we have implemented an articulated figure simulator based on SD/Fast.
SD/Fast takes the description of an articulated figure and produces an optimized version of
Equation 5.1 in C. Our simulator discretizes the time in small steps and for each step it uses
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code generated by SD/Fast to compute Equation 5.1. The equations of motion are solved
using Kane’s O(n) method to yield the acceleration of the character’s degrees of freedom q̈. At
the end of each time step, the latter are integrated twice, using a fourth order Range-Kutta
method, to produce the new positions, q and velocities, q̇. The version of DANCE running
under the Linux operating system automates the production of the equation of motions. As
the simulation starts our plug-in simulator can automatically call SD/Fast2 to produce the
equations of motion, and then compile and link the produced code to the running DANCE
session.

Lagrange simulator for DFFD system

The dynamic flexible system presented in Section 6.3.1 is associated with its own simulator that
describes how external and actuator forces affect its kinematic state. To derive the equations
of motion we employ a Lagrange formulation [69]. In contrast with the Newtonian approach
which is based on the relationship between applied forces and the momentum of a system’s
degrees of freedom, the Lagrange formulation is based on the relationship between the energy
of a system and its degrees of freedom. This simulator is described in detail in [27].

Particle system simulator

The motion of the particle system described in Section 6.3.1 is computed analytically because
of its simple structure. The velocity and position of each particle, i, is given by the following
simple equations:

vi(t) = vo,i + g∆t, (6.1)

pi(t) = po,i + vi∆t +
∆t2

2
g, (6.2)

where the g is the acceleration of gravity, typically (0,−9.8, 0). In the current implementation,
the collision of a particle with a horizontal ground is hardcoded in the simulator and handled
as follows:

vi,y = −vi,ylossFactor, (6.3)
vi,x = vi,x + rand(−0.5, 0.5), (6.4)
vi,z = vi,z + rand(−0.5, 0.5), (6.5)

pi,y = grHeight, (6.6)

where lossFactor is associated with the amount of the kinetic energy that a particle loses
at each collision with the ground, rand(−0.5, 0.5) produces a random number in the interval
(−0.5, 0.5) that when added to the horizontal component of a particle’s velocity simulates the
effect of a non-perfectly smooth surface and grHeight is the height of the ground.

We have also incorporated McAllister’s particle system API [67] into DANCE. To do this
we have separated McAllister’s code into two wrapper plug-ins, one system and one simulator.
McAllister’s API is a very powerful tool for creating elaborate particle system animations.

2Assuming that a valid commercial license has been installed.
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6.3.3 Actuators

The simulators we have described above define the motion of the associated systems as a result
of applied forces. This section describes how these forces are implemented and incorporated in
a DANCE simulation.

With respect to a given system, we can distinguish between internal and external forces.
Internal for us are those that a system can exert using its actuators, and external forces are those
that other systems can exert on it. For example, simulated characters can exert internal forces
using their virtual muscles and they can be affected by external forces such as ground reaction
forces and gravity. In DANCE, anything that can exert a force, either internal or external, is
captured by the Actuator API. This API allows actuators to control other actuators and form
hierarchies that can be as complex as the programmer desires.

We have developed a variety of useful actuators within DANCE which we present in the
next sections.

Force Field

This is a generic force-field actuator whose direction and magnitude can be interactively ma-
nipulated by the user. To date we have used it to simulate gravity and constant force fields.

Spring Forces

The SpringForce actuator allows the user to interactively attach springs anywhere on an object.
Once both ends of the actuator are attached a spring force comes into effect to maintain the
rest length of the spring actuator. The forces developed on the object at the points p1,p2

where the spring is attached have the form:

F1,sp = −F2,sp = −K([p1 − p2] − Lrest
p1 − p2

||p1 − p2||) − D(ṗ1 − ṗ2), (6.7)

where Lrest, K and D are the spring’s rest length, stiffness and damping constants. The user
can change these constants interactively. Figure 6.6 shows two spring actuators holding the
pendulum of Figure 6.5 in place during a simulation. The graphical user interfaces of the
spring actuators and the simulator are also shown.

Point Force Actuator

Point forces are a convenient way to model contact between the user and objects in the envi-
ronment. We have used point forces to push on simulated characters, and move objects. In
the current implementation, the user can interactively apply a force actuator at any part of an
object. The application point is always the center of mass of the associated part of the object,
although it would be trivial to allow arbitrary application points. In addition, the user can
interactively specify the magnitude and direction of the applied point force.

Collision Actuator

In the context of animation, moving objects may collide with each other. It is therefore essential
for an animation system to detect collisions and resolve them in some way. Physics-based
animation typically considers the motion of objects at discrete points in time separated by
either a constant or variable time step. By keeping the time step small a better approximation
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Figure 6.6: Working with articulated figures in DANCE.

of the continuous motion of the objects is achieved. When collisions are involved this time
step must be really small to avoid missing collisions between objects and having objects pass
through each other between time steps. Collision detection is often the most computationally
expensive part of a simulation.

Collision detection between polyhedral objects has been of great interest in a variety of dis-
ciplines including robotics, graphics and computational geometry. Most methods use bounding
box techniques to quickly identify which parts of the objects involved are in collision, and for
those parts they accurately compute the points, polygons or surfaces that are in contact. Our
actuator uses the RAPID library which implements an efficient collision detection technique
based on oriented bounding boxes [38]. For applications where a large number of moving ob-
jects might collide with each other it is useful to exploit the temporal coherence of the motions
involved to increase the efficiency of the collision detection method. A number of collision
detection packages employ this idea such as V-COLLIDE [40] and V-Clip [75].

After a collision is detected the system has to ensure that the colliding objects will not
penetrate each other. The most accurate way to solve this problem is to compute the exact time
of collision and apply an impulsive response that prevents the objects from interpenetrating [74,
9]. However, computing the exact time of collision and handling impulsive forces is relatively
complicated and it can be a problem for interactive applications. The most popular (but not the
most stable) method of resolving collisions for animation applications is based on the penalty
method. When objects penetrate each other a spring force that depends on the amount of
penetration comes into effect and pushes the objects apart. Compared to methods based on
impulses, penalty methods are easier to implement and they can simulate resting contact more
easily. However, they produce stiff systems of equations which reduce the simulation speed.

Our actuator works for polygonal objects represented by sets of triangles. In particular, it
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Figure 6.7: A complex muscle actuator, courtesy of Victor Ng-Thow-Hing.

can work for any system whose geometric representation is provided by the IndexedFaceSet
plug-in described in Section 6.3.6. Before all simulators take a step, and for each pair of objects,
the collision actuator registers all the vertices that are in collision and computes the associated
collision forces. The vertices and the forces are stored in a hash table for fast access. When
each simulator takes a step, the collision actuator retrieves the collision forces of the object
under simulation and passes them to the simulator for application. Our actuator is based on a
penalty method using a linear spring model. When a vertex penetrates a triangle, the actuator
keeps track of the point of entry and pushes the objects apart with a force proportional to the
interpenetration. The current implementation models only sliding friction. In the future we
would like to implement a proper Coulomb friction model.

6.3.4 Ground actuator

Most simulated environments necessarily include a model of the ground the characters can
stand on. Our PlaneGround actuator plug-in can model any piece-wise linear terrain. Collisions
between a system and the ground are detected through monitor points that the system provides.
Monitor points are defined and accessed through an API provided by DANCE to all systems.
Thus, the PlaneGround actuator is fairly generic. Collision forces are based on a penalty
method that implements a Coulomb friction model. For every point that penetrates the ground
a reaction force takes effect at the entry point that models both sliding and static friction using
friction cones. If for a given monitor point, the computed friction force falls out of the friction
cone then its initial point of entry in the ground is adjusted to correct for it.

6.3.5 Musculotendon model

Victor Ng-Thow-Hing’s Ph.D. thesis [77] is an example of a very complex plug-in actuator
for DANCE. Ng-Thow-Hing develops a biomechanically accurate muscle model based on B-
spline solids that can undergo volume preserving deformations. The muscles can be attached
to a skeleton interactively and follow the skeleton’s motion. A Lagrangian simulator allows
the muscles to exert forces on the skeleton, accurately modeling real muscles. A customized
collision detection and resolution module allows the user to design elaborate muscle groups that
are in contact with each other or with the bones of the skeleton, as shown in Figure 6.7.
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Inverse Kinematics Actuator

Animating complex articulated structures can be tedious because of the large number of param-
eters that animators have to adjust in order to produce a desired motion. Inverse kinematics
is a technique that comes from robotics research and it can reduce the number of parameters
that an animator has to control during an animation.

Considering that an articulated system is hierarchical structure of links connected with
joints, Forward kinematics propagate the motion of parent links to the child links. Inverse
kinematics (IK) do the opposite. A motion is applied to a child link which is called end effector
and the IK system automatically propagates this motion up the hierarchy. Inverse kinematics
methods are used extensively in the animation of articulated figures and they are a standard
tool in most commercial animation tools.

The IK actuator in DANCE has been implemented by Gordon Cook as a summer project. It
allows the user to set position and orientation constraints for multiple end effectors interactively.
The IK engine attempts to satisfy the constraints iteratively without an explicit calculation of
the Jacobian [64].

Physics-based Controllers

The controllers described in Chapter 5 are all plug-in actuators for DANCE. They implement a
variety of control methods including finite state machines and continuous feedback control. In
addition, the composition framework presented in Chapter 3 is a nice example of an actuator
controlling other actuators in a hierarchical fashion.

6.3.6 Geometries

Most DANCE systems represent a physical entity which has a geometric representation. Ac-
tuators may also have a visual representation for purposes of direct manipulation. These rep-
resentations are loaded into DANCE through the Geometry API. This API allows plug-ins to
define a number of interesting functionality such as monitor points for collision detection, tri-
angle structures used by RAPID, and routines to compute mass properties. In addition, the
geometry API allows systems and actuators to share the same geometry plug-ins to reduce
computer memory usage.

We have implemented only one geometry plug-in so far, called IndexedFaceSet. It can
represent arbitrary polygonal objects using an indexed face set structure and it can read subsets
of VRML, OBJ, and PLY file formats. When an object is loaded into an IndexedFaceSet plug-
in, polygons are automatically transformed into triangles for use with RAPID. If specified by
the user, IndexedFaceSet can automatically compute the mass of the object and a diagonal
inertia tensor using a method proposed by Mirtich [73].

6.4 Implementation

DANCE is an object-oriented modular software package. Its class hierarchy is shown in Fig-
ure 6.8. The top class, DanceObject, implements a generic API that every class within DANCE
needs. This API includes object identification (name, type), bounding box definition, and hooks
to the main loop, the simulation loop, and the user interaction module (direct manipulation,
keyboard callbacks etc). Class PlugIn implements the necessary API for dynamically loaded
plug-ins. The rest of the classes work as follows:
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DanceObject

DGeoemtry

DActuator

DSystem

DSimulator

PlugInDView DView

Figure 6.8: Class hierarchy in DANCE.

Software module Without DANCE With DANCE
Base system: console, interface, components 4 months 0
Articulated figure and simulator class 5 months 0
Actuators: Collision, ground, playback etc 2 months 0
Miscellaneous: Utilities, Optimization, debugging 1 month 0
Getting familiar with DANCE 0 3 hours - 2 days
Total 13 months 3 hours - 2 days

Table 6.1: DANCE can save time.

• DSystem. Implements the system API.

• DSimulator. Implements the simulator API.

• DActuator. Implements the actuator API.

• DView. Implements GLUT windows.

• DLight. Implements OpenGL lights.

The programming and user manual of DANCE [78] contains a complete discussion of DANCE’s
architecture and implementation details.

6.5 Who is DANCE for?

In its current state DANCE can be used as a programming and animation environment for
research in computer graphics, robotics, biomechanics and the gaming industry. DANCE’s
modular implementation allows researchers to re-use components that have been developed
by the other disciplines. For example, a researcher who is interested in simulating human
locomotion, can take advantage of a wide range of existing modules such as humanoid models,
simulators, controllers for other motions, filters for geometry input and output, the window
mechanism etc. This way not only can they avoid implementing the supporting infrastructure,
but they can dress up or enrich their results in a variety of ways. Similarly, DANCE can
save time, particularly for graduate students who are interested in physics-based animation
and control. According to our own experience it takes approximately 13 months for a master’s
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student to build the necessary infrastructure before he/she can focus on the problem of interest,
as tabulated in Table 6.1.

DANCE is a free, portable and open source programming environment that can be used as
a classroom tool. Those who teach animation techniques or robotics can use it as the common
platform for their classes. The students have the benefit to use a fairly complete tool that
comes with a full scale 3D human model and a number of controllers. They can test control
or simulation techniques with minimal time spent on issues other than the ones they want to
tackle. At the same time, they can share results in their group and also make a contribution
to the community by submitting their work to the DANCE repository.

Researchers in biomechanics and human modeling can use it as the common, open source
tool that they can either use as common tool to exchange results with their colleagues or tailor
it to their specific needs. In addition, Ng-Thow-Hing [77] has developed a powerful muscle
model that he might be willing to share upon request with the community.

DANCE has been used so far as follows:

• Virtual puppetry using alternative input devices. University of Toronto, Dept. of Com-
puter Science.

• Interactive physics-based animation of humanoid characters. University of Toronto, Dept.
of Computer Science.

• Controller Composition (this Ph.D. thesis). University of Toronto, Dept. of Computer
Science.

• Musculotendon modeling, Ng-Thow-Hing’s Ph.D. thesis. University of Toronto, Dept. of
Computer Science.

• Inverse kinematics techniques. University of Southern California, Dept. of Computer
Science.

• Digitized muscle data visualization. University of Toronto, Dept. of Medicine.

We believe that DANCE has the potential to make a significant contribution to the research
community either as a standalone tool or as an environment where researchers can build upon
the work of others and at the same time contribute their results.
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Results

This chapter discusses the sequences of actions that we are able to achieve using our controller
composition method. The SVM-classifier method is used only for the two dimensional robot
model for reasons of efficiency. The two dimensional case simulates much faster since it deals
with a reduced number of degrees of freedom. The increased simulation efficiency results in a
more productive controller design phase. In addition, it significantly improves the time it takes
to produce training sets since this is done by repeated forward simulations. Lastly, the support
vector machine classification method uses the full state vector of the character and, therefore,
it is more efficient for the significantly smaller state vector of the robot model.

The two dimensional case is more robust than the three dimensional one and depends less
on the specific character and ground model, as noted in Section 5. However, the sequence we
are able to achieve for the full scale three dimensional skeleton model shows that our method
can be used successfully for both cases. Inevitably, robust controllers for complex motions will
be developed by ourselves or by others. Our system can integrate these controllers as they
become available and produce a powerful composite controller.

The next two sections describe in detail our results.

7.1 Robot sequence

The reduced dimensionality of the robot model allowed us to develop a relatively large number of
controllers. The sequence shown in Figure 7.1 involves 13 controllers: balance, prone-to-kneel,
supine-to-kneel, kneel-to-crouch, crouch-to-stand, stand-to-sit, sit-to-crouch, protective-step,
fall, walk, plunge-and-roll, double stance-to-crouch and the default controller. The plunge-and-
roll, stand-to-sit, sit-to-crouch and walk controllers bid for control of the character only under
the direction of the user. The rest of the controllers act autonomously.

The simulation begins with the robot balancing in place. The user instructs the robot to
sit down. The change of the desired goal from “null” to “sit” forces the supervisor controller
to invoke the controller selection process. The pre-conditions of the plunge-and-roll, balance
and stand-to-sit controllers match the current state of the character. However, the plunge-and-
roll controller bids for control only when its goal matches the user specified one. The balance
controller bids for control with priority less than 10 since its goal is not “sit”. The stand-to-sit
controller bids with priority higher than 10 and it therefore becomes the active controller. The
robot sits on the toilet and it will stay there under the control of the stand-to-sit controller
unless something happens that either changes the state of the character or the desired goal. Soon
enough, the user instructs the robot to “lean” which is the goal of the sit-to-crouch controller.
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Figure 7.1: The terminator sequence, left to right and top to bottom.
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As soon as the robot is in a balanced crouch position the sit-to-crouch controller succeeds and
the supervisor controller invokes a controller selection process again. The crouch-to-stand is
the only controller that bids for control and after it becomes active it takes the character to a
stand position and succeeds. A new selection process allows the balance controller to take over.
Then the user instructs the robot to “walk 5” which results in activation of the walk controller.
The walk controller completes the five steps bringing the character to a balanced, double stance
position at the top of the stairs. The double stance-to-crouch controller takes over and brings
the character to a crouch position which allows the crouch-to-stand controller to become active
followed by the balance controller. Then the user requests a “dive” which is performed by
the plunge-and-roll controller. After the robot rolls over, the default controller takes over
until the robot comes to a rest. As soon as the velocity of the center of mass is negligible the
supine-to-prone controller becomes active and brings the character to a kneeling position. Then
the kneel-to-crouch controller takes over followed by the crouch-to-stand and then the balance
controller. The user throws a ball at the head of the robot which throws the robot off balance
and results in the activation of the protective-step controller that takes a backward step. The
step brings the character to a double stance position which satisfies the pre-conditions of the
double stance-to-crouch controller that becomes active and makes the robot assume a crouching
position. As before, the crouch-to-stand controller followed by the balancing controller bring
the robot to a quiet stance. This time the user throws the ball from the back and at the head of
the robot, which results in a forward protective-step behavior, followed by the crouch-to-stand
and, finally, the balance controller. The two protective-step behaviors, in addition to a large
number of test that we have performed, show that the protective-step, crouch-to-stand and
balance controllers are fairly robust. Finally, the user throws the ball with excessive force at
the front of the robot’s head. The impact induces a large acceleration to the center of mass
of the character, which exceeds the pre-conditions of the protective-step controller. The robot
reacts immediately with a fall behavior that attempts to use the arms to absorb the impact.

The pre-conditions of the controllers employ the scheme that we described in Section 5.6.
If the analytical pre-conditions are satisfied then the SVM-classifier provides the answer. Oth-
erwise the SVM-classifier is never invoked.

This sequence has been created interactively at about 6 frames per second. Unlike the
simulation code which is highly optimized, the control code and the ground contact code has
not yet been profiled. We expect that profiling of the code will lead to improved efficiency. In
addition, employing a semi-implicit method for the integration of the state instead of the current
fourth order Runge-Kutta method might further improve the frame rate of the simulation.

7.2 Skeleton sequence

The three dimensional sequence shown in Figure 7.2 is created interactively. The skeleton is
equipped with the following controllers: balance, fall, roll-over, prone-crouch, crouch-to-stand
and the default controller. All controllers are autonomous in this case; as the skeleton goes
through different configurations it automatically reacts to the current situation activating the
most appropriate controller among those available. First, the user pushes the character back-
wards using the force actuator described in Section 6.3.3. The composite controller activates
a fall behavior that tries to absorb the shock. With the character in a supine configuration,
the roll-over controller brings the skeleton to a prone position which makes it possible for the
prone-to-crouch controller to take over. When the character reaches a crouching posture, the
prone-to-crouch controller succeeds and the crouch-to-stand controller brings the character to
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−→

Figure 7.2: A dynamic “virtual stuntman” falls to the ground, rolls over, and rises to an erect
position, balancing in gravity.

Figure 7.3: Two interacting virtual characters.

an upright position, which allows the balance controller to take over again. This sequence is
less robust than the 2D counterpart. The prone-to-crouch and the crouch-to-stand controllers
are particularly sensitive to the ground model.

An earlier version of this sequence used a different version of the crouch-to-stand controller
which cannot achieve a proper crouching position. The character simply used its left leg to kick
up, which resulted in a forward dive that made the character switch to a fall behavior. What
was of interest was the ability of the character to fall, roll-over and return to the same kicking
position over and over again, as if it was determined to get up, demonstrating that the roll-over
controller is fairly robust.

The controllers that take part in this sequence implement manually designed composable
APIs based on analytical formulas as described in Chapter 5. The simulation runs at approxi-
mately 2 frames per second.

7.3 Multiple characters

Our framework and associated animation system support multiple characters. Each character
can have a unique composable controller scheme or share one with other characters. Figure 7.3
shows an example of two interacting three dimensional characters. Currently the motion of
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Figure 7.4: Articulated and flexible characters.

each character is computed by a separate simulator. The simulations are performed in a layered
fashion. Layered simulation has synchronization problems, Baraff [8], but it works sufficiently
well for cases where accuracy is not critical.

The robot standing on the platform, Figure 7.3, is instructed to dive while the skeleton
takes a step and balances in place. The timing of the tackle is scripted; the robot is not aware
of the presence of the skeleton, it simply collides with the skeleton. The sequence of controllers
for the respective characters is as follows:

Skeleton: Balance → Step → Balance → Protective Step → Fall → Default
Robot: Balance → Plunge → Default

Given the specialist controllers and the framework to put them together, constructing the tackle
example was a simple matter of scripting the scene. The complete script that we used to produce
this example is shown in Appendix D for reference.

Our collision actuator considers the complete geometric models of each character. Each
of these models has more than sixteen thousand triangles. When the two models collide the
simulation becomes very slow, approximately 0.1 frames per second.

Figure 7.4 shows three virtual systems existing in our animation environment. Each system
has its own composition framework. The two skeletons are in quiet stance enhanced with Perlin
noise. The flexible teapot has been instructed to hop around and has switched from a default
controller to a hopping controller. It is part of our future plans to implement a collision actuator
that can handle both flexible and rigid bodies.

7.4 Discussion

The sequences that we are able to achieve using our composition framework (Section 3), and the
DANCE software system (Section 6) are an indication that the method is a good step towards
the development of skillful, autonomous characters. Our approach is bottom up, allowing the
incremental development of a wide variety of skills for the simulated characters. The open
architecture of DANCE and our composition framework allows practitioners to reuse and build
upon existing results and experiment with new techniques on shared models.

At the same time our system supports multiple autonomous systems such as articulated
figures, flexible characters and a variety of sophisticated actuators (Section 6), that can co-
exist and interact within the same environment, as shown in Figure 7.4.



Chapter 8

Conclusions and Future Work

The challenges of physics-based controller design and the technical obstacles that researchers
face when attempting to share their algorithms have hindered progress in the area of physics-
based character animation. This thesis has presented a methodology for ameliorating the
problem with a framework that facilitates the exchange and composition of controllers. Our
framework has been implemented within a freely available system for modeling and animating
articulated characters. To our knowledge, our system is the first to demonstrate a dynamic
anthropomorphic character with controlled reactions to disturbances or falls in any direction,
as well as the ability to pick itself up off the ground in several ways, among other controlled mo-
tions. We hope that our system will foster collective efforts among numerous practitioners that
will eventually result in complex composite controllers capable of synthesizing a full spectrum
of human-like motor behaviors.

Given the enormous challenge of building controllers capable of large repertoires of dynamic
human-like motion, it is inevitable that the work presented in this paper is incomplete in
many ways. Published control methods for 3D walking, running, and stair climbing make
obvious candidates for integration into our system. Coping with variable terrain and dynamic
environments are dimensions of added complexity that should provide work for years to come.
Automatic parameterization of controllers to variations in character dimensions and mass is a
necessary step for having solutions adaptable to a variety of characters. Deriving controllers
from motion-capture data is an exciting but difficult prospect, although some progress is already
being made in this area. Other methods of “teaching” skills to a dynamic character also warrant
investigation.

The work in this thesis can be extended in a variety of ways which are discussed in the next
sections.

8.1 Planning

Further advances in the capability of our autonomous characters will require a planning module
that is capable of computing the sequence of controllers needed to take the character from a
starting state to the desired end state. Currently, this task is left to the user, who is responsible
for specifying the sequence of intermediate desired states himself to reach some desired goal
state. The planning module must be able to query the available controllers about their pre-
conditions and post-conditions and based on the answers compute the appropriate sequence
of controllers that will achieve the desired task. In addition, the planning module may have
intermediate goals or various constraints that the motion of the character must satisfy. For
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Figure 8.1: A sequence of controllers chosen by a planner.

example, recall the three different ways that our character can transition from a supine position
to a standing one: (a) the martial arts kip, (b) the sit-up → crouch → stand-up and (c) supine
→ prone → crouch → stand-up. A planner that needs to satisfy time constrains, that is have
the character standing up as soon as possible, might choose to activate the kip controller.
Figure 8.1 shows graphically how a planner might choose a path within the controller state
space to achieve a specific result. In this example, we assume that the character has fallen and
then needs to get up and go to a specific location as fast as possible. The planner chooses to
use the kip motion and then make the character run instead of walk.

Using a planner, as described above, will make the system look much like a tradition finite-
state-machine (FSM) controller. However, the pre-conditions and expected performance will
still be important in making the system robust in the case of failure. If a failure occurs the
motion will have to be replanned.

8.2 Multiple controllers

A serious limitation of the system is that only one controller can be active at each instant.
Humans are capable of performing a number of different tasks simultaneously. For example,
walking and at the same time waving or looking around. Similarly, most controllers do not need
to use all the degrees of freedom of the character. For example, a walking controller does not
necessarily need to control the head of the character. In that sense, a walking controller and a
controller that implements a visual attention strategy can both be active at the same time. It
would therefore be desirable to implement proper resource management, where controllers bid
for control of specific groups of degrees of freedom of the character. Resource management in
this case is not straightforward, it requires careful design and significant amount of work.

8.3 Training set

The support vector machine classifier described in Chapter 4 separates the states of the char-
acter that lead to success from those that lead to failure. In particular, it models the boundary
that separates these two classes based on sampled data which is called the training set. As
explained in Section 4.5, since we cannot use regular sampling over the entire state space to
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produce the training set, we resort to stochastic sampling of a few specific regions. It is there-
fore critical to ensure that these regions and the resulting sample data, include samples from
both classes. Our solution is based on the fact that controllers are typically designed to operate
around a few nominal states and the only way to guarantee that both classes are represented
in the training set is manually.

As future work we would like to implement methods that can sample the state space auto-
matically and guarantee that they include sample points from both classes. One can imaging a
process that tunes the boundary placement by applying perturbations on states that cause the
controller to succeed. So instead of only perturbing a few user-supplied states, we move from
states that cause success along a direction that has better chances of crossing the boundary. We
can choose this direction in a variety of ways. A possible candidate is the direction of increasing
values of degrees of freedom associated with “important” joints. We consider important joints
those that are associated with large body parts, such as the legs and trunk. Thus, we can start
the sampling process at a nominal successful state, and then constantly increase the angle of
one important joint while stochastically perturbing the rest until we get a failure. We record
the state that produced the failure and we stochastically sample the region around that state.
Then we can return to the nominal state and repeat the same process using another important
joint angle until each has been explored in turn.

The notion of important degrees of freedom leads to another issue of interest. How can
we identify automatically which degrees of freedom affect a specific motion? For example, the
motion of the hands has much less effect during quiet stance compared to the motion of the
whole arm. In contrast, the hands are very important when the character moves from a prone
to a crouch position. If we know in advance the degrees of freedom that are important for a
motion, then we can concentrate our sampling efforts on those and possibly reduce the state
space of the character.

8.4 Expected performance and pre-conditions.

In our current implementations, controllers have only one entry point. Pre-conditions are
defined only at the point that the controllers consider their starting point. In general, controllers
take the character through a series of configurations within its state space. It would be useful if
the controllers could start operating with any one of these configurations as the starting point.
In that case, the pre-conditions and the expected performance would be the same, in the sense
that the expected performance would be a series of pre-conditions.

It is worth noting that the unique entry point is a limitation of the current controller
design and not of the composition framework. As far as the latter is concerned, it is up to the
controllers themselves to decide when they can bid for control of the character.

8.5 Additional testing

It would be interesting to perform exhaustive tests on our controllers and their computed pre-
conditions. To this extent, it might be useful to develop a screensaver version of our system
that uses the spare machine cycles to perform tests over long periods of time. In this case, the
system can be driven by random inputs from a fake user and we can see how often the system
would fail.
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8.6 Future: Intelligent agents

The work in this thesis is a first step towards developing skillful autonomous characters. It will
take considerable amounts of work and collaboration between researchers in graphics, biome-
chanics, and robotics before we can implement a physics-based simulated character that can
play a dynamic sport such as tennis. At the same time, advances in robotics, graphics and ar-
tificial intelligence have clearly shown that developing virtual agents with complex motor skills
and interesting levels of intelligence is not as elusive as it once was. The future of intelligent
agents looks promising.



Appendix A

SVMlight parameters

SVMlight [57] is an excellent implementation of the support vector machine classification method.
Below are the parameters that the user can adjust to control the performance of the produced
classifier. We present them exactly as they appear when the program is invoked without any
input.

SVM-light V3.02: Support Vector Machine, learning module 16.11.99

Copyright: Thorsten Joachims, thorsten@ls8.cs.uni-dortmund.de

This software is available for non-commercial use only. It must not
be modified and distributed without prior permission of the author.
The author is not responsible for implications from the use of this
software.

usage: svm_learn [options] example_file model_file

Arguments:
example_file-> file with training data
model_file -> file to store learned decision rule in

General options:
-? -> this help
-v [0..3] -> verbosity level (default 1)

Learning options:
-c float -> C: trade-off between training error

and margin (default 1000)
-j float -> Cost: cost-factor, by which training errors on

positive examples outweight errors on negative
examples (default 1)

-b [0,1] -> use biased hyperplane (i.e. x*w+b>0) instead
of unbiased hyperplane (i.e. x*w>0) (default 1)

-i [0,1] -> remove inconsistent training examples
and retrain (default 0)

Transduction options:
-p [0..1] -> fraction of unlabeled examples to be classified

into the positive class (default is the ratio of
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positive and negative examples in the training data)
Kernel options:

-t int -> type of kernel function:
0: linear (default)
1: polynomial (s a*b+c)^d
2: radial basis function exp(-gamma ||a-b||^2)
3: sigmoid tanh(s a*b + c)
4: user defined kernel from kernel.h

-d int -> parameter d in polynomial kernel
-g float -> parameter gamma in rbf kernel
-s float -> parameter s in sigmoid/poly kernel
-r float -> parameter c in sigmoid/poly kernel
-u string -> parameter of user defined kernel

Optimization options:
-q [2..400] -> maximum size of QP-subproblems (default 10)
-m [5..] -> size of cache for kernel evaluations in MB (default 40)

The larger the faster...
-e float -> eps: Allow that error for termination criterion

[y [w*x+b] - 1] >= eps (default 0.001)
-h [5..] -> number of iterations a variable needs to be

optimal before considered for shrinking (default 100)
-f [0,1] -> do final optimality check for variables removed

by shrinking. Although this test is usually
positive, there is no guarantee that the optimum
was found if the test is omitted. (default 1)

Output options:
-l char -> file to write predicted labels of unlabeled

examples into after transductive learning
-a char -> write all alphas to this file after learning

(in the same order as in the training set)
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SD/Fast description file for our 3D
character

# This is the system description file for object skel18

gravity = 0 0 0
language = c

double
prefix = skel18

body = Hip inb = $ground joint = free
mass = 16.610000
inertia = 0.180000 0.160000 0.230000
inbtojoint = 0.000000 1.131000 0.005200
bodytojoint = 0.000000 0.120600 0.050000
pin = 1.000000 0.000000 0.000000
pin = 0.000000 1.000000 0.000000
pin = 0.000000 0.000000 1.000000

body = Trunk_comp inb = Hip joint = gimbal
mass = 29.270000
inertia = 0.630000 0.320000 0.730000
inbtojoint = 0.000000 0.120600 0.050000
bodytojoint = 0.000000 -0.146250 0.035100
pin = 1.000000 0.000000 0.000000
pin = 0.000000 0.000000 1.000000
pin = 0.000000 1.000000 0.000000

body = Neck inb = Trunk_comp joint = gimbal
mass = 1.000000
inertia = 0.006000 0.001000 0.006000
inbtojoint = 0.000000 0.246350 -0.001300
bodytojoint = 0.000000 -0.044200 -0.006500
pin = 1.000000 0.000000 0.000000
pin = 0.000000 0.000000 1.000000
pin = 0.000000 1.000000 0.000000
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body = Head_comp inb = Neck joint = pin
mass = 5.890000
inertia = 0.033000 0.023000 0.030000
inbtojoint = 0.000000 0.044200 0.006500
bodytojoint = 0.000000 -0.078000 -0.031200
pin = 1.000000 0.000000 0.000000

body = Left_Shoulder inb = Trunk_comp joint = ujoint
mass = 2.790000
inertia = 0.005000 0.025000 0.025000
inbtojoint = 0.176800 0.189150 0.001300
bodytojoint = -0.132600 0.000000 -0.001300
pin = 0.000000 0.000000 1.000000
pin = 0.000000 1.000000 0.000000

body = Left_Forearm inb = Left_Shoulder joint = ujoint
mass = 1.210000
inertia = 0.001200 0.005400 0.005000
inbtojoint = 0.132600 0.000000 0.001300
bodytojoint = -0.137800 -0.003900 0.000000
pin = 0.000000 1.000000 0.000000
pin = 1.000000 0.000000 0.000000

body = Left_Hand inb = Left_Forearm joint = ujoint
mass = 0.550000
inertia = 0.000500 0.002000 0.001600
inbtojoint = 0.137800 0.003900 0.000000
bodytojoint = -0.065000 0.000000 0.000000
pin = 0.000000 0.000000 1.000000
pin = 0.000000 1.000000 0.000000

body = Right_Shoulder inb = Trunk_comp joint = ujoint
mass = 2.790000
inertia = 0.005000 0.025000 0.025000
inbtojoint = -0.176800 0.189150 0.001300
bodytojoint = 0.132600 0.000000 -0.001300
pin = 0.000000 0.000000 1.000000
pin = 0.000000 1.000000 0.000000

body = Right_Forearm inb = Right_Shoulder joint = ujoint
mass = 1.210000
inertia = 0.001200 0.005400 0.005000
inbtojoint = -0.132600 0.000000 0.001300
bodytojoint = 0.137800 -0.003900 0.000000
pin = 0.000000 1.000000 0.000000
pin = 1.000000 0.000000 0.000000

body = Right_Hand inb = Right_Forearm joint = ujoint
mass = 0.550000
inertia = 0.000500 0.002000 0.001600
inbtojoint = -0.137800 0.003900 0.000000
bodytojoint = 0.065000 0.000000 0.000000
pin = 0.000000 0.000000 1.000000
pin = 0.000000 1.000000 0.000000
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body = Left_Thigh inb = Hip joint = gimbal
mass = 8.350000
inertia = 0.160000 0.025000 0.150000
inbtojoint = 0.111800 -0.040600 0.005800
bodytojoint = 0.016900 0.237900 -0.014300
pin = 1.000000 0.000000 0.000000
pin = 0.000000 0.000000 1.000000
pin = 0.000000 1.000000 0.000000

body = Left_Shin inb = Left_Thigh joint = pin
mass = 4.160000
inertia = 0.056000 0.007000 0.055000
inbtojoint = -0.016900 -0.237900 0.014300
bodytojoint = 0.007800 0.215800 0.003900
pin = 1.000000 0.000000 0.000000

body = Left_Foot inb = Left_Shin joint = ujoint
mass = 1.340000
inertia = 0.007500 0.007000 0.001800
inbtojoint = -0.007800 -0.215800 -0.003900
bodytojoint = 0.000000 0.044200 -0.039000
pin = 1.000000 0.000000 0.000000
pin = 0.000000 0.000000 1.000000

body = Right_Thigh inb = Hip joint = gimbal
mass = 8.350000
inertia = 0.160000 0.025000 0.150000
inbtojoint = -0.111800 -0.040600 0.005800
bodytojoint = -0.016900 0.237900 -0.014300
pin = 1.000000 0.000000 0.000000
pin = 0.000000 0.000000 1.000000
pin = 0.000000 1.000000 0.000000

body = Right_Shin inb = Right_Thigh joint = pin
mass = 4.160000
inertia = 0.056000 0.007000 0.055000
inbtojoint = 0.016900 -0.237900 0.014300
bodytojoint = -0.007800 0.215800 0.003900
pin = 1.000000 0.000000 0.000000

body = Right_Foot inb = Right_Shin joint = ujoint
mass = 1.340000
inertia = 0.007500 0.007000 0.001800
inbtojoint = 0.007800 -0.215800 -0.003900
bodytojoint = 0.000000 0.044200 -0.039000
pin = 1.000000 0.000000 0.000000
pin = 0.000000 0.000000 1.000000



Appendix C

SD/Fast description file for our 2D
character

# This is the system description file for object human2D

gravity = 0 0 0
language = c

double
prefix = human2D

body = Hip inb = $ground joint = planar
mass = 16.610000
inertia = 0.180000 0.00000 0.00000
inbtojoint = 0.000000 1.131000 0.005200
bodytojoint = 0.000000 0.120600 0.050000
pin = 0.000000 1.000000 0.00000
pin = 0.000000 0.000000 1.00000
pin = 1.000000 0.000000 0.00000

body = Trunk_comp inb = Hip joint = pin
mass = 29.270000
inertia = 0.630000 0.000000 0.000000
inbtojoint = 0.000000 0.120600 0.050000
bodytojoint = 0.000000 -0.146250 0.035100
pin = 1.000000 0.000000 0.000000

body = Neck inb = Trunk_comp joint = pin
mass = 1.000000
inertia = 0.006000 0.000000 0.000000
inbtojoint = 0.000000 0.246350 -0.001300
bodytojoint = 0.000000 -0.044200 -0.006500
pin = 1.000000 0.000000 0.000000

body = Head_comp inb = Neck joint = pin
mass = 5.890000
inertia = 0.033000 0.000000 0.000000
inbtojoint = 0.000000 0.044200 0.006500
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bodytojoint = 0.000000 -0.078000 -0.031200
pin = 1.000000 0.000000 0.000000

body = Left_Shoulder inb = Trunk_comp joint = pin
mass = 2.790000
inertia = 0.025000 0.000000 0.000000
inbtojoint = 0.176800 0.189150 0.001300
bodytojoint = 0.000000 0.132600 -0.001300
pin = 1.000000 0.000000 0.000000

body = Left_Forearm inb = Left_Shoulder joint = pin
mass = 1.210000
inertia = 0.00540 0.000000 0.000000
inbtojoint = 0.000000 -0.132600 0.001300
bodytojoint = 0.003900 0.137800 0.000000
pin = 1.000000 0.000000 0.000000

body = Right_Shoulder inb = Trunk_comp joint = pin
mass = 2.790000
inertia = 0.025000 0.000000 0.000000
inbtojoint = -0.176800 0.189150 0.001300
bodytojoint = 0.000000 0.132600 -0.001300
pin = 1.000000 0.000000 0.000000

body = Right_Forearm inb = Right_Shoulder joint = pin
mass = 1.210000
inertia = 0.005400 0.000000 0.000000
inbtojoint = 0.000000 -0.132600 0.001300
bodytojoint = -0.003900 0.137800 0.000000
pin = 1.000000 0.000000 0.000000

body = Left_Thigh inb = Hip joint = pin
mass = 8.350000
inertia = 0.160000 0.000000 0.000000
inbtojoint = 0.111800 -0.040600 0.005800
bodytojoint = 0.016900 0.237900 -0.014300
pin = 1.000000 0.000000 0.000000

body = Left_Shin inb = Left_Thigh joint = pin
mass = 4.160000
inertia = 0.056000 0.000000 0.000000
inbtojoint = -0.016900 -0.237900 0.014300
bodytojoint = 0.007800 0.215800 0.003900
pin = 1.000000 0.000000 0.000000

body = Left_Foot inb = Left_Shin joint = pin
mass = 1.340000
inertia = 0.007500 0.000000 0.000000
inbtojoint = -0.007800 -0.215800 -0.003900
bodytojoint = 0.000000 0.044200 -0.039000
pin = 1.000000 0.000000 0.000000

body = Right_Thigh inb = Hip joint = pin
mass = 8.350000
inertia = 0.160000 0.000000 0.000000
inbtojoint = -0.111800 -0.040600 0.005800
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bodytojoint = -0.016900 0.237900 -0.014300
pin = 1.000000 0.000000 0.000000

body = Right_Shin inb = Right_Thigh joint = pin
mass = 4.160000
inertia = 0.056000 0.000000 0.000000
inbtojoint = 0.016900 -0.237900 0.014300
bodytojoint = -0.007800 0.215800 0.003900
pin = 1.000000 0.000000 0.000000

body = Right_Foot inb = Right_Shin joint = pin
mass = 1.340000
inertia = 0.007500 0.000000 0.000000
inbtojoint = 0.007800 -0.215800 -0.003900
bodytojoint = 0.000000 0.044200 -0.039000
pin = 1.000000 0.000000 0.000000



Appendix D

DANCE script for the tackle
example

This is the DANCE tcl script that was used to produce the tackle example shown in Figure 7.3.
Because collisions are expensive we turned them one right before the two characters collide.

set wdir $env(DANCE_DIR)/run/skel18

#-------------------------------------
# load the systems and the environment
#-------------------------------------
# load character 1
source $wdir/setUpSkel.tcl
# load character 2
source $wdir/setUpSkel2.tcl

# load the simulators
instance SdfastSimul Skel18Simul1 skel18
simulator Skel18Simul1 f dt 0.00001
instance SdfastSimul Skel18Simul2 skel18_2
simulator Skel18Simul2 f dt 0.00001

# set the view
source $wdir/scene.tcl

# set the ground
instance PlaneGround ground
actuator ground apply all
actuator ground set model 27424 805 400

# set the platform for the robot to stand on
instance PlaneGround platform
actuator platform set geometry 1.0 -0.1 -2.0 1.0 -0.1 -0.44 2.0 \
-0.1 -0.44 2.0 -0.1 -2.0 10 10
actuator plarform apply skel18
actuator platform set model 27424 805 400
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# set gravity
instance FieldActuator grav
actuator grav set field 0 -9.8 0
actuator grav apply all

#--------------------------------
# load the supervisor controllers
#--------------------------------
# CAUTION: First load super then a generic posecontroller
# then the rest and add the default controller last
instance SupervisorController super1
actuator super1 apply skel18
instance SupervisorController super2
actuator super2 apply skel18_2

# load the PoseController2 plugin
plugin PoseController2

# load the specialist controllers
instance FallController2 fallCon1
instance FallController2 fallCon2
instance ProtectStepController protectStep2
instance StepController step2
instance DefaultController defaultCon1
instance DefaultController defaultCon2
instance InvPendController invpend1
instance InvPendController invpend2
instance DiveOnHumanController dive1
actuator dive1 lean_threshold 0.8

#set parameters for the balance controllers
actuator invpend1 param 70 10 1.0 0.06 0.06
actuator invpend2 param 70 10 1.0 0.06 0.06

# put the specialist controllers under the control
# of the appropriate supervisor controller
actuator super1 add invpend1
actuator super1 add dive1
actuator super1 add fallCon1
actuator super1 add defaultCon1

actuator super2 add invpend2
actuator super2 add step2
actuator super2 add protectStep2
actuator super2 add fallCon2
actuator super2 add defaultCon2
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# ------------------------------------
# set up collision for all geometries
#-------------------------------------
# that is compute the RAPID structures
set GeomList [show geometry]
foreach geomName $GeomList {

geometry $geomName setupCollision
}

# set up the parameters of collision actuator
instance CollisionActuator collision
actuator collision apply skel18
actuator collision apply skel18_2
actuator collision stiffness 1000.0
actuator collision damping 100.0
actuator collision friction 1.0
# turn collisions off for now
actuator collision other_collision off
actuator collision self_collision off

# -------------------
# set up the scenario
# -------------------

# indicate to the super2 controller that want the skeleton to take
# a step
actuator super2 desired step

# set the following events to take place later
# set the desired goal for the robot to "dive" at 0.05 secs after
# the simulation starts
system skel18 simul_event add 0.05 "actuator super1 desired dive_on_human"
# turn collisions on at 2.8 seconds after the simulation starts,
# which is before the two characters collide
system skel18 simul_event add 2.80 "actuator collision other_collision on"
system skel18 simul_event add 2.80 "actuator collision self_collision on"

# -----------------------------------------
# Everything is set so start the simulation
# -----------------------------------------
simul start
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