
Copyright © 2006 by the Association for Computing Machinery, Inc.

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for commercial advantage and that copies bear this notice and the full citation on the

first page. Copyrights for components of this work owned by others than ACM must be

honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on

servers, or to redistribute to lists, requires prior specific permission and/or a fee.

Request permissions from Permissions Dept, ACM Inc., fax +1 (212) 869-0481 or e-mail

permissions@acm.org.

© 2006 ACM 1-59593-295-X/06/0003 $5.00
I3D 2006, Redwood City, California, 14–17 March 2006.

Photorealistic Lighting with Offset Radiance Transfer Mapping

Ben Sunshine-Hill∗
UCLA

Petros Faloutsos†

UCLA

Abstract

We propose a precomputation-based approach for the real-time ren-
dering of scenes that include a number of complex illumination
phenomena, such as radiosity and subsurface scattering, and allows
interactive modification of camera and lighting parameters. At the
heart of our approach lies a novel parameterization of the rendering
equation that is inherently supported by the modern GPU. During
the pre-computation phase, we build a set of offset transfer maps
based on the proposed parameterization, which approximate the
complete radiance transfer function for the scene. The rendering
phase is then reduced to a set of texture-blending and mapping op-
erations that execute in real-time on the GPU. In contrast to the cur-
rent state-of-the-art, which employs environment maps to produce
global illumination, our approach uses arbitrary first-order lighting
to compute a final lighting solution, and fully supports point and
spot lights. To discretize the transfer maps, we develop an effi-
cient method for generating and sampling C0-continuous probabil-
ity density functions from unordered data points.

We believe that the contributions of this paper offer a signif-
icantly different approach to precomputed radiance transfer from
those previously proposed.

CR Categories: I.3.7 [Computing Methodologies]: Computer
Graphics—Three-Dimensional Graphics and Realism; I.3.6 [Com-
puting Methodologies]: Computer Graphics—Methodology and
Techniques

Keywords: global illumination, gpu, radiosity, interactive

1 Introduction

Over the last few years, the increasing popularity of applications
such as video games and virtual reality simulations has given rise
to the need for interactive simulations of complex lighting effects.
Where once low-poly wireframe renderings were the state of the art,
modern real-time rendering is now expected to reproduce effects
such as radiosity and subsurface scattering.

The rise of programmable Graphics Processing Units (GPUs)
has brought significant graphical power to the personal computer.
Programming complex mathematical models on a GPU can be chal-
lenging. Nevertheless, there is a flurry of research aimed at harness-
ing the power of the GPU for both general purpose and graphics
related problems. Some attempts to implement advanced lighting
effects on the GPU are very promising, such as the photon mapping
simulation by Purcell et al. [2003]. However, the current state of
the art is far from achieving real-time performance.

∗e-mail: bsunshin@cs.ucla.edu
†e-mail: pfal@cs.ucla.edu

Precomputed Radiance Transfer (PRT) techniques have been
proposed which partially solve this problem. A precomputation
phase determines a set of lighting parameters which may be ap-
plied at runtime. These techniques, however, have an important
limitation: they require a scene’s lighting to be expressed as an en-
vironment map over some external manifold, which can only pro-
vide a heuristic approximation of lighting from local sources such
as point or spot lights. Thus, arbitrary local illumination is not gen-
erally supported.

In this paper, we propose a novel precomputation-based ap-
proach for the photorealistic rendering of complex scenes with dif-
fuse transfer functions that efficiently leverages the strength of the
modern GPU. Unlike current PRT techniques, our approach sup-
ports arbitrary local lighting with advanced illumination effects and
interactively modified lighting and camera paramters, and performs
in real-time. A key novelty of our approach is a new parameter-
ization of the rendering equation which allows us to compute a
texture-based representation of a scene’s radiance transfer. This pa-
rameterization is based on grouping the light interactions of points
into textures according to different distance offsets (vectors) in tex-
ture space. Each offset corresponds to a single texture. The resul-
tant textures are a key element of our approach and are called offset
transfer maps. This unique form of our parameterization reduces
the rendering process to a sequence of texture operations which are
inherently supported by the GPU, and which can be executed in
constant-time with respect to the number of light sources. The ren-
dering process may be parallelized across multiple GPUs with very
low parallelization overhead.

Before we provide an overview of our approach, we need to de-
fine the concept of a radiance transfer function. Consider a point,
x, in a scene. The incident light at this point depends on direct, or
first-order, illumination from light sources, and indirect illumina-
tion which is transmitted to point x from all other points, x′, in the
scene. A radiance transfer function, RT F(x,x′), defines the frac-
tion of the first-order illumination of x′ that is transmitted to x, and
depends only on a scene’s geometry and reflectivity parameters.

We can now define offset transfer maps in more detail. Given a
texture mapping x ∈R

3 ↔ t ∈R
2, an offset transfer map with offset

∆t is a texture map whose value at any location t is the value of
the radiance transfer function evaluated at (t, t + ∆t). It tells us the
fraction of the incident light at the surface location corresponding
to t +∆t which is transmitted to the surface location corresponding
to t. An offset transfer map therefore represents a ”slice” of the
radiance transfer function corresponding to points which in texture
(parametric) space have distance ∆t. By computing an appropri-
ate set of offset transfer maps we can represent a radiance transfer
function as a set of textures.

We can now give an overview of our approach, which consists of
two phases.

Pre-computation phase. Given a scene to be rendered, we be-
gin by discretizing the solution of the radiance transfer function.
Rather than attempting to compute and store the entire solution, we
discretize it into a finite set of offset transfer maps. We develop a
novel probabilistic sampling approach that allows us to construct
such a set of transfer maps while maintaining the quality of the
results. As with other PRT techniques, the precomputed data is de-
pendent on scene geometry and must be recomputed whenever that
geometry changes. However, unlike conventional PRT techniques,

15

(a) First Order Lighting (b) Light Map

(c) Offset Transfer Maps

(d) Modulated Maps

(e) Modulated Maps,

Positioned at Offset (f) Combined Light Map (g) Final Result

Figure 1: Rendering with precomputed offset transfer maps.

it is independent of both camera position and lighting, and can thus
be used under a variety of circumstances, including local lighting,
such as point and spot lights. Figures 3-6 show several effects pro-
duced by our approach.

Rendering phase. At runtime, first-order illumination (Figure 1a)
is captured to a lightmap (1b). For each offset transfer map (1c), the
lightmap is multiplicatively modulated by the transfer map (1d).
The result of the modulation is offset by the offset associated with
the transfer map (1e) and additively blended to the final lightmap
(1f). Intuitively speaking, each modulated light map holds the per-
centage of first order lighting that each point receives, directly or in-
directly, from a single point which is as far away in texture space as
the offset of the associated offset transfer map. The final lightmap
is then textured back onto the object (1g).

The contributions of this paper are:
Offset form of the rendering equation. At the heart of our

approach lies a novel parameterization of the rendering equation in
texture space which is inherently supported by a modern GPU. Our
formulation allows a photorealistic lighting solution to be formed
from first-order lighting, rather than an environment map.

Offset computation. To compute an appropriate set of offset
for our transfer maps, we develop a method for efficiently generat-
ing and sampling C0-continuous probability density functions from
unordered data points.

Local lighting and complex effects. Our approach allows the
combination of full support for local light sources with advanced il-
lumination effects such as radiosity, subsurface scattering, and pho-
ton mapping.

Performance improvement methods. To further improve the
performance of our approach, we implement a set of acceleration
techniques. Among them, of independent interest is a method for
efficiently packing axis-aligned texture regions into texture atlases
which allows axial subdivision. To our knowledge, this is one of
the first papers to solve this special case of texture atlas building.

2 Related Work

2.1 Precomputation for Interactive Lighting

Sloan et al. [2002] introduced a global illumination technique
which uses spherical harmonics to sample an environment map.
The technique allows self-shadowing and interreflections, and re-
sults are realistic, efficient, and not restricted to diffuse surfaces.
The technique, however, is not intended for local illumination
(wherein the light source is close to geometry) and has difficulty
reproducing high-frequency lighting components. Ng et al. [2004]
modified this technique to use wavelet lighting, extending the tech-
nique’s suitability to high-frequency components as well as gener-
alizing the light transport equation such that local lights are sup-
ported; this support, however, is based on a reparameterization of
the transport equation that is specific to the light source. Sloan et

al. [2003] extended PRT with a bi-scale lighting approximation to
more effectively capture lighting effects from both large-scale and
small-scale geometry.

Daubert et al. [2003] proposed precomputing and storing per-
texel global visibility information, in order to efficiently perform
a light-gathering step at runtime. This allows the computation
of global illumination solutions in rigid scenes at near-interactive
speed. Since visibility, rather than light transfer, data is precom-
puted, however, multiple scatterings must be performed in separate
passes, and only fully opaque materials may be represented. Addi-
tionally, since spatial coherence is not exploited, a GPU-based im-
plementation of this method would require several dependent tex-
ture reads per texel.

Recently, Kristensen et al. [2005] used clustered PCA to classify
a large grid of potential local light sources for the purpose of per-
forming PRT with local omnidirectional lights. Sloan et al. [2005]
used zonal harmonics to perform low-frequency PRT for local fea-
tures on arbitrarily deformable models.

2.2 Subsurface Scattering

The dipole approximation for subsurface light transport was pro-
posed by Jensen et al. [2001]. A technique for simulating sub-
surface scattering by operating on a dynamically generated first-
order light map was described by Green [2004], which performs
a dynamically-sized Gaussian blur on the lightmap and uses it to
modulate the scene. Our approach may in some respects be consid-
ered as a generalization of their technique, inasmuch as Gaussian
convolution kernels are a subset of the effects possible with the
approach we present. Their technique, however, is ineffective for
objects with complex geometry such as ears, and people using this
technique have had to augment it with standard ray-tracing for such
situations [Borshukov and Lewis 2003].

2.3 Geometric and Statistical Methods

Lawson [1977] described the use of the Delaunay triangulation of
irregularly spaced points to approximate a surface. Sibson [1981]
suggested the Delaunay triangulation as a systematic triangula-
tion that was near-optimal for reconstructing the surface function.
Guibas and Stolfi [1985] described divide-and-conquer algorithms
to compute the Delaunay triangulation which create a triangulation
in O(n logn) and insert a new point into a triangulation in O(n).
As the Delaunay triangulation is the dual of the Voronoi polygonal-
ization, these algorithms are also useful for computing the Voronoi
polygonalization. Rocchini and Cignoni [2001] described a method
for generating random points in a tetrahedron, which is useful for
the sampling method given in Appendix A.

16

2.4 Texture Atlas Building

Much information has been published on fitting texture regions
into a minimal rectangular space. This is an NP-complete problem
[Fowler et al. 1981], an approximation to which has been described
by Lévy et al. [2002]. Our technique, however, only requires the
fitting of axis-aligned rectangular regions, and we may split the re-
gions at will; we thus propose an alternative algorithm which is
simpler and more efficient, described in Section 5.2.

3 Offset Form of the Rendering Equation

At the core of our approach is the use of texture maps for photo-
realistic illumination. In this section, we derive the mathematical
basis for applying texture blending to radiance transfer equations
such as the radiosity equation. The goal of our derivation is an
equation that will allow us to express a lighting solution as a func-
tion of first-order lighting in a form that may be approximated by
2D GPU texture maps. This will allow us to perform parallelized
gather operations on first-order lighting data without dependent tex-
ture reads. In these equations, we assume that objects in the scene
are comprised of the set M ⊂ R

3 of all points on their surfaces.
We start with a simple transfer equation, that of second-order

lighting B f (x) in a fully diffuse environment based on the first-order
illumination Bo(x) of the scene. That is, given light rays that have
come from an emissive patch or other light source and hit exactly
one object, we find the illumination caused by those rays as they hit
objects for the second time. (Later, we will generalize the method
to multiple scatterings.) If F(x,x′) is defined as the geometric form
factor between two points, and ρ(x) is the diffuse reflectivity of a
point, second order illumination is given by

B f (x) =
∫

M

ρ(x)Bo(x′)F(x,x′)dx′. (1)

We convert to a slightly idiosyncratic discrete representation: in-
stead of defining a set of n patches pi ⊂ R

3 as is usual, we define
a division of M into n patches which we refer to by the set of their
centroids P ⊂ M. This will allow us to relate the patches geomet-
rically using a multidimensional texture mapping. We define A(p)
as the area of the patch having centroid p, and other functions sim-
ilarly, and our equation becomes

B f (x) = ∑
x′∈P

ρ(x)Bo(x′)F(x,x′)A(x′). (2)

We now define a series of n integer-valued points T ⊂ I
2, and a

mapping TM : P → T and its inverse ITM : T → P, which we will
refer to as a ”texture mapping” and which represents a discretized
GPU texture mapping. Mirroring the form of a GPU texture map-
ping, we assume that all elements are laid out in a regular square
grid with edge length 1, and form centroids of patches with unit area
in that grid. That is, for any integers u and v, if u and v are between
0 and

√
n, 〈u,v〉 ∈ T . We define new functions TA(t) = A(ITM(t)),

TB f (t) = B f (ITM(t)), Tρ(t) = ρ(ITM(t)), TBo(t) = Bo(ITM(t)),
and TF(t, t ′) = F(ITM(t), ITM(t ′)) and rewrite the equation in
terms of these:

TB f (t) = ∑
t ′∈T

Tρ(t)TBo(t ′)TF(t, t ′)TA(t ′). (3)

Because of the texture mapping invariants given above, for any
two points t and t ′ in T , their spatial relation may be expressed
in terms of an offset ∆t as t ′ = t + ∆t, where ∆t ∈ I

2. Defining
TBo(t) = 0 for t /∈ T , we may therefore formulate the equation in
terms of the offset ∆t:

TB f (t) = ∑
∆t∈I2

Tρ(t)TBo(t +∆t)TF(t, t +∆t)TA(t +∆t). (4)

If we needed to express the radiance transfer in terms of every
texel and every offset, the texture data would be far too large to be
processed in anything approaching interactive speeds. Since tex-
ture mappings tend to map mostly-smooth areas of a mesh into a
single contiguous region, however, we can assume that all terms in
the equation, with the exception of TA(t + ∆t) (see below), have
a certain degree of coherence with respect to ∆t. We therefore do
not need to sample every ∆t in order to reasonably approximate the
solution; instead, we sample from a set O ⊂ I

2, and treat them as
representative of the areas around them. The value in Equation 4 of
the addend for each offset from our limited set of offsets is assumed
to be close to the average of the results of all integer-valued offsets
that are closest to it. Therefore, given the Voronoi graph gener-
ated by the set of all offsets, the Voronoi region of an offset within
the Voronoi graph generated by the set of all offsets represents the
area for which a particular offset is most representative. (In Sec-
tion 3.1 we present a method of choosing a set of offsets such that
this is the case.) For each offset, we multiply its contribution to the
summation by the area of the Voronoi region it describes. Defining
|V (∆t,O)| as being the size of the Voronoi region containing ∆t in
the Voronoi graph described by all elements of O, our approxima-
tion is

TB f (t) = ∑
∆t∈O

Tρ(t)TBo(t +∆t)TF(t, t +∆t)TA(t +∆t)|V (∆t,O)|.

(5)
Note that for all points on the convex hull of O, |V (∆t,O)| is

infinite. In order to prevent numeric instability, we require that
all offsets ∆t forming the hull are large enough that ∀t,TA(t) =
0∨TA(t + ∆t) = 0, and that the result from that offset is therefore
always 0.

This formulation is ideal for parallelization by the GPU. We view
a ”texture” as a discretization of a 2D function. In the case of the
above equation, we have a texture for TBo and several textures, each
representing a discretization of

Tρ(t)TF(t, t +∆t)TA(t +∆t)|V (∆t,O)| (6)

over t for a particular ∆t ∈ O. This ”transfer map”, associated with
the offset which generated it, is invariant of the light received by
the patches, and depends solely on the reflectivity and geometry of
the surfaces and on the choice of patches and mappings. It can,
therefore, be computed and stored before it needs to be displayed.
We also have a texture that represents a discretization of TBo(t),
produced each frame by the standard diffuse light model. A simple
fragment program allows us to combine these and produce a dis-
cretization of TB f (t), which can then be sampled to render the orig-
inal mesh M. By varying the discretization of TBo(t) at runtime, we
can easily produce an approximation of second-order reflections for
any conditions of first-order lighting for the mesh M. Because of
the unique offset form, the modulation of all points on the lightmap
is parallelized for each offset transfer map. This allows large per-
formance gains over other forms of parallelized gather operations.

We are, however, not limited to second-order reflections. Con-
sider a scene that is lit such that only one patch receives a unit
amount of first-order radiance, and all other patches receive no first-
order radiance; a physical analogue would be a darkened mesh with
a laser illuminating one point. The illumination transfers of all or-
ders which result from this illumination may be computed through
conventional global illumination techniques. One such solution for
each point receiving first-order radiance may be computed, and
the result is a discretization of the 6-dimensional function R(x,x′)

17

which expresses the amount by which the point x is illuminated,
by second- through infinite-order reflections, by a unit amount of
first-order radiance received by the point x′. Defining TR(t, t ′) sim-
ilarly to those functions defined earlier, we may therefore replace
the reflectivity and form-factor terms with this generalized transfer
model, and express a full illumination solution as

TB f (t) = ∑
∆t∈O

TBo(t +∆t)TR(t, t +∆t)TA(t +∆t)|V (∆t,O)|. (7)

The determination of R(x,x′) to implement different effects is
discussed in Section 4.

Our early results with this technique showed severe artifacts with
most meshes, consisting of certain polygons in the mesh which
were unnaturally bright or dark. We traced these artifacts to a
naive method of computing TA(t +∆t)|V (∆t,O)| in Equation 7. Our
method was to simply sample the area at the given point, and mul-
tiply by the area of the Voronoi region. This led to instability in
meshes where TA(t) varied widely, as a polygon with an unusu-
ally small or large value for TA(t) could have its influence mag-
nified if it were one of only a few points being gathered and thus
had a relatively large Voronoi region. Our solution is to sample
at all points within the Voronoi region, not just one, and replace
TA(t +∆t)|V (∆t,O)| with a function TVA(t +∆t) such that

TVA(t +∆t) = ∑
v∈V (∆t,O)

A(t + v) (8)

Our final formulation of the offset form of the rendering equation
is therefore

TB f (t) = ∑
∆t∈O

TBo(t +∆t)TR(t, t +∆t)TVA(t,∆t) (9)

and the general form of a transfer map, a specialization of which
was given in Equation 6, is

TR(t, t +∆t)TVA(t,∆t) (10)
for some ∆t. This formulation eliminates the aliasing artifacts men-
tioned earlier, and also gives the resultant renderings a smoother,
more continuous look. Reformulating other terms of the equation
such as Tρ(t) after this fashion did not appreciably improve the
result, as these terms are more coherent across the texture.

The offset form of the rendering equation, Equation 9, is the
central contribution of this paper. It provides a parameterization
of the rendering equation that can be efficiently parallelized by the
SIMD architecture of modern GPUs. Furthermore, it supports local
illumination and is runs in constant time with respect to the number
of light sources, since solutions are determined by the first-order
lighting of the scene. By computing an appropriate TR(t, t +∆t) our
formulation can support a range of complex illumination effects.
Section 4 shows specifically how we can implement some of these
effects. The effectiveness of our method depends on choosing an
appropriate set of offsets, which is discussed in the next section.

3.1 Determining the Offsets

In order to ensure that results are both efficient and realistic, it is
important to pick a set of offsets carefully; early implementations
used a jittered grid, resulting in aliasing artifacts even with hun-
dreds of transfer maps. Finding a ”good” set of offsets is well-
trodden ground in the realm of Monte Carlo methods, as impor-
tance sampling [Hammersley and Handscomb 1965]. The variance
of a Monte Carlo method is generally minimized when the proba-
bility distribution roughly corresponds to the integrand being eval-
uated, and that is the approach we take. There is a wrinkle, how-
ever: whereas conventional Monte Carlo techniques generally eval-
uate functions whose results are single scalars, the set of offsets

must suffice to produce good results for all patches on the mesh
and therefore should be evaluated for all patches. We have used
the maximum transference as the probability weighting with good
results, but this may be unsuitable for certain texture mappings.
In particular, using the average transference as the metric reduces
aliasing in meshes with only a single contiguous texture region and
relatively simple topology. For more complex scenes consisting of
multiple objects, using the maximum transferrence as the heuris-
tic prevents distant objects from being ignored by the importance
sampling.

In order to determine our final set of offsets, we build up an im-
portance distribution and sample randomly from it by using the im-
portance as a probability metric. We seed the distribution by sam-
pling transferrences over a regular grid, then iteratively refine by
sampling according to the current distribution and adding the com-
puted transference at the resultant sample as a data point within the
distribution. For the generation of the continuous importance dis-
tribution from the unordered data points, see Appendix B.

4 Modeling Illumination Phenomena

An important aspect of our formulation, shown in Equation 9, is that
it supports a number of complex illumination effects. We can repro-
duce a desired effect by using an appropriate R(x,x′) and TR(t, t ′)
for Equation 9. In this section, we present two popular effects and
methods for computing TR(t, t ′) for each.

4.1 Radiosity

Conventional radiosity solving techniques can be easily adapted to
produce the offset form of radiosity. The solution of T R(t, t ′) for
a particular defined t ′ is simply the radiosity solution where t ′ has
emissivity 1 and all other patches have emissivity 0. By setting the
emissivity of the mesh progressively for each point, TR(t, t ′) can be
built up. The performance of such a solver may be greatly improved
by reusing certain data structures built during the solving process.
Since the resultant data is constant as long as the mesh geometry
and reflectivity are constant, an arbitrarily long time may be spent
refining the solution without affecting the rendering speed.

Photon mapping provides an alternative method of generating
T R(t, t ′). All patches may be made emissive, and individual pho-
tons ”tagged” with the patch from which they originated. Once the
photons have been propagated, TR(t, t ′) may be estimated by taking
into account only those photons which originated from the source
Voronoi region.

4.2 Subsurface Scattering

Anisotropic subsurface scattering may be easily added to the ren-
derings. Since conventional subsurface scattering techniques ap-
proximate single- and multiple-scattering with single-scattering
terms [Jensen et al. 2001], they are quite simple to add to the
modified radiosity equation. In our implementation, we have used
Jensen’s dipole approximation as well as a simple exponential
falloff, and have found both to give good results. This is even the
case with complex geometries such as ears and noses which have
commonly proven problematic for image-based subsurface scatter-
ing techniques [Borshukov and Lewis 2003]. Because intensity for
subsurface contributions may be sampled at an arbitrary distance on
the texture from the destination point, points that are close together
on the mesh but distant on the texture are properly lit.

18

5 Implementation

We have implemented this technique on a consumer-level PC using
OpenGL as the rendering API. Using modern graphics optimiza-
tions, we have achieved realtime speeds for photorealistic render-
ings. Our implementation suite consists of three programs, each
representing a computation phase which we will describe in turn.

5.1 Computing Offsets and Building Maps

The first program reads in scene geometry as an X file. It is respon-
sible for computing a set of offsets and generating the transfer maps
for those offsets. First, the probability distribution is seeded with
a regular sparse grid of about 100 offsets by computing a radiance
transfer map at each offset and adding a data point to the distribu-
tion with magnitude equal to the maximum magnitude of the radi-
ance transfer for the map. The Delaunay triangulation is computed
using Guibas and Stolfi’s divide-and-conquer algorithm. Next, the
distribution is iteratively refined by generating random offsets from
the distribution, computing the maximum radiance transfer at those
offsets, and adding the value as a new data point to the distribu-
tion. The performance of this process may be improved by gener-
ating a batch of offsets with the same iteration of the distribution
before computing the corresponding maximum radiance transfers,
since generating n values from the same distribution has lower time
complexity than generating n values, one each from a different dis-
tribution. Once a certain number of refinements has occurred (we
have found 1000 iterations to be more than sufficient), the distribu-
tion is considered to have converged. The final set of offsets is then
generated, and the Voronoi area for each is computed, again using
Guibas and Stolfi’s divide-and-conquer algorithm. The Voronoi re-
gions are clipped to avoid numeric instability; we have found that
clipping to the square from (−1,−1) to (1,1) works well. Transfer
maps are computed using the method given in Section 3. The pro-
gram crops the radiance transfer maps to minimal bounding boxes,
including axial slicing. The images are then written to disk as sepa-
rate OpenEXR files [Kainz 2004], and an index file which describes
the images and their offsets is written.

5.2 Binning Maps Into Texture Atlases

GPUs must flush their processing pipelines when texture units are
changed, introducing a delay on completing the rendering of a
frame. If each offset transfer map were to be loaded as a sepa-
rate texture, this would become a considerable runtime penalty. By
binning multiple offsets into single textures, texture unit changes
are minimized, and rendering speed may be increased by a factor
of 5 or more. The second program performs this binning. Each
map is split into vertical slices, each slice having a width which is
a power of two. Bins are then preferentially filled in a manner that
avoids breaking textures vertically: if some unbinned textures have
the same width as an empty bin area and a lesser height, the best-
fitting one is chosen and the remaining empty area is returned to the
pool of areas. If all unbinned textures of the proper width are taller
than the space available, the tallest one is chosen and split. If no
unbinned textures of the appropriate width are available, the area
is subdivided. Subdividing into binary widths converts the difficult
problem of two-dimensional bin packing to the relatively simple
problem of one-dimensional bin packing, and the best-fit/largest-
split approach to packing minimizes the number of vertical splits
that must be made. This method is trivially optimal with respect to
minimizing number of bins needed, and empirically we have found
it to perform well with respect to minimizing the number of splits
(see Section 6.1). Pseudocode for this algorithm is available at
http://www.cs.ucla.edu/∼bsunshin/binalgorithm.pdf.

5.3 Rendering

The third program is responsible for the actual realtime rendering
of images. It loads in the original mesh, as well as the generated
texture atlases. The set of transfers for each atlas is encoded into
an OpenGL display list. It then initializes an OpenGL window and
renders in a loop. Arbitrary fragment shaders may be used to pro-
vide first-order lighting, or the first-order lightmap may be simu-
lated by painting from a small toolbox; we have tested the method
successfully with spot, point, directional, ambient, and environ-
mental lighting. The mesh may be rotated, and the first-order and
final meshes are displayed side-by-side.

6 Results

Our method supports arbitrary lights and advanced illumination
phenomena for complex meshes in real-time. In Section 4 we de-
scribe specifically how we can implement radiosity and subsurface
scattering. In this section we demonstrate the effectiveness of our
implementation of these methods.

Our tests were performed with a neutral face model with slightly
exaggerated subsurface scattering (in order to more clearly demon-
strate the effect). This mesh contains discontinuities and severe
distortions in its texture mapping, as well as widely varying curva-
ture (including extremely concave regions) and form factors, and
thus is sufficient to demonstrate the results of a technique within
a complex geometric scene. For additional images and animations
we refer the reader to the accompanying video.

Radiosity. Figure 6a shows the effects of global illumination for
a face mesh illuminated by a directional light positioned above the
head. Although the lower part of the nose is not directly illumi-
nated, it receives light that is reflected from other parts of the face.

Subsurface scattering. Translucent objects such as marble and
skin allow incident light to penetrate their surface up to some depth.
The light scatters within such objects and often exits at locations
other than the original entry point. Because of these phenomena,
translucent objects appear smoother and when backlit their perime-
ter exhibits a warm glow. Figure 6b shows a backlit face mesh
demonstrating how our implementation captures this complex phe-
nomenon. Figure 3 shows a face mesh illuminated by two local
lights, a blue light at the front and a red light at the back. The effect
of subsurface scattering is most visible at the nose contour where
some amount of red light scatters through the skin and reaches the
blue side.

The combination of radiosity and subsurface scattering produces
highly photorealistic results. Figure 5 shows the face mesh illu-
minated by a local point-light source. Figure 4 shows a compari-
son between direct illumination (first order) and global illumination
from a directional light source. The combination of radiosity and
subsurface scattering results in a smoother and more saturated face
mesh.

6.1 Performance details.

We have tested our method on an 2.53 GHz Intel Pentium 4 com-
puter with an NVIDIA GeForce 6800. The face mesh consists of
3686 vertices and 6918 faces. Groups of between 50 and 400 trans-
fer maps were generated, in sizes ranging from 256x256 to 512x512
pixels. Transfer maps were split and rejoined into 1024x1024 tex-
ture atlases. Our binning algorithm split each map into an aver-
age of 7-9 pieces. With as few as 100 transfer maps, offset alias-
ing artifacts (in which artificial edges appear in the middle of the
lightmap) were invisible and the result was fully photorealistic. We
believe the dominant factor in determining framerate to be the total
size of the texture data: each texel in the texture data corresponds

19

Bin size
(pixels) # Offsets # Bins Map-gen

Time (sec) FPS
256x256 50 3 22 30.08
256x256 100 6 28 15.04
256x256 200 10 42 8.59
256x256 400 19 57 1.96
384x384 100 13 36 7.52
384x384 200 24 107 1.43
512x512 100 22 197 1.72
512x512 200 43 226 1.01

Table 1: Implementation details and timing results.

to a blended framebuffer write, and framebuffer writing is the bot-
tleneck of the pipeline in this system under normal circumstances.
Framerates varied from 1.01 frames per second to 30.08 frames per
second, and will likely be even higher with the next generation of
GPUs and with multi-GPU systems. Our timing results are given in
Table 1.

The GPU we have used does not automatically support filtering
of full-precision floating-point textures. This leads to magnification
artifacts such as those visible in Figure 6a. If desired, it is possible
to eliminate such artifacts by performing filtering in the final pixel
shader. Since the system does not perform significant computation
in that pass, overhead would be minimal.

7 Discussion

Our approach to radiance transfer is significantly different from
those currently used in GPU applications, and it is one with the po-
tential for many augmentations. We present several possible mod-
ifications to the technique that may increase its generality and use-
fulness.

Currently, the vertices passed to the transfer program are such
that the first-order lightmap is not transformed in any way before
being modulated and added to the full lightmap. If the technique
were to perform arbitrary affine scalings, rotations, and shearings
on the lightmap for each transfer map, certain effects such as ra-
diosity would be less dependent on a well-chosen texture mapping.
Since GPUs always interpolate texture coordinates, such transfor-
mations would be essentially ”free” with respect to rendering speed.
Such an improvement would require a careful reformulation of the
underlying equations in order to ensure that points do not receive
uneven amounts of lighting, as well as efficient algorithms for de-
termining an optimal set of transformations.

Likewise, the use of a set of global offsets, rather than local off-
sets within discrete regions of the texture mapping, is a simplify-
ing assumption which in future work may be relaxed. Using local
rather than global offsets may improve the quality of renderings on
texture mappings with extremely divergent scaling factors. Like the
use of arbitrary transformations, this change would require a refor-
mulation of the offset form of the rendering equation in order to
normalize lighting in boundary areas.

Although the axial splitting used in our implementation is suf-
ficient for removing many areas of the transfer maps that do not
significantly contribute to the final product, more advanced meth-
ods are possible. Texture atlases tend to contain separate texture
areas that are not axially separated, in order to maximize the used
area of the texture. If a method of identifying and isolating these
areas were developed, this wasted space could be reclaimed.

Limitations. Our approach is based on a diffuse form of the ren-
dering equation, and as such assumes that all surfaces are diffuse.
In certain circumstances, however, this restriction may be relaxed:
as long as the first and last patches that a light beam reflects from

are diffuse, the ’middle’ reflections may be off of surfaces with arbi-
trary reflectivity functions. Therefore, if all surfaces behave as fully
diffuse when participating in first and last reflections, the require-
ment that they be diffuse otherwise may be lifted. For instance, we
have had some success adding a specular lighting term to the com-
puted final lighting map in the final rendering. Since such specular
terms are not factored into the radiance transfers, lighting situations
with large specular contributions may appear darker than normal.
The technique also depends on a texture mapping encompassing all
objects which are to participate in interreflections.

Rendering with a very low number of transfer maps (50 or less)
may result in sampling artifacts; these artifacts rapidly become in-
visible at higher numbers of transfer maps. Small discontinuities
in lighting may appear across texture seams with lower numbers of
transfer maps.

7.1 Multi-GPU Parallelization

This technique could be easily parallelized across an arbitrary num-
ber of GPUs with very low overhead. Since the accumulation of
radiance components is additive, each GPU may be assigned a dif-
ferent subset of the texture bins, and the result from each GPU ad-
ditively blended to produce the final lightmap. The only overhead
of this approach compared to a single GPU would be the time spent
rendering first-order lighting on each GPU and the time spent trans-
ferring the lightmaps to the display GPU and accumulating them.
For a very large number of GPUs where the accumulation overhead
is significant, standard parallel summation techniques could be used
to reduce the time to O(logn) in the number of GPUs.

8 Conclusion

We have proposed a precomputation-based approach for the photo-
realistic rendering of complex scenes that efficiently leverages the
strength of the GPU. At the heart of our technique lies a novel
parameterization of the rendering equation which discretizes the
radiance transfer function into texture space. Our approach sup-
ports complex illumination effects, as well as arbitrary local light-
ing which may be interactively modified in real-time. In addition,
its performance is independent of the number of light sources, since
lighting solutions are determined by the first-order lighting of the
scene.

We believe that the contributions of this paper represent an ex-
pansion of the field of precomputed radiance transfer in a new di-
rection.

9 Acknowledgements

The work in this paper was partially supported by NSF under con-
tract CCF-0429983. The authors would like to thank the anony-
mous reviewers for helping to manifestly improve the clarity of this
paper. We would also like to thank Intel Corp., Microsoft Corp.,
ATI Corp. and Alias Corp. for their generous support through
equipment and software grants.

References

BORSHUKOV, G., AND LEWIS, J. P. 2003. Realistic human face rendering for ”The
Matrix Reloaded”. In Proceedings of SIGGRAPH 2003, ACM Press, 1–1.

DAUBERT, K., KAUTZ, J., SEIDEL, H.-P., HEIDRICH, W., AND DISCHLER, J.-M.
2003. Efficient light transport using precomputed visibility. IEEE Comput. Graph.
Appl. 23, 3, 28–37.

FOWLER, R. J., PATERSON, M., AND TANIMOTO, S. L. 1981. Optimal packing
and covering in the plane are NP-complete. Information Processing Letters 12, 3,
133–137.

20

GREEN, S. 2004. Real-time approximations to subsurface scattering. In GPU Gems:
Programming Techniques, Tips and Tricks for Real-Time Graphics, R. Fernando,
Ed. Pearson Higher Education, ch. 16, 272–275.

GUIBAS, L., AND STOLFI, J. 1985. Primitives for the manipulation of general sub-
divisions and the computation of Voronoi diagrams. ACM Trans. Graph. 4, 2,
74–123.

HAMMERSLEY, J. M., AND HANDSCOMB, D. C. 1965. Monte Carlo Methods.
Chapman and Hall.

JENSEN, H. W., MARSCHNER, S. R., LEVOY, M., AND HANRAHAN, P. 2001. A
practical model for subsurface light transport. In Proceedings of SIGGRAPH 2001,
ACM Press, 511–518.

KAINZ, F. 2004. The OpenEXR image file format. In GPU Gems: Programming
Techniques, Tips and Tricks for Real-Time Graphics, R. Fernando, Ed. Pearson
Higher Education, ch. 26, 425–444.

KRISTENSEN, A. W., AKENINE-MÖLLER, T., AND JENSEN, H. W. 2005. Precom-
puted local radiance transfer for real-time lighting design. ACM Trans. Graph. 24,
3, 1208–1215.

LAWSON, C. L. 1977. Software for C1 surface interpolation. In Mathematical Soft-
ware III, J. R. Rice, Ed. Academic Press, 161–194.

LÉVY, B., PETITJEAN, S., RAY, N., AND MAILLOT, J. 2002. Least squares confor-
mal maps for automatic texture atlas generation. ACM Transactions on Graphics
21, 3, 362–371.

NG, R., RAMAMOORTHI, R., AND HANRAHAN, P. 2004. Triple product wavelet
integrals for all-frequency relighting. ACM Transactions on Graphics 23, 3, 477–
487.

PURCELL, T. J., DONNER, C., CAMMARANO, M., JENSEN, H. W., AND HANRA-
HAN, P. 2003. Photon mapping on programmable graphics hardware. In Proceed-
ings of HWWS 2003, Eurographics Association, 41–50.

ROCCHINI, C., AND CIGNONI, P. 2001. Generating random points in a
tetrahedron. Avaiable at http://vcg.isti.cnr.it/publications/papers/
rndtetra a.pdf.

SIBSON, R. 1981. A brief description of natural neighbor interpolation. In Interpreting
Multivariate Data, V. Barnett, Ed., Wiley Series in Probability and Mathematical
Statistics. John Wiley and Sons, ch. 2, 21–36.

SLOAN, P.-P., KAUTZ, J., AND SNYDER, J. 2002. Precomputed radiance transfer for
real-time rendering in dynamic, low-frequency lighting environments. In Proceed-
ings of SIGGRAPH 2002, ACM Press, 527–536.

SLOAN, P.-P., LIU, X., SHUM, H.-Y., AND SNYDER, J. 2003. Bi-scale radiance
transfer. ACM Trans. Graph. 22, 3, 370–375.

SLOAN, P.-P., LUNA, B., AND SNYDER, J. 2005. Local, deformable precomputed
radiance transfer. ACM Trans. Graph. 24, 3, 1216–1224.

(a) Delaunay triangulation of
data points.

(b) Stacked tetrahedra repre-
senting one triangle in the dis-
tribution.

Figure 2: Building a continuous probability distribution from un-
ordered data points.

A Importance Sampling from Unordered

Data Points

In order to determine the set of offsets as described in Section 3.1,
we have developed an efficient method of generating a C0 continu-
ous probability distribution from a set of unordered data points, and
of sampling from this distribution.

For a particular collection of probability data points, the proba-
bility for an arbitrary sample point (which may or may not be in the
set of data points) is interpolated between data points by finding the
Delaunay triangulation of all points (Figure 2a), and performing a
bilinear interpolation on the points of the triangle a particular tar-
get point is in. The generated function is thus C0 continuous. The
Delaunay triangulation is used because it has the desirable property
that most points are in a Delaunay triangle determined by the three
closest vertices.

For the purposes of sampling, each triangle within the Delau-
nay triangulation is partitioned into a stacking of three tetrahedra,
each with three vertices determined by the three vertices of the tri-
angle over the XZ plane, and the fourth determined by one each of
the vertices with a Y height of that vertex’s weighting (Figure 2b).
The combined area of the three tetrahedra is equal to the linear av-
erage of the three weightings, multiplied by the area of the base
triangle. To find a sample, it is sufficient to randomly select a tetra-
hedron based on a weighting factor of the volume of the tetrahe-
dron, then sample a point uniformly from within that tetrahedron.
A single sample from a triangulation with n triangles may be ob-
tained in O(n) with no precomputation, and m samples from the
same distribution may be obtained in O(m logn) by performing bi-
nary searches for the random samplings within the progressively
summed areas (as is common when sampling from discrete proba-
bility distributions). For our purposes, we have found no discern-
able loss of quality when distributions are only recalculated after
every 20th added sample.

This interpolation method is efficient and numerically robust,
and permits the distribution to be adaptively refined without a drop
in performance (once a triangulation is established, a point may be
added to it in O(logn)). Although the Delaunay triangulation is
commonly used to correlate unordered data points, to our knowl-
edge this is the first time that these techniques have been used to
define a continuous probability density function from such data.

21

Figure 3: Subsurface scattering in a mesh lit by two point lights.

(a) First order illumination. (b) Global illumination with
subsurface scattering.

Figure 4: Comparing first-order and global illumination.

Figure 5: Radiosity and subsurface scattering with one point light
source.

(a) Radiosity. (b) Subsurface scattering.

Figure 6: Complex illumination effects.

Normal Mapping for Precomputed Radiance Transfer

Figure 3: Simple scene, PRT, Gold Standard, Separable, Half-Life 2, Shifted Associated Legendre Polynomials

217

