
The Virtual Stuntman:
Dynamic Characters with a Repertoire of

Autonomous Motor Skills

Petros Faloutsos a, Michiel van de Panne b;e

Demetri Terzopoulos c;d

aUniversity of California at Los Angeles, Department of Computer Science
bUniversity of British Columbia, Department of Computer Science

cNew York University, Courant Institute, Computer Science Department
dUniversity of Toronto, Department of Computer Science

eMotion Playground, Inc.

Abstract

An ambitious goal in the area of physics-based computer animation is the creation of virtual
actors that autonomously synthesize realistic human motions and possess a broad repertoire
of lifelike motor skills. To this end, the control of dynamic, anthropomorphic figures sub-
ject to gravity and contact forces remains a difficult open problem. In this paper, we report
on our ongoing development of a virtual stuntman, a dynamic graphical character that pos-
sesses a nontrivial repertoire of lifelike motor skills. The repertoire includes basic actions
such as balance, protective stepping when balance is disturbed, protective arm reactions
when falling, multiple ways of rising upright after a fall, and several more vigorously dy-
namic motor skills. Our virtual stuntman is the product of a recently proposed framework
for integrating motor controllers, which includes among other ingredients an explicit model
of pre-conditions; i.e., those regions of a dynamic figure’s state space within which a given
motor controller is applicable and expected to work properly.

Key words: Artificial Life, Virtual Humans, Computer Animation, Character Animation,
Physics-Based Animation Control, Physics-Based Modeling

1 Introduction

Despite considerable progress in animating virtual humans [1,5], physics-based an-
imated characters with a large repertoire of motor skills have so far been elusive.
This may seem surprising in view of recent successes in implementing a slew of

Preprint submitted to Elsevier Science 17 September 2001



specialist motor controllers capable of realistically synthesizing the complex dy-
namics of running, diving, and various gymnastic maneuvers [14]. The present pa-
per develops further a new framework [10] that enables the systematic integration
of multiple specialist motor controllers in order to create physically-simulated ani-
mated characters with broad repertoires of motor skills.

A domain that requires a broad variety of motor skills is stuntwork for action-
intensive film genres, such as westerns or martial arts films. The dynamic nature
of typical movie stunts makes them dangerous to perform, but it also makes them
attractive candidates for the application of physics-based animation. With this in
mind, we are pursuing the enticing long-term goal of creating an autonomous vir-
tual stuntman. We have made significant progress towards this goal by focusing
our attention on dynamic falling due to various disturbances, getting up after a fall,
and several other complex combinations of motor control skills often associated
with movie stuntmanship. The technical challenge that we face lies in developing
appropriate motor control strategies for specific actions and in integrating these
controllers into a coherent whole.

In prior work [10], we have demonstrated families of composable motor controllers
for a dynamic articulated figure whose physical parameters are consistent with a
fully-fleshed adult male. As an example of the results of our efforts, Fig. 1 illustrates
this dynamic character autonomously performing a complex control sequence com-
posed of individual controllers responsible for falling reactions, rolling-over, get-
ting up, and balancing in gravity. The upright balancing dynamic figure is pushed
backwards by an external force; its arms react protectively to absorb the impact
with the ground; the figure comes to rest in a supine position; it rolls over to a
prone position, pushes itself up on all fours, and rises to its feet; finally it balances
upright again. A subsequent disturbance will elicit similar though by no means
identical autonomous behavior, because the initial conditions and external forces
will usually not be exactly the same.

1.1 Related work

The simulation and animation of human characters is a challenging problem in
many respects. Models for human motion must meet a particularly high standard,
given our familiarity with what the results should look like. Comprehensive solu-
tions must aspire to distill and integrate knowledge from biomechanics, robotics,
control, and animation. The biomechanics literature is a useful source of predic-
tive models for specific motions, and computer simulation is becoming an increas-
ingly useful tool in this domain [21,22,25]. Robotics research has made remarkable
progress in the successful design of a variety of legged robots [24] and, more re-
cently, bipedal anthropomorphic robots [18]. Computer animation, typically unen-
cumbered by the exacting fidelity requirements of biomechanical models and the

2



Fig. 1. A dynamic “virtual stuntman” falls to the ground, rolls over, and rises to an erect
position, balancing in gravity (images in raster order).

mechanical limitations of robotic systems, has spawned a variety of kinematic and
dynamic models for character motion [2]. Motor controllers for dynamically simu-
lated characters have been successfully designed for specific human motions such
as walking, running, vaulting, cycling, etc. [14,17,31].

Encouraging milestones on the road toward fully functional, dynamically simu-
lated, articulated characters include an integrated set of motor controllers for biome-
chanically animated fish [26], a methodology for controller design and integration
applicable to simple figures [28], and a demonstration of successful integration for
selected diving and gymnastic motions such as leaping, tumbling, landing, and bal-
ancing [31]. Unlike previous work focusing on specific athletic movements, we
progress toward dynamic human characters equipped with an integrated and wide-
ranging repertoire of autonomous motor skills, by beginning with a core set of
simple autonomous actions, including balancing, small steps, falling reactions, re-
covery from falls, sitting on and rising from chairs, and other actions. We then work
towards more complex motor tasks, such as stunts.

3



1.2 Overview

The remainder of the paper is organized as follows: Section 2 reviews our mo-
tor controller composition framework. Section 3 presents our prototype dynamic
virtual stuntman models. Section 4 describes the motor controllers that contribute
to the prototype stuntman’s repertoire of motor skills. Section 5 presents several
animation results. Finally, Section 6 concludes the paper and proposes promising
avenues for future work.

2 Controller Composition Framework

We have proposed a simple but effective framework for composing specialist con-
trollers into more capable control systems for dynamic characters [10]. In our
framework, individual controllers are black boxes encapsulating specialized con-
trol knowledge. First, an individual controller must be able to determine whether
or not it can take the dynamic character from its current state to some desired goal
state. Second, once an individual controller is active, it should be able to determine
whether it is operating nominally, whether it has succeeded, or whether it has failed.
Any controller that can answer these queries may be added to a pool of controllers
managed by a supervisor controller whose goal is to resolve more complex control
tasks. Hence, we have a two-level, hierarchical controller composition scheme, as
illustrated in Fig. 2.

Controller 1 Controller N

Supervisor Controller
Upper level intelligence

Lower level intelligence

Fig. 2. Two level composition scheme.

Our composition method requires individual controllers to define pre-conditions,
post-conditions, and expected performance. Pre-conditions, denoted P , are a set of
conditions over the state of the character and the environment. We have demon-
strated the successful composition of controllers based on manually determined
pre-conditions and on those learned automatically by a Support Vector Machine
(SVM) technique which learns appropriate pre-conditions through the repeated
sampling of the behavior of individual controllers in operation. If the pre-conditions
are met, then the controller can operate and possibly enable the character to satisfy
the post-conditions, denoted O, the range of states that the character may be in af-
ter the execution of the controller. Thus, the controller realizes a transition between
a domain of input states to a range of output states for the character. Because of
unexpected changes in the environment, however, this transition may not always

4



succeed, which motivates the notion of expected performance, denoted E ; the con-
troller should be able to evaluate its performance in order to detect failure at any
point during its operation. To do this, the controller must continually be aware of
the current and expected state of the character or the environment.

At each time step of the physics-based simulation, the supervisor controller first
checks whether it needs to initiate a bid process, and proceeds to do so if the user-
specified target state has changed or if there is no active controller (other than a
default controller). During the bidding process, all available individual controllers
determine whether their pre-conditions are satisfied and, if so, they bid for control
over the dynamic character. The supervisor controller selects from among the col-
lection of bidding controllers the one that returns the highest priority, registers it
as the active controller, and invokes a method associated with the controller which
implements its control strategy. The method returns to the supervisor controller a
status parameter. If the status parameter indicates that the controller has failed, then
a new bidding process is initiated. 1 Along with the status parameter, the method
returns target values for some or all of the dynamic character’s degrees of freedom
along with associated stiffness and damping parameters, which are used by a set of
proportional-derivative controllers to calculate the actual control torques. Alterna-
tively, the active controller can choose to apply torques directly to the character and
return no values for the supervisor’s proportional-derivative controllers. In the case
where no available controller bids for control, the supervisor controller activates the
default controller, a generic controller, which we will describe in more detail later,
that tries to do something sensible with the character when no specialist controller
is able to assume control.

Some controllers automatically bid for control over the character when their pre-
conditions are met; hence, many controller transitions occur autonomously, such
as taking a protective step in response to a loss of balance. However, other actions
are initiated voluntarily, and the associated controllers become active only at the
request of the user. For example, a character balancing upright can be instructed
to remain standing, to sit-down, to walk, or to take a dive. Currently, the user di-
rects voluntary actions by interactively entering command strings to the supervisor
controller. These commands increase the suitability score of the designated con-
troller and forces invocation of the arbitration process which selects and activates
the designated controller. The control of voluntary motions could be delegated to a
high-level planner, but motion planning is beyond the scope of our current work.

Our control composition framework is implemented within DANCE, a portable, ex-
tensible object-oriented modeling and animation system [19]. 2 DANCE provides a

1 An additional check avoids an infinite loop when a badly designed controller bids for
control and immediately fails.
2 DANCE is freely available for non-commercial use via the URL:
www.dgp.toronto.edu/software/dance.htm

5



platform that researchers can use to implement animation and control techniques
with minimal design and implementation overhead. The core of the system supports
four base classes, Systems, Simulators, Actuators and Geometries which are load-
able as plug-ins in accordance with simple application program interfaces (APIs).

Articulated objects are a System subclass that support skeleton hierarchies. They
have kinematic properties and, usually, fully dynamic physical properties as well.
Our virtual actors, which will be described shortly, are dynamic articulated objects
implemented as Systems within DANCE.

An actuator is a generic concept that includes anything that can exert forces or, in
general, interact in any way with systems or other actuators. For example, grav-
ity, the ground, the collision mechanism, the supervisor controller and individual
controllers are implemented as actuators. DANCE places no restrictions on the com-
plexity of the controllers.

Simulators compute the equations of motion of all the dynamic characters and other
systems in DANCE. DANCE offers built in support for SD/FAST, a commercial sys-
tem which produces optimized simulation code for articulated bodies [15]. How-
ever, any simulator that follows a simple API can be dynamically loaded into the
system. Our simulators are automatically produced by SD/FAST from model spec-
ification files. They use Kane’s method for computing articulated dynamics and an
explicit, fourth order Runge-Kutta time integration method.

Actuators and simulators are implemented as DANCE plug-ins. This allows the user
to dynamically load controllers and simulators at runtime. In addition, researchers
can exchange, simulators, and controllers in the form of dynamically linked pieces
of code.

Object collisions (including self collisions) are handled by the Collision actuator.
This actuator works on pairs of objects. The DANCE API allows it to work with ob-
jects that have different simulators. Collision detection is based on a library that
uses oriented bounding boxes [13]. Collision resolution uses a penalty method
that corrects geometry interpenetration using spring-and-damper forces. As with
all penalty methods, it can make the system stiff, but it has performed well in our
experiments to date.

Each controller has full access to the internal data structures of DANCE including all
the information associated with any character or object in the system. This allows
the controllers to define arbitrary sensors that keep track of necessary information
such as state parameters for feedback loops and the state of the environment. For
efficiency, the supervisor controller calculates a number of common sensor values
that are available to all the controllers.

6



Y

X

Z

Y

X

Z

(a) (b)
Joint Skeleton model DOFs Robot model DOFs

Head 1 1

Neck 3 1

Shoulder 2 1

Elbow 2 1

Wrist 2 -

Waist 3 1

Hip 3 1

Knee 1 1

Ankle 2 1

(c)

Joint Axis Lower Limit Upper Limit

Head x -45 45

Neck x -50 90

z -60 60

y -80 80

Shoulder z -90 90

y -80 160

Elbow y 0 120

x -90 40

Wrist z -90 90

y -45 45

Waist x -45 90

z -55 55

y -50 50

Hip x -165 45

y -120 20

z -20 20

Knee x 0 165

Ankle x -45 50

z -2 35

(d)

Fig. 3. Anthropomorphic models. (a) 3D-motion skeleton model and (b) 2D-motion “Ter-
minator” robot model, (c) their rotational degrees of freedom (DOFs), and (d) lower/upper
joint limits for the skeleton model.

3 Prototype Virtual Stuntman Models

Fig. 3 illustrates two dynamic articulated characters that will serve as prototype vir-
tual stuntman models. The red arrows indicate the positions of the joints and their
rotational degrees of freedom (DOFs), which are also enumerated in the table. The
skeleton model, which is capable of full 3D motion, has 37 DOFs, six of which
correspond to the global translation and rotation parameters. The 16 DOF “Termi-
nator” robot model is limited to producing 2D (planar) motion. The leftmost table
in the figure lists the DOFs of the models. The physical properties, such as mass
and moments of inertia, of both models are consistent with anthropometric data for
a fully-fleshed adult male, as found in the biomechanics literature (see Winter [30]).
In particular, the overall mass of each model is 89.57 kilograms. The movement of
the rotational degrees of freedom of the models is restricted by the physical limits
of the human body. After researching the literature, we have decided to use the joint
limits indicated (for the skeleton model) in the rightmost table in the figure.

The supervisor controller of the character is responsible for maintaining the articu-
lated figure’s joint limits. We use a method based on exponential springs to ensure

7



that rotations of the character’s body parts do not exceed the user specified limits. If
any rotational degree of freedom qi, exceeds its allowable range of (qli; q

u
i ), where

the superscripts designate “lower” and “upper” limits, respectively, the exponential
springs produce the forces:

if (qli � qi) > � then f l
i = kl

s(e
kes(q

l

i
�qi) � 1)� kd _qi;

if (qi � qui ) > � then fu
i = kl

s(e
kes(qi�qu

i
)
� 1)� kd _qi;

depending on the limit that has been violated. Exponential springs are widely used
in a variety of control problems. We have determined that the spring constants
kl
s = 10:0, ke

s = 1:0, and kd = 10:0 produce satisfactory behavior.

Feedback is crucial to the motor control of complex dynamic characters, such as
virtual humans. Motor controllers need information about the state of the character,
where it is facing, whether it is balanced, etc. Controllers also need to have infor-
mation about the environment, such as body/ground contact points, the slope of the
terrain at contact points, the position of obstacles, etc. Most of the information on
the character can be computed from the state parameters; however, it is often more
convenient to use higher-level sensors that are more intuitive, can be computed once
per time step, and can be shared among controllers. In our current implementation,
each controller has full access to the internal data structures of DANCE, including all
the information associated with any character or object in the system. This allows
the controllers to define arbitrary sensors that keep track of necessary information
such as state parameters for feedback loops and the state of the environment. For
efficiency, the supervisor controller calculates the following common sensor values
which are made available to all specialist controllers:

� Support polygon. The support polygon S is defined by the convex hull of the
feet that are in contact with the ground, and it is crucial for the balance of the
character.

� Center of mass information. The position c, velocity _c, acceleration �c, and rela-
tive position of the center of mass with respect to the support polygon.

� Hip center of mass information. The position ch, velocity _ch, acceleration �ch, and
relative position of the hip’s center of mass with respect to the support polygon.

� Contact information. An indication of whether the feet, head, hip and thighs are
in contact with the ground.

� Orientation. The facing vector vf and up vector vu of the hip, indicating the
direction that the hip faces and how far it leans, respectively.

Fig. 4 shows the support polygon, the facing vector and the up vector relative to the
skeleton model.

Most of the computational burden in our approach lies in the numerical simulation
of the equations of motion. The computations associated with the controllers and
our composition framework are negligible in comparison. In general, the reduced-

8



Up Vector

Facing Vector

Support Polygon

Fig. 4. A few sensors associated with the 3D-motion model.

DOF, 2D-motion robot model simulates in real time on a 733 MHz Pentium III
computer system, whereas the 3D-motion skeleton model runs between 5 and 9
times slower than real time.

4 Implementing Motor Skills

In this section, we present the individual, specialist controllers that we have im-
plemented for the prototype virtual stuntman and we describe in detail their an-
alytical, composable APIs. Most of the controllers for our models are based on
pose control, which has often been used both for articulated objects [27] and soft
objects [9]. Pose control is based on cyclic or acyclic finite state machines with
time transitions between the states. Each state of the controller can be static or can
depend on feedback parameters. For some of our controllers, we use continuous
control, in the sense that the control parameters are tightly coupled with some of
the feedback sensors. The balance controllers are an example of this. We designed
several controllers based in part on experimental studies of how humans detect loss
of balance [20] and analysis of protective and falling behaviors [7]. The basic con-
trollers are augmented with the aforementioned representation of pre-conditions,
post-conditions, and expected performance.

Fig. 5 lists the number of poses (states) of each controller. Controllers that do not
follow the pose controller (finite state machine) paradigm are marked with “C”.
The table shows also whether the controllers implement sensor-based (“S”) or time-
based (“T”) transitions between poses.

Let us first define the following quantities and symbols: The state q = [x _x]0 of an
articulated figure is the vector of generalized joint angles x and angular velocities _x,
where the dot indicates a time derivative. The position and velocity of the center of

9



Controller # poses (3D) Transitions # poses (2D) Transitions

Balance C N/A C N/A

Fall 3 T & S 3 T & S

ProtectiveStep 4 T & S 5 T & S

Step 9 T & S - -

Plunge 3 T & S 6 T & S

SupineToCrouch 10 T & S - -

SupineToKneel - - 10 T & S

ProneToCrouch 12 T & S - -

ProneToKneel - - 6 T & S

RollOver 11 T & S - -

CrouchToStand C N/A C N/A

Kip 9 T & S N/A N/A

StandToSit 3 T 3 T & S

SitToCrouch 1 T & S 1 T & S

StandToAllFour C N/A - -

DStanceToCrouch - - 6 T & S

Slow Steps (Walk) - - 6 T & S

Fig. 5. Number of poses and pose transition types.

mass are denoted as c and _c respectively. As mentioned earlier, the support polygon
of a figure is denoted as S.

4.1 Default controller

The default controller is activated when no other controller requests control of the
character. Its goal is to perform a sensible action in any given situation. In the ab-
sence of a better understanding of the situation, the most sensible thing to do is
to keep the character in a comfortable position. We currently distinguish between
two different situations, standing in place and lying on the ground. In the first case,
the controller attempts to maintain the character’s upright stance using moderate
force while keeping the arms loose. If the character is leaning by more than a given
threshold slant, then it is considered to be in a lying position, in which case the
controller makes the character assume a relaxed pose. Thus far, these two strate-
gies have worked well, in the sense that they bring the character smoothly into
a perceived comfortable position. The default controller faces the difficult task of
encompassing all situations for which we have not yet designed appropriate con-
trollers. It therefore represents only a starting point for future improvements.

4.2 Everyday actions

A skillful, anthropomorphic character should be able to perform autonomously all
the motor tasks that humans are able to do. However, even very common tasks such
as walking require the sophisticated control of body dynamics. As stated earlier, we
focus on a subset of everyday motions, starting with the most simple one—standing

10



in place. In the event of a loss of balance, the character should react naturally, either
with a restorative leg motion or with a protective falling behavior, as is appropriate
in the specific circumstance. Affording a dynamic articulated figure natural reac-
tions to a loss of balance or an impending fall, plus the ability rise up subsequent
to a fall, is an essential step towards believable, autonomous characters.

4.2.1 Balancing

Balancing in a quiescent, upright stance is a complex biomechanical control phe-
nomenon that depends on different factors, such as the distance between the feet,
and the presence of (or lack of) visual feedback, Day [6]. A considerable body of
research aims to understand the sensory information (van der Kooij [29]), and reflex
responses that humans use to maintain quiet stance (Fitzpatrick [11]). The strategies
that people employ as a response to disturbances during quiet stance are generally
divided into hip strategies and ankle strategies depending on whether the hips or the
ankles are the dominant regulators of the postural stability. Gatev [12] provides a
comprehensive analysis of balance strategies during quiet stance focusing on ankle
control. Most researchers in biomechanics seem to agree that ankle strategies are
more likely to occur in response to small disturbances, while hip strategies occur in
response to larger disturbances.

Our balance controller is responsible for maintaining a natural standing posture. It
is based on an inverted pendulum model that uses the ankles to regulate the body
sway [11]. Despite the fact that the body of the character is not as rigid as the in-
verted pendulum hypothesis suggests, the approximation works well in practice.
Our balance controller uses an ankle angle of 0.06 radians as the equilibrium posi-
tion.

For this controller, the articulated body must be in a balanced upright position, the
velocity and acceleration of the center of mass should not exceed certain threshold
values as explained by Pai [20], and both feet must maintain contact with the ground
at all times. The controller can tolerate small perturbations of the posture and the
velocity/acceleration of the center of mass by stiffening the ankle joints. For larger
accelerations of the center of mass, the controller actively actuates the ankle joint
to reduce the acceleration of the center of mass. The post-conditions are similar to
the pre-conditions. In mathematical form:

P :
Velocity: j _cj < 0:3 m=sec.
Balance: projection(c) 2 S .

Posture: (upright) (1=n)
P

i

q
(qi � q0;i)2 < 0:1 rad,

where i = (thigh; knee;waist), q0 = 0,
and n is a normalization parameter.

Contact: feet on ground.
O :

11



Fig. 6. Falling in different directions

Velocity: j _cj < 0:05 m=sec.
Balance: projection(c) 2 S .

Posture: (upright) (1=n)
P

i

q
(qi � q0;i)2 < 0:1 rad,

where i = (thigh; knee;waist), q0 = 0,
and n is a normalization parameter.

Contact: feet on ground.

The expected performance E is identical to the the pre-conditions. We enhance the
behavior of our balance controller in a simple fashion by kinematically simulating
the character’s visual attention. In particular, we apply Perlin noise, Perlin [23],
to the degrees of freedom of the neck that makes the character look around in its
environment.

Because of the relatively simple task that this controller has to accomplish and the
inherent stability of the simple ankle strategy that we employ, the balance controller
can be used successfully on slightly different terrains and characters. Nevertheless,
the controller could be enhanced to employ more complex strategies, especially
as responses to larger external disturbances. For example, an animated character
should attempt to maintain balance by shifting its weight, or bending at the waist.
If the character cannot maintain balance, it must then resort to taking a step or even
initiating a fall behavior.

4.2.2 Falling

The manner in which people fall depends upon a number of factors, such as their
physique, their age, and their training. Involuntary falling reactions are very com-
mon in everyday life, especially among young children and the elderly. They are
probably the most common reason behind fracture injuries among the elderly. Hsiao

12



and Robinovitch [16] show that, during a fall, the elderly are more likely to impact
their hip first as compared to younger adults falling under the same conditions.
Our fall controller is designed with the average adult in mind. Its main action is to
absorb the shock of the impact using mostly the hands.

Wu [32] provides a way to distinguish falls from normal activities based solely
on velocity characteristics. The pre-conditions of our fall controller define a larger
acceptable region in velocity space than the one specified by Wu because they are
defined in accordance with those of the balance controller. All situations that are
beyond the capabilities of the latter should be handled by the fall controller:

P :
Vertical Velocity: _cv < 0:3 m=sec.
Balance: projection(c) 62 S .
Contact: hip not on ground, hands not on ground.

E :
If falling forward, face down vfy < 0:1.
If falling backward, face up vfy > �0:1.
Contact with the ground in 3 seconds.

O:
Either

Velocity: j _cj < 0:3 m=sec.
or

head on ground.

The pre-conditions ensure that if the character is not balanced, then the fall con-
troller bids to take over. The fall controller succeeds when the velocity and accel-
eration of the character are brought close to zero or when the head touches the
ground. The expected performance ensures that the character keeps on falling in
the same direction. In addition, it requires (a) that the character’s facing direction
does not reverse, something which might happen when falling from a great height,
and (b) that the character touches the ground within 3 seconds in order to ensure
that the fall was from a short height.

Our implementation of the fall controller computes the direction of the fall and re-
sponds accordingly. It can therefore handle a variety of pushes. Fig. 6 shows snap-
shots of falls in different directions. The second frame in Fig. 1 also demonstrates
the action of the fall controller within a fall-and-recover sequence. The controller
is relatively robust and it can be used on different characters and ground models.

4.2.3 Stand-to-sit and sit-to-crouch

Sitting down on a chair and rising up from a chair are common actions. We have
implemented one controller that makes the character sit, starting from an upright
stance, and another controller that prepares the character for the reverse action by

13



(a) Stand to sit controller.

(b) Sit to crouch controller.

Fig. 7. Sitting and rising from a chair.

making it lean forward until he is in a crouch position. 3 The resulting actions are
illustrated in Fig. 7. The pre-conditions, post-conditions and expected performance
of each controller are relatively simple:

Stand to sit controller:
P :

Velocity: j _cj < 0:1 m=sec.

Posture: (upright) (1=n)
P

i

q
(qi � q0;i)2 < 0:1 rad,

where i = (thigh; knee;waist), q0 = 0,
and n is a normalization parameter.

Balance: projection(c) 2 S .
Contact: hip not on ground, hands not on ground.

E :
Up vector: vuy > 0:7:

Requires that the character does not lean sideways, jvuz j < 0:05.
O:

Up vector:vuy > 0:7.
Velocity: j _cj < 0:1 m=sec.
Requires that the character does not lean sideways, jvuz j < 0:05.

Sit to crouch controller:

3 We use the term crouch to refer to any balanced posture of the character for which the
legs of the character are symmetrically positioned.

14



P :
Up vector: vuy > 0:7.
Velocity: j _cj < 0:1 m=sec.
Posture: sitting: (1=n)

P
i jq[i]� q0j < 0:5 rad,

where i = (thigh; knee;waist),
q0 = [�1:5 1:5 0:0],
and n is a normalization parameter.

Balance: projection(c) 62 S .
Contact: hip not on ground, hands not on ground.

E :
Up vector: vuy > 0:7.
The character does not lean sideways, jvuz j < 0:05.
Time of completion less than 4 seconds.

O:
Up vector: vuy > 0:7.
The character does not lean sideways, jvuz j < 0:05.
Balance: projection(c) 2 Ss.

Here, Ss is subset of S, shorter along the front-to-back axis, so as to ensure a
more balanced final posture. If the controller does not succeed in four seconds,
then something is assumed to be wrong and the controller aborts. We have tested
these controllers with chairs of height 40 cm.

4.2.4 Rising from a supine position

Rising off the ground is a surprisingly difficult motion to simulate. It involves rapid
changes of the contact points and significant shifting of the character’s weight. In
addition, the frictional properties of the ground model greatly influence the motion.

For the three dimensional model the pre-conditions require that the character be
lying with his back flat on the ground, within some tolerance. The post-conditions
require that the character be balanced on its feet, with the feet side by side, but not
necessarily straightened up. The expected performance makes sure that the charac-
ter does not fall sideways and that it completes its task within 20 seconds.

P :
Facing vector: vfy > 0:97

Velocity: j _cj < 0:005 m=sec.
Contact: hip on ground.
The character does not lean sideways, jvuz j < 0:05.

E :
The character does not lean sideways, jvuz j < 0:05.
Facing vector: vfy > �0:2:

Up vector: vuy < 0:99 if the hip is not on the ground.
O:

Balance: projection(c) 2 S .

15



Fig. 8. Rising from a supine position on the ground and balancing erect in gravity.

Contact: hip not on ground.

A snapshot of a resulting motion is shown in Fig. 8. This controller is very sensitive
to the character and the ground’s friction model, which has a cofficient of friction
of 0.6.

For the two dimensional model, the pre-conditions are the same as for the three
dimensional case. However, the expected performance and the post-conditions re-
quire that the character ends up in a kneeling position within an appropriate time
period:

P :
Facing vector: vfy > 0:97.
Velocity: j _cj < 0:005 m=sec.
Contact: hip on ground.

E :
First phase:

Facing vector: vfy > �0:2:

Up vector: vuy < 0:99:

Second phase (kneel):
Up vector: vuy > 0:7:

Hip not on ground.

Posture: kneeling: (1=n)
P

i

q
(qi � q0;i)2 < 0:8 rad,

where i = (thigh; knee), q0 = [�1:43 2:92g,
and n is a normalization parameter.

O:
Up vector: vuy > 0:7:

Contact: hip not on ground.

Posture: kneeling: (1=n)
P

i

q
(qi � q0;i)2 < 0:8 rad,

where i = (thigh; knee), q0 = [�1:43 2:92g,

16



and n is a normalization parameter.
Velocity: _c < 0:1 m=sec.

The resulting motion is depicted in frames 12–16 in Fig. 15. The controller works
for grounds with coefficient of friction equal or greater than 0.55.

4.2.5 Rolling over

When lying on their back, some people may choose to roll-over to a prone posi-
tion before attempting to stand. We have implemented a roll-over controller that
can emulate this action. The fourth frame in Fig. 1 demonstrates the action of the
roll-over controller. The pre-conditions of the roll-over controller require that the
character be in a supine position and that the center of mass not have noticable
motion. The post-conditions of the roll controller are fairly simple; they include
any prone position for which the character is extended and fairly straight; i.e., no
crossing of legs or arms, etc. The expected performance is simple and makes sure
that the character is facing down during the second part of the motion, where it is
expected to do so. The controller has a limited time period to complete its task.

P :
Facing vector: vfy > 0:5:

Up vector: vuy < 0:3:

Velocity: j _cj < 0:005 m=sec.
Contact: hip on ground.

E :
Up vector: vuy < 0:5:

Velocity: j _cj < 5:0 m=sec.
First phase:

Facing vector: vfy > 0:0:

Second phase:
Facing vector: vfy < 0:0:

O:
Facing vector: vfy < �0:5:

Velocity: j _cj < 0:1 m=sec.

The controller has been tested successfully for a few different starting states. One
of its limitations is the lack of synergy between different body parts. For example,
when the right arm moves away from the characters ribs, the hip is not moved in
a fashion that can facilitate the arm’s motion. Therefore the arm actuators have to
use more energy to effect the desired motion.

4.2.6 Rising from a prone position

Frames 5–9 in Fig. 1 demonstrate the action of a controller that enables our three
dimensional model to rise from the prone position. The pre-conditions require that

17



the character be lying face down but not on its arms. The post-conditions require
that the character end up in a crouching position.

P :
Facing vector: vfy < �0:3

Up vector: vuy < 0:5:

Velocity: j _cj < 0:005 m=sec.
E :

Facing vector: vfy < 0:5:

Up vector: vuy < 0:99:

Velocity: j _cj < 5:0 m=sec.
Time of completion less than 15 secs.

O:
Balance: projection(c) 2 S .
Up vector: vuy > 0:7:

The pre-conditions are similar for the two dimensional character. However, the ex-
pected performance and the post-conditions are different, since the goal in this case
is for the character to reach a kneeling state.

P :
Facing vector: vfy < 0:

Up vector: vuy < 0:5:

Velocity: j _cj < 0:05 m=sec.
Contact: hip on ground.

E :
First phase:

Facing vector: vfy < 0:0:

Contact: hands on ground or hip on ground.
Second phase:

Up vector: vuy > 0:7:

Contact: knee on ground and hip not on ground.
Third phase:

Contact: Knees on ground and hip not on ground.

Posture: kneeling: (1=n)
P

i

q
(qi � q0;i)2 < 0:8 rad,

where i = (thigh; knee), q0 = [�1:43 2:92g,
and n is a normalization parameter.

Facing vector: vfy > 0:0:

Up vector: vuy > 0:0

O:
Facing vector: vfy > 0:0:

Up vector: vuy > 0:0

Contact: Knees on ground and hip not on ground.

Posture:kneeling: (1=n)
P

i

q
(qi � q0;i)2 < 0:8 rad,

where i = (thigh; knee), q0 = [�1:43 2:92g,
and n is a normalization parameter.

Velocity: j _cj < 0:05 m=sec.

18



Fig. 9. Prone to kneel controller.

The motion produced by this 2D controller is shown in Fig. 9. The controller is not
very sensitive to friction and has been tested with a friction coefficient in the range
of [0:4; 0:6]. Both controllers must reach their post-conditions within a limited time
interval, otherwise they fail.

4.2.7 Kneel-to-crouch

Currently, this controller has been implemented only for the 2D model. It is a
pose controller that takes the character from kneeling position, such as the one
produced by the previous controller, to a crouching position. The pre-conditions,
post-conditions and expected performance are as follows:

P :
Facing vector: vfy > �0:5

Velocity: j _cj < 0:5 m=sec.
Contact: feet and knees on ground.

Posture: kneeling: (1=n)
P

i

q
(qi � q0;i)2 < 0:5 rad,

where i = (thigh; knee), q0 = [�1:43 2:92],
and n is a normalization parameter.

E :
Velocity: j _cj < 5:0 m=sec.
First phase:

Facing vector: vfy > �0:5:

Contact: foot on ground, hip not on ground.
Second phase:

Up vector: vuy > 0:5:

Contact: feet on ground and hip not on ground.
O:

Velocity: j _cj < 0:1 m=sec.
Balance: projection(c) 2 S .

A limitation of this controller is that any rising motion before the center of mass
is placed above the front foot, relies too much on the help of the back leg. A more
natural approach would be to first shift the center of mass above the front foot and
then have the character rise. This limitation makes the control very sensitive to the
ground model.

19



Fig. 10. Taking a step.

4.2.8 Step

This is a simple controller designed for the three dimensional model that makes it
perform a single step. The final stage of the controller brings both feet together to
achieve a standing position. The motion is depicted in Fig. 10. The pre-conditions
require the character to be in an upright stance, while the expected performance
makes sure that the character remains upright during the operation of the controller.
The post-conditions require that the character is upright as the controller completes
its operation.

P :
Up vector: vuy > 0:9:

Velocity: j _cj < 0:005 m=sec.
Contact: hip not on ground.
Balance: projection(c) 2 S .

E :
Up vector: vuy > 0:9:

Velocity: j _clatj < 1:0 m=sec,
j _csagj < 0:08 m=sec.

O:
Velocity: j _cj < 0:005 m=sec.
Balance: projection(c) 2 S .

Here, _clat and _csag are the lateral and sagittal velocity of the center of mass, respec-
tively. The controller is very sensitive to the ground model and the character model
and it has been tested only for a very narrow region of initial states.

4.2.9 Protective step

Human subjects whose balance is disturbed quiet stance exhibit a variety of behav-
iors in their attempt to maintain balance. The sort of behavior they exhibit depends
on their physical conditioning, personal preferences and the magnitude and dura-
tion of the disturbance. Pai and Patton [20] have studied under what circumstances a
subject can maintain balance without stepping. Do et al. [7] have studied the biome-
chanical responses of human subjects to induced forward falls. They conclude that
an induced forward fall starts with an invariable preparation process which is fol-
lowed by an adaptable recovery one.

20



Our controller for the three dimensional case is currently designed to produce the
visual effect. It is not sophisticated enough to actually maintain balance. However,
it is designed to take a step in the proper direction. Its pre-conditions are com-
plimentary to the pre-conditions of the balance controller. At the same time they
ensure the controller does not attempt to handle situations that are not appropriate.
The expected performance ensures that the controller realizes its failure early so
that a fall controller can take over. The post-conditions require that the character
reaches a balanced upright stance.

P :
Facing vector: vfy > �0:6:

Up vector: vuy > 0:7:

Velocity: j _cj < 1:0 m=sec.
Contact: hip and hands not on ground.

E :
Contact: hip and hands not on ground.
Up vector: vuy > 0:7:

Facing vector: vfy > �0:6:

O:
Velocity: j _cj < 0:05 m=sec.
Balance: projection(c) 2 S .
Contact: hip and hands not on ground.

The three dimensional version of this controller is fairly robust in the sense that,
despite its failure to regain the balance of the character, it produces a satisfactory
visual effect for a variety of situations, ground parameters, and human models. The
motion produced can be seen in Fig. 6.

The two dimensional version of the controller is similar. However, because the
character cannot fall to the side, the controller works successfully for a wide range
of disturbances. The response of the controller, i.e. the length of the step that the
character takes, is parameterized with respect to the velocity of the center of mass at
the time that the controller takes over. When the character is pushed backwards, the
final phase of the controller makes the character’s torso lean forward to facilitate
a potential transition to another controller. The composable interface of the two
dimensional controller is as follows:

P :
Up vector: vuy > 0:7:

Velocity: j _cj < 1:0 m=sec.
Contact: hip and hands not on ground.

Posture: (standing up) (1=n)
P

i

q
(qi � q0;i)2 < 1:0 rad,

where i = (thigh;waist), q0 = 0,
and n is a normalization parameter.

E :
Facing vector: if falling forward vfy < 0:1;

if falling backward vfy > �0:3:

21



Contact: hip and hands not on ground.
Up vector: vuy > 0:7:

O:
Velocity: j _cj < 0:05 m=sec.
Balance: projection(c) 2 S .
Contact: hip and hands not on ground,

feet on ground.
Posture: (trunk leaning forward) vuy � v

f
y < 0.

The motion produced by this controller can be seen in the last part of Fig. 15.
The protective-step controller has a higher priority than the fall controller, which
ensures that, when appropriate, the character will first attempt to maintain balance
by stepping and then resort to a fall behavior.

4.2.10 Crouch-to-stand

The crouch-to-stand controller achieves an upright stance starting at a variety of
crouching states for both the three dimensional and the two dimensional case. The
two dimensional case is more robust than the three dimensional one. However, both
can fail even for states than can be considered as being “between” states that the
controllers can handle successfully. The pre-conditions of both controllers ensure
that the character is not already straight and that there is little movement. The com-
posable interface is as follows:

P :
Facing vector: vuy > �0:6:

Up vector: vuy > 0:7:

Velocity: j _cj < 1:0 m=sec.
Contact: hip and hands not on ground,

feet on ground.

Posture: (not too straightened) (1=n)
P

i

q
(qi � q0;i)2 > 0:3 rad,

where i = (waist; thigh; knee),
q0 = 0.
and n is a normalization parameter.

Balance: projection(c) 2 S .
E :

Contact: hip and hands not on ground,
feet on ground.

Up vector: vuy > 0:7:

Balance: projection(c) 2 S .

Posture: (not too straightened) (1=n)
P

i

q
(qi � q0;i)2 > 0:03 rad,

where i = (waist; thigh; knee),
q0 = 0.
and n is a normalization parameter.

O:
Velocity: j _cj < 0:1 m=sec.

22



Fig. 11. Double stance to crouch.

Balance: projection(c) 2 S .
Contact: hip and hands not on ground,

feet on ground.

Posture: (straightened) (1=n)
P

i

q
(qi � q0;i)2 � 0:3 rad,

where i = (waist; thigh; knee),
q0 = 0.
and n is a normalization parameter.

The resulting motions can be seen in frames 8–12 in Fig. 12 and Fig. 15.

4.2.11 Double-stance-to-crouch

This controller has been implemented for the two dimensional robot model only. It
takes the character from a double stance to a symmetric one (crouch). The resulting
motion can be seen in Fig. 11. The main function of this controller is to place the
center of mass above the front foot and then bring the back leg to a symmetric
position. The controller is fairly robust and it has performed successfully for a
variety of starting states. The composable interface is as follows:

P :
Facing vector: vfy > �0:7:

Up vector: vuy > 0:7:

Velocity: j _cj < 1:0 m=sec.
Contact: hip and hands not on ground,

feet on ground.
Posture: leg asymmetry: jqi � qjj > 0:2 rad,

where i = left thigh and j = right thigh.
Balance: projection(c) 2 S .

E :
Contact: hip and hands not on ground,

one foot at least on ground.
Up vector: vuy > 0:7:

Balance: projection(c) 2 S .
Posture: leg asymmetry: jqi � qjj > 0:1 rad,

where i = left thigh and j = right thigh.
O:

23



Velocity: j _cj < 0:1 m=sec.
Balance: projection(c) 2 S .
Contact: hip and hands not on ground,

both feet on ground.
Posture: leg symmetry: jqi � qjj � 0:1 rad,

where i = left thigh and j = right thigh.
Up vector: vuy > 0:7:

4.2.12 Walk

Walking is an essential motion for a skillful simulated agent. Unfortunately it is
also a difficult motion to simulate in a robust fashion. Despite the large amount of
research on dynamic walking, there are no solutions that are sufficiently general
with respect to different models and terrains.

Our controller for two dimensional walking implements a slow walking gait over
flat terrain. The idea behind this controller is to use the swing leg to bring the center
of mass above the pivot leg and then swing while the center of mass is statically
balanced. When the swing leg is in front of the body then the controllers throws
the character on the swing leg (now the front leg) using the ankle of the back leg.
Frames from an associated animation can be seen in Fig. 15. The user can specify
how many steps the character must take. The controller maintains a step counter
and when the required number of steps is reached, it signals success, leaving the
character in a double stance position (feet spread). The composable interface is as
follows:

P :
Facing vector: vfy > �0:5:

Up vector: vuy > 0:9:

Velocity: j _cj < 0:5 m=sec.
Contact: hip and hands not on ground,

feet on ground.

Posture: upright: (1=n)
P

i

q
(qi � q0;i)2 < 0:1 rad,

where i = (thigh;waist; knee)
and n is a normalization parameter.

Balance: projection(c) 2 S .
E :

Velocity: j _cj < 1:0 m=sec.
Contact: hip and hands not on ground,

one foot at least on ground.
Up vector: vuy > 0:7:

Balance: projection(c) 2 S .
O:

Velocity: j _cj < 0:1 m=sec.
Balance: projection(c) 2 S .
Contact: hip and hands not on ground,

24



Fig. 12. The kip stunt performed by a real and a virtual human.

both feet on ground.
Up vector: vuy > 0:7:

Required number of steps reached.

The controller is robust with respect to a narrow region of initial upright stance
configurations and it can tolerate small changes in the ground friction coefficient.

4.3 Stunts

In addition to everyday actions, our dynamic character should be able to perform a
variety of interesting voluntary actions dictated by the animator. Such actions can
potentially include physically dangerous stunts.

4.3.1 The kip stunt

The kip stunt, shown in Fig. 12, is an athletic motion often seen in martial arts
films. It provides a very quick and energetic way to get up from a supine position.
Variations of the kip are used extensively in gymnastics, Bergemann [4]. The ba-
sic mechanics of the motion are not very complex but the timing is crucial. The
main idea behind the kip is to get the body airborne and at the same time pro-
vide enough rotational momentum which will allow the feet to be placed under the
center of the mass. We determined the mechanics of the kip by observing human

25



subjects, as shown in Fig. 12. The maximum height of the center of mass during a
kip varies between subjects. Subjects with a gymnastics background tend to have
a smoother and more gracious motion such as the one performed by the human
subject in Fig. 12. Subjects with a martial arts training tend to perform a sharper
motion with less height and a landing posture closer to the crouch posture of the
simulated character.

The kip controller is based on a pose controller whose pre-conditions include a
variation of supine positions. The first pose of the controller makes sure that the
character assumes a position suitable for performing the kip. This include straight-
ening the legs and arms. The larger part of the motion is ballistic, which focuses
the control mainly at the kick off and landing phases. The last part of the controller
applies continuous control to bring the stuntman to an erect position from which the
balance controller can take over. Alternatively, the kip controller could finish with
the character in a crouched position and let another controller perform the crouch-
to-stand action, such as the crouch-to-stand controller presented in Section 4.2.10.
The specifications below correspond to a kip controller that leads to a crouching
position. The expected performance of this controller is relatively simple because
the motion is fast and largely ballistic.

P :
Velocity: j _cj < 0:005 m=sec.
Face up: vfy > 0:97.

Posture: lying on back: (1=n)
P

i

q
(qi � q0;i)2 < 1:5 rad,

where i = (thigh; knee;waist), q0 = 0

and n is a normalization parameter.
Contact: hip on the ground.

E :
Horizontal Velocity: j_chj < 1:0 m=sec.
Requires that the character doesn’t lean sideways, jvuz j < 0:05.

O :
Up vector: vuy > 0:7.
Velocity: j _cj < 0:1 m=sec.
Balance: projection(c) 2 S .
Contact: feet on the ground, hip not on the ground.

Our kip controller is very sensitive to the ground model. Implementing a more
robust version of the controller would be an interesting short project. The rigid
back of our articulated model, was a limitation during the development of the kip
controller. The kip requires the character to roll on its back, and a flat back makes
this difficult. Our controller expends more energy than one would expect while
performing the initial rolling back motion.

26



4.3.2 Plunging and rolling

Plunging down stairs or slopes is not a task that any human subject would like to
perform for the purposes of motion capture. Such dangerous stunts are better left
to simulated characters. Fig. 13 shows the virtual stuntman performing a suicidal
dive down stairs. The character can be instructed to lunge forward and upward at
an angle specified by the user. When the hands contact the ground or 2 seconds
after the last pose becomes active, the controller assumes success. This allows an-
other controller to take over, and handle the impact with the ground, for example a
gymnastic controller that can absorb the shock in a specific fashion. If such a con-
troller does not exist then the default controller takes over and the character rolls
over his head. The plunge controller bids for control of the character only when
dictated by the user. For this reason and because the duration of the action is short,
the pre-conditions, post-conditions and expected performance of this controller are
relatively simple. The expected performance ensures that the character falls with
gravitational acceleration until its hands touch the ground.

P :
Velocity: j _cj < 0:01 m=sec:
Face up: �0:5 < vfy < 0:1.
Contact: feet on ground, hip not on ground, hands not on ground.
Balance: projection(c) 2 S .

E :
Before take off:

Leaning forward less than the user specified angle.
After take off:

Acceleration: �cv < �9:8 m=sec2:
Contact with the ground in 2 seconds.

O :
Contact: hands on ground.

Actions such as plunge and roll are well suited for a physics-based solution. The
ballistic part of the motion and the collisions with the ground are solved automati-
cally by simulating the effects of gravity and the collision forces. Although skilled
animators are able to design accurate kinematic solutions for such motions, it re-
quires considerable effort to produce kinematically the illusion of mass and the
transfer of momentum. In addition, kinematic solutions must be manually adjusted
to novel terrains. In contrast, physics-based controllers can likely be re-used for
similar terrains. Fig. 13 and Fig. 14 show the same plunge and roll controller oper-
ating on two different terrains.

5 Animation results

We now present two sequences of autonomous and user-instructed actions that our
virtual stuntmen are able to perform. The increased simulation efficiency of the 2D-

27



Fig. 13. Ouch!

Fig. 14. Plunge and roll on a different terrain.

motion robot model permits a more productive controller design phase. In addition,
the two dimensional case is more robust than the three dimensional one and it de-
pends less on the specific character and ground model. However, the sequence we
are able to achieve for the full scale three dimensional skeleton model shows that
our method can be used successfully for both cases. Inevitably, robust controllers
for complex motions will be developed by ourselves or by others. Our system can
integrate these controllers as they become available and produce a powerful com-
posite controller.

5.1 Robot sequence

The reduced dimensionality of the robot model allowed us to develop a relatively
large number of controllers. The sequence shown in Fig. 15 involves 13 controllers:
balance, prone-to-kneel, supine-to-kneel, kneel-to-crouch, crouch-to-stand, stand-
to-sit, sit-to-crouch, protective-step, fall, walk, plunge-and-roll, double stance-to-
crouch, and the default controller. The plunge-and-roll, stand-to-sit, sit-to-crouch
and walk controllers bid for control of the character only under the direction of the
user. The remaining controllers act autonomously.

28



Fig. 15. The robot sequence (images in raster order).

The simulation begins with the robot balancing in place. The user instructs the robot
to sit down. The change of the desired goal from “null” to “sit” forces the supervi-
sor controller to invoke the controller selection process. The pre-conditions of the
plunge-and-roll, balance and stand-to-sit match the current state of the character.
However, the plunge-and-roll controller bids for control only when its goal matches
the user specified one. The balance controller bids for control with priority less than
10, since its goal is not “sit”. The stand-to-sit controller bids with priority higher
than 10, and it therefore becomes the active controller. The robot sits on the toilet
and it will stay there under the control of the stand-to-sit controller, unless some-
thing happens that either changes the state of the character or the desired goal. Soon
enough, the user instructs the robot to “lean” which is the goal of the sit-to-crouch

29



controller. As soon as the robot is in a balanced crouch position the sit-to-crouch
controller succeeds and the supervisor controller invokes a controller selection pro-
cess again. The crouch-to-stand is the only controller that bids for control, and after
it becomes active it takes the character to a stand position and succeeds. A new se-
lection process allows the balance controller to take over. Then the user instructs
the robot to “walk 5” which results in activation of the walk controller. The walk
controller completes the five steps, bringing the character to a balanced, double
stance position at the top of the stairs. The double stance-to-crouch controller takes
over and brings the character to a crouch position, which allows the crouch-to-
stand controller to become active followed by the balance controller. Then the user
requests a “dive”, which is performed by the plunge-and-roll controller. After the
robot rolls over, the default controller takes over until the robot comes to rest. As
soon as the velocity of the center mass is neglible, the supine-to-prone controller
becomes active and brings the character to a kneeling position. Then the kneel-to-
crouch controller takes over, followed by the crouch-to-stand and then the balance
controller. The user throws a ball at the head of the robot, which throws the robot off
balance and results in the activation of the protective-step controller, which takes
a backward step. The step brings the character to a double stance position, which
satisfies the pre-conditions of the double stance-to-crouch controller, which then
becomes active and makes the robot assume a crouching position. As before, the
crouch-to-stand controller followed by the balancing controller bring the robot to
a quiet stance. This time the user throws the ball at the back of the robot’s head,
which results in a forward protective-step behavior, followed by the crouch-to-stand
and, finally, the balance controller. The two protective-step behaviors show that the
protective-step, crouch-to-stand and balance controllers are fairly robust. Finally,
the user throws the ball with excessive force at the front of the robot’s head. The
impact induces a large acceleration to the center of mass of the character, which
exceeds the pre-conditions of the protective-step controller. The robot reacts imme-
diately with a fall behavior that attempts to use the arms to absorb the impact.

This sequence has been created interactively at about 6 frames per second. Unlike
the simulation code which is highly optimized, the control code has not yet been
profiled. We expect that profiling of the code will lead to improved efficiency. In
addition, employing a semi-implicit method for the integration of the state instead
of the current fourth order Runge-Kutta method might further improve the frame
rate of the simulation.

5.2 Skeleton sequence

The three dimensional sequence shown in Fig. 1 is created interactively. The skele-
ton is equipped with the following controllers: balance, fall, roll-over, prone-crouch,
crouch-to-stand and the default controller. All controllers are autonomous in this
case; as the skeleton goes though different configurations, it automatically reacts

30



Fig. 16. Two interacting virtual characters.

to the current situation activating the most appropriate controller among those that
are available. First, the user pushes the character backwards. The composite con-
troller activates a fall behavior that tries to absorb the shock. With the character in a
supine configuration, the roll-over controller brings the skeleton to a prone position
which makes it possible for the prone-to-crouch controller to take over. When the
character reaches a crouching posture, the prone-to-crouch controller succeeds and
the crouch-to-stand controller brings the character to an upright position, which
allows the balance controller to take over again. This sequence is less robust than
the 2D counterpart. The prone-to-crouch and the crouch-to-stand controllers are
particularly sensitive to the ground model.

An earlier version of this sequence uses a different version of the crouch-to-stand
controller which cannot achieve a proper crouching position. It simply uses the
left leg of the character to kick up, which resulted in a forward dive that made
the character switch to a fall behavior. What was of interest was the ability of the
character to fall, roll-over and return to the same kicking position over and over
again, as if determined to get up, demonstrating that the roll-over controller is fairly
robust. The simulation runs at approximately 2 frames per second.

5.3 Multiple characters

Our framework and associated animation system support multiple characters. Each
character can have a unique composable controller scheme or share one with other
characters. Fig. 16 shows an example of two interacting three dimensional charac-
ters. Currently the motion of each character is computed by a separate simulator.
The simulations are performed in a layered fashion. Layered simulation has syn-
chronization problems, Baraff [3], but it works sufficiently well for cases where

31



accuracy is not critical.

The robot standing on the platform, Fig. 16, is instructed to dive while the skeleton
takes a step and balances in place. The timing of the tackle is scripted; the robot is
not aware of the presence of the skeleton, it simply collides with the skeleton. The
sequence of controllers for the respective characters is as follows:

Skeleton: Balance ! Step ! Balance ! Protective Step ! Fall ! Default
Robot: Balance ! Plunge ! Default

Given the specialist controllers and the framework to put them together, construct-
ing the tackle example was a simple matter of scripting the scene. The complete
script that we used to produce this example is given in [8].

Our collision actuator considers the complete geometric models of each charac-
ter. Each of these models has more than sixteen thousand triangles. When the two
models collide the simulation becomes very slow, approximately 0.1 frames per
second.

6 Conclusion

The challenges of physics-based controller design and the technical obstacles that
researchers face when attempting to share their algorithms has hindered progress in
the important area of physics-based character animation. This paper has presented a
prototype virtual stuntman that has been developed based on a controller composi-
tion framework that we have previously introduced. Our stuntman can be instructed
to perform interesting motor tasks and at the same time it can react autonomously
to situations that arise. To our knowledge, our stuntman is the first to demonstrate
a dynamic anthropomorphic character with controlled reactions to disturbances or
falls in any direction, as well as the ability to pick itself up off the ground in sev-
eral ways, among performing other controlled motions. We hope that our system
will foster collective efforts among numerous practitioners that will eventually re-
sult in complex composite controllers capable of synthesizing a full spectrum of
human-like motor behaviors.

Given the enormous challenge of building controllers capable of large repertoires
of dynamic human-like activities, it is inevitable that the work presented in this
paper is incomplete in many ways. Published control methods for 3D walking, run-
ning, and stair climbing make obvious candidates for integration into our system.
Coping with variable terrain and dynamic environments are dimensions of added
complexity that should provide work for years to come. Automatic parameteriza-
tion of controllers to variations in character dimensions and mass is a necessary step

32



for having solutions adaptable to a variety of characters. Deriving controllers from
motion-capture data is an exciting but difficult prospect, although some progress is
already being made in this area. Other methods of “teaching” skills to a dynamic
character also warrant investigation. Finally, two beckoning problems are the high-
level planning of motor actions and the intelligent integration of controllers which
affect only subsets of a character’s degrees of freedom and can therefore execute in
parallel.

Acknowledgements

We wish to thank Joe Laszlo, Victor Ng-Thow-Hing, Michael Neff and Glenn
Tsang for useful discussions and suggestions and J. A. Murphy for providing the
robot model. This research was supported by grants from the Natural Sciences and
Engineering Research Council of Canada and from Communications and Informa-
tion Technology Ontario.

References

[1] N. Badler, C. Phillips, and B. Webber. Simulating Humans: Computer Graphics,
Animation, and Control. Oxford University Press, 1993.

[2] N. I. Badler, B. Barsky, and D. Zeltzer. Making Them Move. Morgan Kaufmann
Publishers Inc., 1991.

[3] David Baraff and Andrew Witkin. Partitioned dynamics. Technical report, Carnegie
Mellon University, 1997.

[4] B.W. Bergemann and H.C. Sorenson. Dynamic analysis of the kip on the high bar.
In J. Terauds and D.B. (Hrsg.) Daniels, editors, Science in Gymnastics, pages 44–54.
Academic Publishers, Del Mar, California, 1979.

[5] Tolga Capin, Igor Pandzic, Nadia Magnenat Thalmann, and Daniel Thalmann. Avatars
in Networked Virtual Environments. John Wiley & Sons, 1999.

[6] B. L. Day, M. J. Steiger, P. D Thompson, and C. D. Marsden. Effect of vision and
stand width on human body motion when standing: Implications for afferent control
of lateral sway. Journal of Physiology, 469:479–499, 1993.

[7] M. C. Do, Y. Breniere, and P. Brenguier. A biomechanical study of balance recovery
during the fall forward. Journal of Biomechanics, 15(12):933–939, 1982.

[8] Petros Faloutsos. Composable Controllers for Physics-based Character Animation.
PhD thesis, Univeristy of Toronto, Department of Computer Science, Toronto, Canada,
2001.

33



[9] Petros Faloutsos, Michiel van de Panne, and Demetri Terzopoulos. Dynamic free-
form deformations for animation synthesis. IEEE Transactions on Visualization and
Computer Graphics, 3(3):201–214, 1997.

[10] Petros Faloutsos, Michiel van de Panne, and Demetri Terzopoulos. Composable
controllers for physics-based character animation. In Proceedings of SIGGRAPH
2001, Computer Graphics Proceedings, Annual Conference Series, pages 251–260,
2001.

[11] R. C Fitzpatrick, J. L. Taylor, and D. I. McCloskey. Ankle stiffness of standing humans
in response to imperceptible perturbation: Reflex and task-dependent components.
Journal of Physiology, 454:533–547, 1992.

[12] Plamen Gatev, Sherry Thomas, Thomas Kepple, and Mark Hallet. Feedforward ankle
strategy of balance during quiet stance in adults. Journal of Physiology, 514(3):915–
928, 1999.

[13] Stefan Gottschalk, Ming Lin, and Dinesh Manocha. OBB-Tree: A hierarchical
structure for rapid interference detection. In SIGGRAPH 1996, pages 171–180, 1996.

[14] J. K. Hodgins, W. L. Wooten, D. C. Brogan, and J. F. O’Brien. Animating human
athletics. Proceedings of SIGGRAPH 95, ACM Computer Graphics, pages 71–78,
1995.

[15] Michael G. Hollars, Dan E. Rosenthal, and Michael A. Sherman. SD/FAST. Symbolic
Dynamics, Inc., 1991.

[16] E. T Hsiao and S. N Robinovitch. Common protective movements govern unexpected
falls from standing height. Journal of biomechanics, 31:1–9, 1998.

[17] Joseph F. Laszlo, Michiel van de Panne, and Eugene Fiume. Limit cycle control and
its application to the animation of balancing and walking. Proceedings of SIGGRAPH
96, pages 155–162, New Orleans, LA, August 1996.

[18] Honda Motor Co. Ltd. www.honda.co.jp/english/technology/robot/.

[19] Victor Ng-Thow-Hing and Petros Faloutsos. Dance: Dynamic animation and control
environment. www.dgp.toronto.edu/DGP/DGPSoftware.html.

[20] Yi-Chung Pai and James Patton. Center of mass velocity–position predictions for
balance control. Journal of biomechanics, 30(4):347–354, 1997.

[21] Marcus G. Pandy and Frank C. Anderson. Three-dimensional computer simulation of
jumping and walking using the same model. In Proceedings of the VIIth International
Symposium on Computer Simulation in Biomechanics, August 1999.

[22] Marcus G. Pandy, Felix E. Zajac, Eunsup Sim, and William S. Levine. An optimal
control model for maximum-height human jumping. Journal of Biomechanics,
23(12):1185–1198, 1990.

[23] K. Perlin. An image synthesizer. Computer Graphics, 19(3):287–296, July 1985.

[24] M. H. Raibert. Legged Robots that Balance. MIT Press, 1986.

34



[25] Cecile Smeesters, Wilson C. Hayes, and Thomas A. McMahon. Determining fall
direction and impact location for various disturbances and gait speeds using the
articulated total body model. In Proceedings of the VIIth International Symposium
on Computer Simulation in Biomechanics, August 1999.

[26] Xiaoyuan Tu and Demetri Terzopoulos. Artificial fishes: Physics, locomotion,
perception, behavior. In Andrew Glassner, editor, Computer Graphics (SIGGRAPH
94 Proceedings), Computer Graphics Proceedings, Annual Conference Series, pages
43–50, July 1994.

[27] M. van de Panne. Parameterized gait synthesis. IEEE Computer Graphics and
Applications, pages 40–49, March 1996.

[28] Michiel van de Panne, Eugene Fiume, and Zvonko Vranesic. Reusable motion
synthesis using state-space controllers. Computer Graphics (SIGGRAPH 90
Proceedings), 24(4):225–234, Dallas, TX, August 1990.

[29] Herman van der Kooij, Bart Koopman, Ron Jacobs, Thomas Mergner, and Henk
Grootenboer. Quantification of sesonry information in human balance control. In
Proceedings of the 20th Annual International COnference of the IEEE Engineering in
Medicine and Biology Society, volume 20, pages 2393–2396, 1998.

[30] David A. Winter. Anthropometry. In Biomechanics and Motor Control of Human
Movement, chapter 3, pages 51–74. John Wiley and Sons, Inc., second edition, 1990.

[31] Wayne Wooten. Simulation of Leaping, Tumbling, Landing, and Balancing Humans.
PhD thesis, Georgia Institute of Technology, March 1998.

[32] Ge Wu. Distinguishing fall activities from normal activities by velocity characteristics.
Journal of Biomechanics, 33:1497–1500, 2000.

35


